Экологические законы, правила, принципы. Законы и принципы экологии

В комплексе действия факторов можно выделить некоторые закономерности, которые являются по отношению к организмам в значительной мере универсальным (общими). К таким закономерностям относятся закон оптимума, закон взаимодействия факторов, закон лимитирующих факторов и некоторые другие.

Закон оптимума выражается в том, что любой экологический фактор имеет определенные пределы положительного влияния на живые организмы. В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (оптимального) значения фактора. За пределами зоны оптимума лежат зоны угнетения –зоны пессимума –это условия при которых жизнедеятельность организма максимального угнетается, но он еще может существовать, как показано на рис. При пересечении кривой с горизонтальной осью находятся две критические точки. Это такие значения фактора, которые организмы уже не выдерживают, за пределами наступает смерть. Расстояние между критическими точками показывает степень выносливости организмов к изменениям фактора. Условия, близкие к критическим точкам, особенно тяжелы, для выживания. Такие условия называют экстремальными.

К зоне оптимума обычно приурочена максимальное количество видов и плотность популяции. Зоны оптимума для различных организмов неодинаковые. Для одних они имеют значительный диапазон.

Закон минимума Либиха. Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества или какие-нибудь другие факторы, а их определенный режим. Реакция организма зависит от количества (дозы) фактора. Кроме того, живой организм в природных условиях подвергается воздействию многих экологических факторов (как абиотических, так и биотических) одновременно. Растения нуждаются в значительных количествах влаги и питательных веществ (азот, фосфор, калий) и одновременно в относительно «ничтожных» количествах таких элементов, как бор и молибден. Любой вид животного или растения обладает четкой избирательностью к составу пищи: каждому растению необходимы определенные минеральные элементы. Любой вид животного по-своему требователен к качеству пищи. Для того чтобы нормально существовать, развиваться, организм должен иметь весь набор необходимых факторов в оптимальных режимах и достаточных количествах. Тот факт, что ограничение дозы (или отсутствие) любого из необходимых растению веществ, относящихся как к макро-, так и к микроэлементам, ведет к одинаковому результату - замедлению роста, обнаружен и изучен одним из основоположников агрохимии немецким химиком Юстасом фон Либихом. Сформулированное им в 1840 г. правило называют законом минимума Либиха: величина урожая определяется количеством в почве того из элементов питания, потребность растения в ко­тором удовлетворена меньше всего. Закон минимума Либиха в настоящее время называется законом ограничивающего лимитирующего фактора: в комплексе экологических факторов сильнее действует тот, который наиболее близок к пределу выносливости.


Закон минимума справедлив как для растений, так и для животных, включая человека, которому в определенных ситуациях приходится употреблять минеральную воду или витамины для компенсации недостатка каких-либо элементов в организме.

Закон лимитирующих факторов Шелфорда. Фактор среды ощущается организмом не только при его недостатке. Проблемы возникают также и при избытке любого из экологических факторов. Например, жизненная активность организма заметно угнетается и при малых значениях и при чрезмерном воздействии такого абиотического фактора, как температура.

Фактор среды наиболее эффективно действует на организм только при некотором среднем его значении, оптимальном для данного организма. Чем шире пределы колебаний какого-либо фактора, при котором организм может сохранять жизнеспособность, тем выше устойчивость, т. е. толерантность данного организма к соответствующему фактору (от лат. tо1еrапtа - терпение). Таким образом, толерантность - это способность организма выдерживать отклонения экологических факторов от оптимальных для его жизнедеятельности значений.

Впервые предположение о лимитирующем (ограничивающем) влиянии максимального значения фактора наравне с минимальным значением было высказано в 1913 г. американским зоологом В. Шелфордом, установившим фундаментальный биологический закон толерантности: любой живой организм имеет определенные, эволюционно унаследованные верхний и нижний пределы устойчивости (толерантности) к любому экологическому фактору. Другими словами лимитирующим фактором процветания может быть как минимум, так и максимум экологического фактора, диапазон между которыми определяет величну толерантности, выносливости организма к данному фактору. Поэтому экологический фактор, уровень которого приближается к любой границе диапазона выносливости организма или заходит за эту границу, называют лимитирующим фактором. Например, виды, длительное время развивается в относительно стабильных условиях утрачивают экологическую пластичность и вырабатывают черты стенобиотности, в то время как виды существующие при значительных колебаних, факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными.

Другая формулировка закона В. Шелфорда поясняет, почему закон толерантности одновременно называют законом лимитирующих факторов: з акон толерантности дополняют положения американского эколога Ю. Одума:

Организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого;

Организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены;

Диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма;

3.1. «Закон минимума» Ю. Либиха

лимитирующими «закон минимума» Либиха .

Пределы толерантности . Наряду с выводом о том, что «рост растений зависит от того элемента питания, который присутствует в минимальном количестве», ставшим основой либиховского «закона минимума», Ю. Либих указывал на диапазон лимитирующих показателей . Было выяснено, что лимитирующим фактором может быть не только недостаток, но и избыток таких факторов, как свет, тепло и вода. Понятие о лимитирующем влиянии экологического максимума наравне с минимумом ввел В. Шелфорд (1913 г.), сформулировавший «закон толерантности». Диапазон между двумя величинами, экологическим минимумом и экологическим максимумом, которым характеризуются так или иначе все живые организмы было принято называть пределом толерантности (от лат. toleratia — терпение, терпимость). Если определенный организм обладает небольшим диапазоном толерантности к одному из изменчивых факторов, то этот фактор заслуживает пристального внимания, ибо он может оказаться лимитирующим. Например, кислород, вполне доступный для организмов, обитающих в наземных частях экосистем, редко может оказаться лимитирующим. Тогда как для организмов, обитающих под водой, кислород может стать важным лимитирующим фактором. В случае экстремального сужения диапазона толерантности живой организм может всю метаболическую энергию затратить на преодоление стресса, связанного с уменьшением пределов лимитирующего фактора, а из-за недостачи энергии на нормальную жизнедеятельность — погибнуть. Если белый медведь в силу каких-либо обстоятельств будет перемещен в теплые края, то ему придеться тратить всю метаболическую энергию на преодоление теплового стресса, и животному не хватит энергии на добывание пищи и сохранение своего вида в природе.

Концепция лимитирующих факторов в общем случае широко распространяется как на биологические, так и на физические факторы, и на изложение всего, что известно по этому вопросу, потребовался бы печатный труд большого объема, что не входит в задачу данной книги. Однако, учитывая, что инженеру-экологу приходится чаще иметь дело с физическими факторами, кратко перечислим основные физические и климатические факторы.

«Закон минимума» Ю. Либиха

Каждая особь, популяция, сообщество испытывают одновременно воздействие различных факторов, но лишь часть из них являются жизненно важными. Такие жизненно важные факторы называются лимитирующими . Чаще всего хотя бы один фактор лежит вне оптимума. И от этого фактора зависит возможность существования вида в данном месте. Еще в 1840 году Ю. Либих установил, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Ему принадлежит приоритет изучения различных факторов на рост растений и выявление того, что урожай растений можно эффективнее всего повысить, улучшив минимальный фактор (обычно — увеличив количество N и P), а не те элементы питания, которые требуются в больших количествах, такие, как, например, двуокись углерода или вода. Вещества, которые требуются в ничтожнейших количествах, но которых очень мало и в почве, например цинк, эти вещества и становятся лимитирующими. Концепция Либиха о том, что «рост растения зависит от того элемента питания, который присутствует в минимальном количестве» стала известна как «закон минимума» Либиха .

Для успешного применения на практике концепции Либиха к ней необходимо добавить два вспомогательных принципа: первый — ограничительный («закон Либиха строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и вещества сбалансирован»); второй — принцип взаимодействия факторов, который утверждает, что «высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора могут изменять скорость потребления элемента питания, содержащегося в минимальном количестве».

Для инженера-эколога концепция лимитирующих факторов ценна тем, что она дает отправную позицию при исследовании сложных ситуаций в системе «человек – техника — природа». Взаимоотношения элементов такой системы могут быть весьма сложными. В процессе решения задач новой техники и технологии специалист может выделить вероятные слабые стороны и заострить внимание, хотя бы в начале, на тех характеристиках среды, которые могут оказаться критическими или лимитирующими.

Закон минимума Либиха в экологии (с примерами)

В этой статье мы кратко разберемся, в чем заключается закон минимума Либиха – один из основополагающих законов в экологии. Другое название этого закона — закон ограничивающего (лимитирующего) фактора. Также в конце статьи приведены несколько наглядных примеров, иллюстрирующих закон минимума.

Закон минимума Либиха. Немного истории

Закон минимума был сформулирован немецким химиком Юстусом фон Либихом в 1840 году .

Ученый занимался в основном изучением условий выживания растений в сельском хозяйстве. Он пытался понять, в какой момент необходимо применять те или иные химические добавления для улучшения выживаемости растений.

В результате своих исследований фон Либих сформулировал закон, который впоследствии оказался верным не только для сельского хозяйства, но и для всех экологических систем и живых организмов.

Закон ограничивающего (лимитирующего) фактора.

Суть закона минимума Либиха

Существуют разные формулировки этого закона. Но суть закона минимума (или закона ограничивающего фактора) можно сформулировать так:

  • Жизнь организма зависит от множества факторов. Но, наиболее значимым в каждый момент времени является тот фактор, который наиболее уязвим.
  • Иными словами, если в организме какой-то из факторов существенно отклоняется от нормы, то именно этот фактор в данный момент времени является наиболее значимым , наиболее критическим для выживания организма.

Важно понимать, что для одного и того же организма в разное время такими критически важными (или по-другому лимитирующими) факторами могут совершенно разные факторы.

Такие же суждения применимы и для целых экосистем. В данный момент времени ограничивающим фактором может стать, например, недостаток пищи. В другой момент времени – количество пищи будет в норме, но лимитирующим фактором станет температура окружающей среды (слишком высокая или слишком низкая).

Если обобщить вышесказанное, то можно сформулировать закон следующим образом.

Закон минимума Либиха звучит так:

Для выживания организма (или эко-системы) наиболее значимым является тот экологический фактор,

который наиболее удаляется (отклоняется) от своего оптимального значения.

Бочка Либиха

Прежде чем переходить к примерам – стоит рассмотреть рисунок, так называемой, бочки Либиха.

В этой полусломанной бочке – лимитирующим фактором является высота доски . Очевидно, что вода будет переливаться через самую маленькую доску в бочке. В этом случае нам уже будет не важной высота остальных досок – все равно бочку наполнить будет нельзя.

Наименьшая доска – это и есть тот самый фактор, который наиболее отклонился от нормального значения.

По закону минимума Либиха – починку бочки нужно начинать именно с этой доски.

Закон минимума Либиха. Примеры

Есть пословица: «Где тонко, там и рвется» — по большому счету она передает главную суть закона Либиха. Но, давайте приведем несколько примеров из совершенно разных областей.

Пример из сельского хозяйства

Есть почвы, где не хватает фосфора – значит подкармливать нужно удобрениями с фосфором. Но, в другое время – нужны удобрения с кальцием. И так далее

Пример из дикой природы

Зимой для зайца лимитирующий фактор – пища. Летом – нужно спасаться от волка, хотя пищи предостаточно.

Спортивный пример закона минимума

В футболе: если левый защитник команды самый слабый, то через его левый фланг наиболее вероятно команда пропустит гол.

Таким образом, закон минимума Либиха является универсальным экологическим и жизненным законом.

Дополнительная информация:

  • Законы экологии Коммонера – прочитайте о четырех основных законов экологии, сформулированных Коммонером.

Куда сдать на утилизацию отходы, технику и другие вещи в Вашем городе

www.kudagradusnik.ru

1. Закон минимума ю. Либиха.

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а следовательно, его присутствия или отсутствия в данной экосистеме”.

2. Закон толерантности шелфорда.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер.

Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“.

Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus -

Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший).

Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом .

Графически это иллюстрируется на рис.3-1 . Кривая на рис.3-1, как правило, не является симметричной.

Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Комчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Рис. 3-1. Зависимость жизнедеятельности от интенсивности

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

Итак, организмы в природе зависят от:

закон минимума либиха

Живой организм в природных условиях одновременно подвергается воздействия не одного, а многих экологических факторов. Причем любой фактор требуется организму в определенных колическах/дозах. Либих установил, что развитие растения или его состояние зависит не от тех химических эл-в, которые присутствуют в почве в достаточных кол-вах, а от тех, которых не хватает. Если

любого, хотя бы одного из элементов питания в почве меньше, чем требуется данным растениям, то оно будет развиваться ненормально, замедленно, или иметь патологические отклонения.

закон минимума Ю. ЛИБИХА — концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.
Согласно закону минимума жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому организму или экосистеме минимуму .

Закон Либиха :

Веществом, присутствующим в минимуме, управляется урожай, определяется его величина и стабильность во времени. В начале 20 века американский ученый Шелфорд показал, что вещ-во или любой другой фактор , присутствующий не только в минимуме, но и в избытке по сравнению с требуемым организму уровнем, может приводить к нежелательным последствия для организма. Пример: если поместить к-либо растение/животное в экспериментальную камеру и измерять в ней температуру воздуха, то состояние организма будет изменяться.

При этом выявляется некоторый наилучший, оптимальный для организма уровень данного фактора, при котором активность (физиологическое состояние) будет максимально. Если разные факторы будут отклоняться от оптимального в большую/меньшую сторону, то активность будет снижаться. При достижении некоторого max/min значения фактор станет несовместимым с жизненными процессами, в организме произойдут изменения, ведущие к смерти. Аналогичные результы можно получить в экспериментах с изменением влажности, содержания различных солей в воде, кислотности, концентрации различных вещ-в и др.

Чем шире амплитуда колебания фактора, при которой организм может сокращать жизнеспособность, тем выше его устойчивость (толерантность ) к тому или иному фактору. Из всего вышесказанного вытекает:

ecology-portal.ru

Цао это правило одно Любая гетерогенная система состоит из отдельных гомогенных, физически или химически различных, механически отделимых друг от друга частей, называемых фазами. Например, насыщенный раствор хлорида натрия с […]

  • Если вас сократили Внимание граждан, увольняемых из организаций по причине ликвидации организации либо сокращению численности или штата работников! Бланки необходимых документов: Справка о средней заработной плате. Памятка "О […]
  • НОРМАТИВНЫЕ ПРАВОВЫЕ АКТЫ НОРМАТИВНЫЕ ПРАВОВЫЕ АКТЫ ИСПОЛЬЗУЕМЫЕ ФКУ «ЦЕНТР ГИМС МСЧ РОССИИ ПО ЗАБАЙКАЛЬСКОМУ КРАЮ» В РАБОТЕ ПО РЕИСТРАЦИИ, ОСВИДЕТЕЛЬСТВОВАНИЮ И НАДЗОРУ ЗА ИСПОЛЬЗОВАНИЕМ МАЛОМЕРНЫХ СУДОВ И ВОДНЫХ ОБЪЕКТОВ ПОДНАДЗОРНЫХ […]
  • Лекция 1. Международное частное право в системе российского права 1.3. Система международного частного права Международное частное право, как и многие отрасли права, делится на две части: Общую и Особенную. В Общей части рассматриваются […]
  • Закон толерантности В. Шелфорда (1913): ограничивающим фактором жизни организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет величину выносливости организма к этому фактору. В качестве примера, поясняющего закон минимума, Ю. Либих рисовал бочку с отверстиями, уровень воды в которой символизировал выносливость организма, а отверстия - экологические факторы .[ ...]

    Закон минимума, максимума и оптимума факторов Вильямса. Гласит, что наибольший урожай осуществим при среднем оптимальном наличии фактора, при минимальном и максимальном значениях фактора урожай неосуществим. Этот закон подчеркивает особое значение оптимальных доз минеральных удобрений, так как их избыток может оказаться вредным. Это важное положение, так как из закона Либиха это не вытекало.[ ...]

    Закон минимума справедлив как для растений, так и для животных, включая человека, которому в определенных ситуациях приходится употреблять минеральную воду или витамины для компенсации недостатка каких-либо элементов в организме.[ ...]

    ЗАКОН ЛИБИХА (закон минимума) - существование и выносливость организмов определяются самым слабым звеном в цепи их экологических потребностей. Согласно этому закону, величина урожая определяется содержанием в почве такого элемента питания, потребность в котором удовлетворяется в меньшей степени. По мере его увеличения урожай будет возрастать пропорционально вносимым дозам до тех пор, пока содержание другого вещества не окажется минимальным.[ ...]

    ЗАКОН МИНИМУМА (Ю.ЛИБИХА) - выносливость организма определяется самым слабым звеном в цепи его экологических потребностей.[ ...]

    Закон минимума Либиха - закон, открытый Ю. Либихом (1840), согласно которому относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме; по данному закону, от вещества, концентрация которого лежит в минимуме, зависят рост растений, величина и устойчивость их урожайности. Например, содержание в морской воде фосфатов является лимитирующим фактором, которое и определяет обилие планктона и биопродуктивность среды. Однако закон Либиха наиболее четко формулируется тогда, когда речь идет о незаменимых ресурсах (точнее, элементах питания). В дальнейшем оно стало применяться и к заменимым ресурсам, а потом и вообще к любым экологическим факторам.[ ...]

    Закон минимума (Ю. Либиха): жизненность организма определяется самым слабым звеном в цепи его экологических потребностей. Ю. Либих формулировал данный закон следующим образом: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени».[ ...]

    Закон минимума (Ю. Либих): биотический потенциал (жизнеспособность, продуктивность организма, популяции, вида) лимитируется тем из факторов среды, который находится в минимуме, хотя все остальные условия благоприятны (см. Закон толерантности).[ ...]

    Согласно закону минимума, приписываемому Либиху, рост организма зависит от количества основного питательного вещества. Так, вследствие недостатка фосфора может сохраниться массовое развитие водорослей, даже если они получают азот и углерод в избыточных количествах. В соответствии с этим законом в каждом конкретном случае ограничивающее действие оказывает определенное питательное вещество и только его количество имеет решающее значение для процесса роста.[ ...]

    Разумеется, закон минимума справедлив не только для растений, но и для всех живых организмов, включая человека. Известно, что в ряде случаев недостаток каких-либо элементов в организме приходится компенсировать употреблением минеральной воды или витаминов.[ ...]

    Что касается закона минимума Ю. Либиха, то он имеет ограниченное действие и только на уровне химических веществ. Р. Митчерлих показал, что урожай зависит от совокупного действия всех факторов жизни растений, включая температуру, влажность, освещенность и т. д.[ ...]

    Поэтому вместо закона минимума в настоящее время чаще говорят о законе лимитирующих (ограничивающих) факторов: фактор, находящийся в недостатке или избытке, отрицательно влияет на организмы даже в случае оптимальных сочетаний других факторов.[ ...]

    Как устанавливает закон минимума (Либих, 1840 г.), растения для нормального развития должны получать все биогенные элементы обязательно, хотя в минимально необходимых количествах. Поэтому для нормального развития растений весьма важно накопление биогенов в почве в формах, доступных для растений, путем трансформации более сложных органических и неорганических соединений. Характерным примером такого процесса является накопление азота в почве.[ ...]

    В качестве примера, поясняющего закон минимума, Ю.Ли-бих рисовал бочку с отверстиями, уровень воды в которой символизировал выносливость организма, а отверстия - экологические факторы (рис.2).[ ...]

    Ёольни в 80-х годах распространил закон минимума Либиха и на физические свойства почвы.[ ...]

    Стремлению сузить сферу действия закона минимума противостоит закон незаменимости фундаментальных факторов, связываемый с именем В. Р. Вильямса. В 1949 г. он жестко сформулировал ограничение: полное отсутствие в среде фундаментальных экологических (физиологических) факторов (света, воды, биогенов и т. п.) не может быть заменено другими факторами. Совершенно очевидно, что любой из экологических компонентов до конца не может быть заменен - при отсутствии энергии нет жизни, то же при полном безводье и так далее. Для элементарных потребностей это очевидно, но в более сложных ситуациях, особенно когда речь идет о фундаментальных, но не столь известных и осознанных факторах, например, в системе потребностей человека (см. главу 7), такая очевидность исчезает. Это ведет к ошибкам, иногда роковым.[ ...]

    В 1840 г. Ю. Либихом был сформулирован закон минимума, согласно которому развитие растений лимитируется не теми элементами питания, которые присутствуют в почве в изобилии, а теми, которых очень мало (например, цинк или бор). Закон минимума справедлив и для животных, и для человека. Здоровье человека определяется в том числе и специфическими веществами, которые присутствуют в организме в ничтожных количествах (витамины, микроэлементы).[ ...]

    Здесь в еще более резкой форме, чем в «законе минимума», выражено идеалистическое отрицание единства среды и организма. Все отношения между организмом и средой здесь рассматриваются исключительно как антагонистические, а избирательная способность организмов по отношению к факторам среды и действие организма на среду обитания полностью игнорируются. По представлению Чепмана и его школы, каждый вид организмов обладает совершенно определенной, неизменной потенцией ¡к размножению. Фактически же среда якобы «давит» на организмы и потенциальные возможности к размножению, поэтому в полной мере не проявляются. Согласно Чепману, для определения темпов фактического размножения насекомых в любой конкретной обстановке необходимо установить численное выражение ограничительного действия каждого из факторов среды.[ ...]

    Дополнительное правило взаимодействия факторов в законе минимума: организм в определенной мере способен заменить дефицитное вещество или другой действующий фактор жизни функционально близким веществом или фактором (например, одно вещество другим, химически близким) - вызвало поток аналогичных постулатов. Среди них закон относительности действия лимитирующих факторов, или закон Лундегарда - Полетаева: форма кривой роста численности популяции (ее биомассы) зависит не только от одного вещества с минимальной концентрацией, а от концентрации и свойств других ионов, имеющихся в среде.[ ...]

    При дефиците чего-то именно этот недостаток определяет успешность жизни. Однако в целом, поскольку любой фактор может оказаться в минимуме, лишь их оптимальная совокупность обеспечивает процветание. Этот факт сформулирован в виде закона равнозначности всех условий жизни: все условия среды, необходимые для жизни, играют равнозначную роль. В перечень этих условий для людей входят факторы как природной, так и социальной среды.[ ...]

    Около 1840 г. один из основателей агрохимии Юстус Либих сформулировал «закон минимума». По этому закону рост растения определяется тем фактором, который представлен в наименьшем количестве. В 1926 г. эколог А. Тинеман сформулировал его в отношении гидробиологии. Он писал, что тот из необходимых факторов окружающей среды определяет густоту населения данного вида живых существ, который действует в количестве или интенсивности, наиболее далеких от оптимума. Нужно лишь уточнить, что необходимый фактор среды надо понимать как фактор, влияющий положительно, а не отрицательно.[ ...]

    Уже А. Леопольд представление о емкости связывал с практическим применением закона минимума Ю. Либиха. Он указывал, что емкость часто будет определяться по тому фактору среды, который среди прочих находится в минимуме. Он также считал, что емкость имеет сезонные аспекты.[ ...]

    Важное значение для экологических и биолого-зволюционных процессов имеет общефизический закон минимума диссипации (рассеивания) энергии Л. Онсагера, или принцип экономии энергии: при вероятности развития процесса в некотором множестве направлений, допускаемых началами термодинамики, реализуется то, которое обеспечивает минимум диссипации энергии (или минимум роста энтропии). Очевидна прямая связь обсуждаемого закона и закона оптимальности (разд. 3.2.1).[ ...]

    Столь важное значение экстремальных экологических условий побудило немецкого агрохимика Ю.Либиха в 1840 г.сформулировать "закон минимума",согласно которому урожай ограничивается те«« химическим элементом питания.концентрация 1.второго в почве является минимальной.[ ...]

    Представления о ведущих, главнейших факторах среды не надо смешивать с широко признававшимся в конце прошлого и начале настоящего столетия так называемым законом минимума, сформулиро- ‘ ванным Либихом (1840, 1847). Либих утверждал, что рост и размер урожая растений определяются тем из необходимых для растения питательных веществ в почве, которое находится в минимальном количестве для удовлетворения потребностей растения. Этот «закон» рекомендовался вскоре после его опубликования и для определения экологических потребностей животных, причем Блэкман (1905) предлагал переименовать его в «закон лимитирующих факторов», а Шелфорд (1911) подчеркивал, что существование организмов следует связывать не только с минимальными, но и с максимально переносимыми избыточными дозами каких-либо внешних воздействий. Шелфорд называл это «законом выносливости» организмов. Тиннеман (1926) видоизменил содержание «закона минимума», сделав упор не на общую возможность существования вида, а на численность его популяций. Согласно этому исправленному закону густоту населения определяет тот фактор внешней среды, который находится в количестве или интенсивности, наиболее далеких от оптимума, и действует на стадию развития, обладающую наименьшей экологической валентностью. В 1934 г. Тэйлор восстановил «закон» Либиха в такой формулировке: «Рост и функционирование организма зависит от количественной стороны существенного внешнего фактора, предоставляемого ему в минимальном количестве в течение наиболее критического периода».[ ...]

    Это правило об особенном значении тех веществ, которых наиболее не хватает для нормального развития растения, стало известным под названием либиховского «закона минимума». Следует, однако, заметить, что в основном своем сочинении (1840) Либих вовсе не употребляет выражения «закон минимума» и не дает ему никакой математической формулировки. Также и в последующем выступлении («50 тезисов» 1855) он прибегает к описательному изложению, из которого видно, что самое положение о доминирующем значении элементов, находящихся в минимуме, понималось им как относительное, что можно видеть из такой фразы: «Элемент, полностью отсутствующий или не находящийся в нужном количестве, препятствует прочим питательным соединениям произвести их эффект или, по крайней мере, уменьшает их питательное действие» х.[ ...]

    Если нельзя, то значит Вы признаете закон минимума в смысле Либиха (а не в смысле разных невежд), а если Вы скажете - можно, то попробуйте сунуться с таким утверждением в производство и будете изгнаны оттуда с позором.[ ...]

    Лимитирующий фактор - экологический фактор (свет, температура, почва, биогенные компоненты и др.), который при определенном наборе условий окружающей среды ограничивает какое-либо проявление жизнедеятельности организмов. Это понятие ведет начало от закона минимума Либиха (1840) и закона толерантности Шелфорда (1913). Концепция лимитирующего фактора имеет существенное значение для охраны природы и рационального природопользования.[ ...]

    Чтобы жить и процветать в тех или иных конкретных условиях, организм должен иметь вещества, необходимые ему для роста и размножения. Основные потребности у разных видов и в разных условиях различны. При «стационарном состоянии» лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму. Этот «закон» минимума в меньшей степени приложим к «переходным состояниям», когда быстро измеряются количества, а значит, и эффект многих составляющих.[ ...]

    Существование и успех любого организма или любой группы организмов зависит от комплекса определенных условий. Любое условие, приближающееся к пределу толерантности или превышающее его, называется лимитирующим условием, или лимитирующим фактором. При стационарном состоянии лимитирующим будет то жизненно важное вещество, доступные количества которого наиболее близки к необходимому минимуму. Эта концепция известна как «закон минимума» Либиха. Она менее применима к «переходным состояниям», когда количества, а следовательно, и эффект многих составляющих быстро изменяются.[ ...]

    По словам Либиха, «если почва подходяща, если она содержит достаточное количество щелочей, фосфатов и сульфатов, то ничего больше не требуется». Со временем ои придал этому положению количественное выражение: «Урожаи полевых культур понижаются пли повышаются в точной пропорции к уменьшению или увеличению количества минеральных веществ, вносимых в почву с удобрениями». Отсюда же были выведены два кардинальных, с точки зрения Либиха, «закона»: «закон минимума», «закон полного возврата». Вот суть второго закона: «Основное начало земледелия состоит в том, чтобы почва получила обратно все, у нее взятое. Это неизменный закон природы». Только от химии,- утверждал Либих,- следует ожидать дальнейших успехов в сельском хозяйстве», она «совершенно революционизирует сельское хозяйство» (Либих, 1864, с. 37; 1964-, с. 176).[ ...]

    Наиболее общим объяснением причин формирования границ ареала вида служит правило ограничивающих факторов: факторы среды, наиболее удаляющиеся от оптимума экологических потребностей вида, лимитируют возможности его существования в данных условиях. Поскольку к лимитирующим факторам относятся любые условия существования вида - как абиотические, так и биотические, включая антропогенные,- правило ограничивающих факторов, ведущее свое начало от группы законов минимума (см. разд. 3.5.2), включая закон толерантности Шел-форда (см. разд. 3.5.1), практически дополнительно ничего не объясняет, а лишь резюмирует перечисленные закономерности.[ ...]

    Но вот от людей, совсем непохожих на И. А. Хлестакова, я заслужил в 1927 г. совершенно обратный упрек, именно, что я проглядел Митчерлиха и сделал большую ошибку, игнорируя его почти 20-летнюю деятельность и совершенно не знакомя с ней наши агрономические круги. Он доказывал важность создания агрохимической опытной станции в Москве еще в 1885 г., отстаивал значение кафедры агрохимии (1885-1905 гг.), когда был открыт поход против агрохимии (подобный походу тов. Кукса), он же настойчиво пропагандировал применение удобрений и постановку с ними полевых опытов (а не только физиологических).[ ...]

    Идея о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, впервые была высказана в 1840 г. Ю. Либихом, который первым начал изучение влияния разнообразных факторов на рост растений. Он установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, такими, например, как двуокись углерода и вода (поскольку эти вещества обычно присутствуют в изобилии), а теми, которые требуются в малых количествах (например, бор), но которых и в почве мало. Выдвинутый Либихом принцип: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени», - получил известность как либиховский «закон» минимума. Многие авторы (например, Тейлор, 1934) расширили это положение, включив в него, помимо питательных веществ, и ряд других факторов, например температуру и время. Чтобы избежать путаницы, лучше, пожалуй, ограничить концепцию минимума, применяя ее, как это делал сам Либих, лишь к химическим веществам (кислороду, фосфору и т. д.), необходимым для роста и размножения организмов; другие же факторы и лимитирующий эффект максимума включить в «закон» толерантности. Обе эти концепции могут быть объединены в общий принцип лимитирующих факторов (см. ниже). Таким образом, «закон» минимума - это лишь один аспект зависимости организмов от среды.

    Закон ограничивающего (лимитирующего) фактора , или Закон минимума Либиха - один из фундаментальных законов в экологии , гласящий, что наиболее значим для организма тот фактор , который более всего отклоняется от оптимального его значения. Поэтому во время прогнозирования экологических условий или выполнения экспертиз очень важно определить слабое звено в жизни организма . Сформулирован Юстусом фон Либихом в 1840 году. Позже, в 1913 году, закон обобщен и дополнен Шелфордом (Закон толерантности).

    Юстус фон Либих

    Именно от этого, минимально (или максимально) представленного в данный конкретный момент экологического фактора зависит выживание организма. В другие отрезки времени ограничивающими могут быть другие факторы. В течение жизни особи видов встречаются с самыми разными ограничениями своей жизнедеятельности. Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова ; бабочки озимой совки (вредителя овощных и зерновых культур) - зимняя температура и т. д.

    Этот закон учитывается в практике сельского хозяйства. Немецкий химик Юстус фон Либих (1803-1873) установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция - 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

    По имени учёного названо образное представление этого закона - так называемая «бочка Либиха». Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке, и длина остальных досок уже не имеет значения.

    Закон возврата Либиха

    Суть его в том, что урожай зависит от возврата среде жизненно необходимых факторов, использованных организмом. Открытие этого закона способствовало прогрессивному повышению плодородия почвы. К. А. Тимирязев и Д. Н. Прянишников назвали этот закон величайшим приобретением науки.

    Питательные вещества, взятые растениями из почвы, должны быть возвращены в неё путём удобрений или посева бобовых культур. Как образно выразился Ю. Либих, нарушение закона возврата приводит к обогащению отцов, но разорению потомков.

    Урожай создается за счет веществ, получаемых растениями из почвы и энергии солнечного света. Кроме того, почва - посредник растений в обеспечении их факторами жизни, среда их произрастания. При систематическом отчуждении урожая без компенсации использованных им составных частей почвы и энергии почва разрушается, теряет плодородие. При компенсации выноса веществ и энергии из почвы последняя сохраняет свое плодородие; при компенсации веществ и энергии с определенной степенью превышения происходит улучшение почвы, расширенное воспроизводство ее плодородия. Закон возврата - научная основа воспроизводства почвенного плодородия, частный случай проявления всеобщего закона сохранения веществ и энергии.

    Сейчас закон возврата понимается более широко и не только в отношении питательных веществ, но и других негативных воздействий на почву. Всякое негативное воздействие на почву должно быть компенсировано (переуплотнение, распыление, разрушение структуры, засоление и т. п.).

    Закон равнозначимости и незаменимости факторов жизни растений (В. Р. Вильямса)

    Условия жизни равнозначны, ни один из факторов жизни не может быть заменен другим.

    Для роста и развития растений должен быть обеспечен приток всех факторов жизни растений - космических и земных. Растение может нуждаться как в больших, так и в ничтожно малых количествах факторов, однако отсутствие любого из них ведет к резкому снижению урожая и даже гибели растений. В этом проявляется абсолютный характер закона. Ни один фактор нельзя заменить другим. Например, недостаток фосфора нельзя заменить избытком азота, а ограниченное поступление света восполнить лучшим обеспечением растений водой и т.д.

    На практике получить максимально высокий урожай можно только при бесперебойном снабжении растений всеми факторами в оптимальном количестве. Однако в конкретных условиях производства закон равнозначимости и незаменимости факторов жизни растений приобретает относительное значение вследствие неодинаковых затрат на обеспечение растений разными факторами. Это связано как с абсолютной потребностью растений в факторе, так и с его наличием в данной почве, в данном регионе, с материально-техническими возможностями производства и т. д.

    Закон равнозначимости и незаменимости факторов жизни растений подчеркивает материальность земледельческого производства, не позволяет надеяться на «чудодейственные» рецепты получения урожая без материальных затрат или затрат в «гомеопатических дозах».

    Закон минимума, максимума и оптимума факторов

    Гласит, что наибольший урожай осуществим при среднем оптимальном наличии фактора, при минимальном и максимальном значениях фактора урожай неосуществим. Этот закон подчеркивает особое значение оптимальных доз минеральных удобрений, так как их избыток может оказаться вредным. Это важное положение, так как из закона Либиха это не вытекало.

    Закон толерантности Шелфорда

    Закон сформулирован Виктором Эрнестом Шелфордом в 1913 году, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Толерантность - способность организма переносить неблагоприятное влияние того или иного фактора среды. Закон толерантности расширяет закон минимума Либиха.

    Лимитирующим фактором может быть не только недостаток, на что указывал Либих, но и избыток таких факторов, как, например, тепло, свет и вода. Организмы характеризуются экологическим минимумом и экологическим максимумом. Диапазоны между этими двумя величинами принято называть пределами устойчивости, выносливости или толерантности. Представление о лимитирующем влиянии максимума наравне с минимумом и ввел В. Шелфорд (1913) , сформировав закон толерантности. Любой фактор, находящийся в избытке или недостатке, ограничивает рост и развитие организмов и популяций.

    Закон совокупного или взаимообусловленного действия факторов

    Сформулирован немецким учёным Митчерлихом. Согласно этому закону, факторы роста действуют не изолировано, а взаимосвязано, и поэтому, воздействуя (увеличивая или уменьшая) на один фактор, мы в той или иной степени воздействуем на другой . Например, на удобренном фоне, как установил, К. А. Тимирязев, растения более экономно расходуют влагу и их транспирационный коэффициент снижается. Графически суть этого закона иллюстрируется результатами опыта Э. Вольни (рис. 2.1.1.4). Из закона взаимообусловленного действия факторов роста вытекает важное положение для производства: чтобы получать высокие урожаи, необходимо влиять не на один фактор, а все факторы внешней среды, добиваясь их оптимальных значений.

    Все факторы жизни растений действуют совокупно, т. е. взаимодействуют в процессе роста и развития растений. Либшер и Люндегорд показали, что в связи с законом совокупного действия факторов действие отдельного фактора, находящегося в минимуме, тем интенсивнее, чем больше других факторов находится в оптимуме.

    Люндегорд установил также «интерференцию» факторов, находящихся в минимуме, совмещение их отрицательного действия на рост и развитие растений. Ряд исследователей, руководствуясь законом совокупного действия факторов, пытались в математической форме установить зависимость урожая от факторов жизни растений. Наибольших успехов в этом направлении достиг Э. Митчерлих.

    Закон действия факторов жизни растений, по Э. Митчерлиху, гласит, что прибавка урожая зависит от каждого фактора роста и его интенсивности, она пропорциональна разнице между возможным максимальным и действительно полученным урожаем. Он попытался математически выразить зависимость прибавки урожая от удобрения почвы. Э. Митчерлих экспериментально вывел следующие коэффициенты использования отдельных факторов жизни: N - 0,2, Р2О5 - 0,6, К2О - 0,4, Mg - 2,0 на 1 мм осадков, Последующими исследованиями было установлено, что формула Э. Митчерлиха неуниверсальна, так как сложные биологические процессы создания урожая не описываются математическими формулами. Тренель вскоре показал, что она, кроме того, неверна и математически.

    Несмотря на трудности математического выражения закона совокупного действия факторов, закон этот имеет огромное значение для практики земледелия. В этой связи В. Р. Вильямс указывал, что прогресс возможен лишь когда наше воздействие на условия, в которых протекает это сложное производство, направлено одновременно на весь их комплекс. Этот комплекс условий представляет одно органическое целое, все элементы которого неразрывно связаны. Воздействие на один из этих элементов неминуемо влечет за собой необходимость воздействия и на всё остальное.

    Принципы охраны природы

    Охрана природы - это совокупность международных, государственных и локальных административных, технологических, плановых, управленческих, экономических, политических и общественных мероприятий, направленных на рациональное использование, воспроизводство и сохранение природных ресурсов Земли и космического пространства.

    Основные направления охраны природы:

    Принципы Б. Коммонера

    Основные законы экологии, сформулированные Барри Коммонером (1971), кратко можно представить так:

    1. Все связано со всем (всеобщая связь процессов и явлений в природе);
    2. Все должно куда-то деваться (любая природная система может развиваться только за счет использования энергетических и информационных возможностей окружающей ее среды);
    3. Природа «знает» лучше (пока мы не имеем абсолютно достоверной информации о механизмах и функциях природы, мы легко можем навредить природе, пытаясь ее улучшить);
    4. Ничто не дается даром (глобальная экосистема представляет собой единое целое, в рамках которого ничто не может быть выиграно или потеряно, не может быть объектом всеобщего улучшения; все извлеченное в процессе человеческого труда должно быть возмещено).

    Аксиома и принцип эмерджентности

    Целое больше суммы ее частей, всегда имеет новые свойства, не сводимые к простому суммированию свойств частей системы, не объединенных системообразующими связями. Оптимум плодородия не эквивалентен оптимуму по каждому из свойств почв в отдельности.

    При сложении системного целого образующаяся интеграция подчиняется иным (хотя возможно, и подобным) законам формирования, функционирования и эволюции. Образно говоря, одно дерево еще не лес, как и группа деревьев, а механическое сосредоточение химических элементов, молекул органических веществ, даже тканей и органов, не дает организма. Для леса необходимо сочетание всех его экологических компонентов, составляющих именно его экосистему, образование круговоротов веществ, регуляция потока энергии, в том числе образование собственного биоклимата, и т. д. Для организма требуется «энтелехия» системной целостности, обмена веществ и других свойств биосистемы.

    Принцип эмерджентности - следствие иерархической организации природных систем, сопровождающейся возникновением новых свойств по мере объединения компонентов в более крупные функциональные единицы, отсутствующие на предыдущем уровне. Возникновение новых свойств обязано взаимодействию компонентов, процессу интегрирования, а не изменению природы этих компонентов. Различают эмерджентные свойства, описанные выше, и совокупные свойства, представляющие собой сумму свойств компонентов. Принцип эмерджентности объясняет возможность изучения целого без тщательного рассмотрения всех компонентов. Эмерджентность или интегрированность системы - это свойства целого, не выводимые из свойств частей, т. е. не присущи ни одной отдельно взятой части. Таким свойством, например, является продуктивность. Синонимом эмерджентности является аддитивность и сверхаддитивность

    Правило затухания процессов

    насыщающиеся системы с увеличением степени равновесности с окружающей их средой или внутреннего гомеостаза характеризуются затуханием в них динамических процессов. Например, темпы размножения акклиматизированных организмов по мере насыщенности сообщества затухают.

    Правило ускорения эволюции

    с ростом сложности организации биосистем продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают.

    Правило эквивалентности в развитии биосистем

    биосистемы способны достигнуть конечного (финального) состояния (фазы) развития независимо от степени нарушения начальных условий своего развития.

    Принцип преадаптации

    организмы занимают все новые экологические ниши благодаря генетической преадаптации.

    Закон видового разнообразия культур или мозаичности агроценозов

    Наиболее высокая и устойчивая продуктивность агроценозов достигается при их достаточном видовом разнообразии. Этот закон также лежит в основе учения о севооборотах.

    Закон технологического разнообразия

    Постоянное длительное применение на поле одной и той же технологии (одних и тех же пестицидов, удобрений, обработки почвы и других приёмов) усиливает одностороннее негативное воздействие на почвенное плодородие и поэтому необходимо иметь севооборот с различными культурами и их агротехнологиями.

    Примечания

    Экология
    Понятия Экологические законы, правила, принципы Продуценты Консументы Редуценты Экотон
    Экосистема

    Законы экологии — общие закономерности и принципы взаимодействия человеческого общества с природной средой.

    Значение этих законов состоит в регламентации характера и направленности человеческой деятельности в пределах экосистем различного уровня. Среди законов экологии, сформулированных разными авторами, наибольшую известность получили четыре закона-афоризма американского ученого-эколога Барри Коммонера (1974):

    • «все связано со всем» (закон всеобщей связи вещей и явлений в природе);
    • «все должно куда-то деваться» (закон сохранения массы вещества);
    • «ничто не дается даром» (о цене развития);
    • «природа знает лучше» (о главном критерии эволюционного отбора).

    Из закона всеобщей связи вещей и явлений в природе («все связано со всем») вытекает несколько следствий:

    • закон больших чисел - совокупное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая, т.е. имеющему системный характер. Так, мириады бактерий в почве, воде, телах живых организмов создают особую, относительно стабильную микробиологическую среду, необходимую для нормального существования всего живого. Или другой пример: случайное поведение большого числа молекул в некотором объеме газа обусловливает вполне определенные значения температуры и давления;
    • принцип Ле Шателье (Брауна) - при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия уменьшается. На биологическом уровне он реализуется в виде способности экосистем к саморегуляции;
    • закон оптимальности — любая система функционирует с наибольшей эффективностью в некоторых характерных для нее пространственно-временных пределах;
    • любые системные изменения в природе оказывают прямое или опосредованное воздействие на человека — от состояния индивидуума до сложных общественных отношений.

    Из закона сохранения массы вещества («все должно куда-то деваться») вытекают по меньшей мере два постулата, имеющих практическое значение:

    Барри Коммонер писан «...глобальная экосистема представляет собой единое целое, в рамках которого ничего не может быть выиграно или потеряно и которое не может являться объектом всеобщего улучшения; все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать; он может быть только отсрочен. Нынешний кризис окружающей среды говорит о том, что отсрочка очень затянулась».

    Принцип «природа знает лучше» определяет прежде всего то, что может и что не должно иметь места в биосфере. Все в природе — от простых молекул до человека — прошло жесточайший конкурс на право существования. В настоящее время планету населяет лишь 1/1000 испытанных эволюцией видов растений и животных. Главный критерий этого эволюционного отбора — вписанность в глобальный биотический круговорот , заполненность всех экологических ниш. У любого вещества, выработанного организмами, должен существовать разлагающий его фермент, и все продукты распада должны вновь вовлекаться в круговорот. С каждым биологическим видом, который нарушал этот закон, эволюция рано или поздно расставалась. Человеческая индустриальная цивилизация грубо нарушает замкнутость биотического круговорота в глобальном масштабе, что не может остаться безнаказанным. В этой критической ситуации должен быть найден компромисс, что под силу только человеку, обладающему разумом и стремлением к этому.

    Помимо формулировок Барри Коммонера современные экологи вывели еще один закон экологии - «на всех не хватит» (закон ограниченности ресурсов). Очевидно, что масса питательных веществ для всех форм жизни на Земле конечна и ограничена. Ее не хватает на всех появляющихся в биосфере представителей органического мира, поэтому значительное увеличение численности и массы каких-либо организмов в глобальном масштабе может происходить только за счет уменьшения численности и массы других. На противоречие между скоростью размножения и ограниченностью ресурсов питания применительно к народонаселению планеты впервые обратил внимание английский экономист Т.Р. Мальтус (1798), который именно этим пытался обосновать неизбежность социальной конкуренции. В свою очередь, Ч. Дарвин заимствовал у Мальтуса понятие «борьба за существование» для объяснения механизма естественного отбора в живой природе.

    Закон ограниченности ресурсов — источник всех форм конкуренции, соперничества и антагонизма в природе и, к сожалению, в обществе. И сколько бы ни считали классовую борьбу, расизм, межнациональные конфликты чисто социальными явлениями — все они своими корнями уходят во внутривидовую конкуренцию, принимающую иногда гораздо более жестокие формы, чем у животных.

    Существенное различие в том, что в природе в результате конкурентной борьбы выживают лучшие, а в человеческом обществе — это отнюдь не так.

    Обобщенную классификацию экологических законов представил известный советский ученый Н.Ф. Реймерс. Им даны следующие формулировки:

    • закон социально-экологического равновесия (необходимости сохранения равновесия между давлением на среду и восстановлением этой среды, как природным, так и искусственным);
    • принцип культурного управления развитием (наложение ограничений на экстенсивное развитие, учет экологических ограничений);
    • правило социально-экологического замещения (необходимость выявления путей замещения человеческих потребностей);
    • закон социально-экологической необратимости (невозможность поворота эволюционного движения вспять, от сложных форм к более простым);
    • закон ноосферы Вернадского (неизбежность трансформации биосферы под влиянием мысли и человеческого труда в ноосферу — геосферу, в которой разум становится доминирующим в развитии системы «человек-природа»).

    Соблюдение этих законов возможно при условии осознания человечеством своей роли в механизме поддержания стабильности биосферы. Известно, что в процессе эволюции сохраняются только те виды, которые способны обеспечивать устойчивость жизни и окружающей среды. Только человек, используя силу своего разума, может направить дальнейшее развитие биосферы по пути сохранения дикой природы, сохранения цивилизации и человечества, создания более справедливой социальной системы, перехода от философии войны к философии мира и партнерства, любви и уважения к будущим поколениям. Все это составляющие нового биосферного мировоззрения, которое должно стать общечеловеческим.

    Законы и принципы экологии

    Закон минимума

    В 1840 г. Ю. Либих установил, что урожай часто ограничивается не теми питательными веществами, которые требуются в больших количествах, а теми, которых нужно немного, но которых мало и в почве. Сформулированный им закон гласил: «Веществом, находящимся в минимуме, управляется урожай, определяется величина и устойчивость последнего во времени». Впоследствии к питательным веществам добавили ряд других факторов, например температуру. Действие данного закона ограничивают два принципа. Первый закон Либиха строго действует только в условиях стационарного состояния. Более точная формулировка: «при стационарном состоянии лимитирующим будет то вещество, доступные количества которого наиболее близки к необходимому минимуму». Второй принцип касается взаимодействия факторов. Высокая концентрация или доступность некоторого вещества может изменять потребление минимального питательного вещества. Следующий закон сформулирован в самой экологии и обобщает закон минимума.

    Закон толерантности

    Этот закон формулируется следующим образом: отсутствие или невозможность развития экосистемы определяется не только недостатком, но и избытком любого из факторов (тепло, свет, вода). Следовательно, организмы характеризуются как экологическим минимумом, так и максимумом. Слишком много хорошего тоже плохо. Диапазон между двумя величинами составляет пределы толерантности, в которых организм нормально реагирует на влияние среды. Закон толерантности предложил В. Шелфорд в 1913 г. Можно сформулировать ряд дополняющих его предложений.

    • Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий в отношении другого.
    • Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.
    • Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться диапазон толерантности к другим экологическим факторам.
    • В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному значению того или иного фактора, определенному в лаборатории.
    • Период размножения обычно является критическим; в этот период многие факторы среды часто оказываются лимитирующими.

    Живые организмы изменяют условия среды, чтобы ослабить лимитирующее влияние физических факторов. Виды с широким географическим распространением образуют адаптированные к местным условиям популяции, которые называются экотипами. Их оптимумы и пределы толерантности соответствуют местным условиям.

    Обобщающая концепция лимитирующих факторов

    Наиболее важными факторами на суше являются свет, температура и вода (осадки), а в море — свет, температура и соленость. Эти физические условия существования могут быть лимитирующими и влияющими благоприятно. Все факторы среды зависят друг от друга и действуют согласованно. Из других лимитирующих факторов можно отметить атмосферные газы (углекислый газ, кислород) и биогенные соли. Формулируя «закон минимума», Либих и имел в виду лимитирующее воздействие жизненно важных химических элементов, присутствующих в среде в небольших и непостоянных количествах. Они называются микроэлементами и к ним относятся железо, медь, цинк, бор, кремний, молибден, хлор, ванадий, кобальт, йод, натрий. Многие микроэлементы подобно витаминам действуют как катализаторы. Фосфор, калий, кальций, сера, магний, требующиеся организмам в больших количествах, называются макроэлементами. Важным лимитирующим фактором в современных условиях является загрязнение природной среды. Главный лимитирующий фактор, по Ю. Одуму, - размеры и качество «ойкоса », или нашей «природной обители», а не просто число калорий, которые можно выжать из земли. Ландшафт не только склад запасов, но и дом, в котором мы живем. «Следует стремиться к тому, чтобы сохранить, по меньшей мере, треть всей суши в качестве охраняемого открытого пространства. Это означает, что треть всей нашей среды обитания должны составлять национальные или местные парки, заповедники, зеленые зоны, участки дикой природы и т.п.». Территория, необходимая одному человеку, по разным оценкам колеблется от 1 до 5 га. Вторая из этих цифр превосходит площадь, которая приходится ныне на одного жителя Земли.

    Плотность населения приближается к одному человеку на 2 га суши. Пригодны же для сельского хозяйства только 24% суши. Хотя с площади всего лишь 0,12 га можно получить достаточно калорий, чтобы поддержать существование одного человека, для полноценного питания с большим количеством мяса, фруктов и зелени необходимо около 0,6 га на человека. Кроме того, требуется еще около 0,4 га для производства разного рода волокна (бумаги, древесины, хлопка) и еще 0,2 га для дорог, аэропортов, зданий и т.п. Отсюда концепция «золотого миллиарда», в соответствии с которой оптимальным количеством населения является 1 млрд человек, и стало быть, уже сейчас около 5 млрд «лишних людей». Человек впервые за свою историю столкнулся с предельными, а не локальными ограничениями. Преодоление лимитирующих факторов требует огромных затрат вещества и энергии. Для удвоения урожая необходимо десятикратное увеличение количества удобрений, ядохимикатов и мощности (животных или машин). К лимитирующим факторам относится и численность популяции.

    Закон конкурентного исключения

    Данный закон формулируется следующим образом: два вида, занимающие одну экологическую нишу, не могут сосуществовать в одном месте неограниченно долго.

    То, какой вид побеждает, зависит от внешних условий. В сходных условиях победить может каждый. Важным для победы обстоятельством является скорость роста популяции. Неспособность вида к биотической конкуренции ведет к его оттеснению и необходимости приспособления к более трудным условиям и факторам.

    Закон конкурентного исключения может работать и в человеческом обществе. Особенность его действия в настоящее время заключается в том, что цивилизации не могут разойтись. Им некуда уйти со своей территории, потому что в биосфере нет свободного места для расселения и нет избытка ресурсов, что приводит к обострению борьбы со всеми вытекающими отсюда последствиями. Можно говорить об экологическом соперничестве между странами и даже экологических войнах или войнах, обусловленных экологическими причинами. В свое время Гитлер оправдывал агрессивную политику нацистской Германии борьбой за жизненное пространство. Ресурсы нефти, угля и т.п. и тогда были важны. Еще больший вес они имеют в XXI в. К тому же добавилась необходимость территорий для захоронения радиоактивных и прочих отходов. Войны — горячие и холодные — приобретают экологическую окраску. Многие события в современной истории, например распад СССР, воспринимаются по-новому, если на них посмотреть с экологических позиций. Одна цивилизация может не только завоевать другую, но использовать ее для корыстных с экологической точки зрения целей. Это и будет экологический колониализм. Так переплетаются политические, социальные и экологические проблемы.

    Основной закон экологии

    Одним из главных достижений экологии стало открытие, что развиваются не только организмы и виды, но и . Последовательность сообществ, сменяющих друг друга в данном районе, называется сукцессией. Сукцессия происходит в результате изменения физической среды под действием сообщества, т.е. контролируется им.

    Высокая продуктивность дает низкую надежность — еще одна формулировка основного закона экологии, из которой вытекает следующее правило: «Оптимальная эффективность всегда меньше максимальной». Разнообразие в соответствии с основным законом экологии непосредственно связано с устойчивостью. Однако пока неизвестно, до какой степени эта связь является причинно-следственной.

    Некоторые другие важные для экологии законы и принципы.

    Закон эмерджентности : целое всегда имеет особые свойства, отсутствующие у его части.

    Закон необходимого разнообразия : система не может состоять из абсолютно идентичных элементов, но может иметь иерархическую организацию и интегративные уровни.

    Закон необратимости эволюции : организм (популяция, вид) не может вернуться к прежнему состоянию, осуществленному в ряду его предков.

    Закон усложнения организации : историческое развитие живых организмов приводит к усложнению их организации путем дифференциации органов и функций.

    Биогенетический закон (Э. Геккель): онтогенез организма есть краткое повторение филогенеза данного вида, т.е. индивид в своем развитии повторяет сокращенно историческое развитие своего вида.

    Закон неравномерности развития частей системы : системы одного уровня иерархии развиваются не строго синхронно, в то время как одни достигают более высокой стадии развития, другие остаются в менее развитом состоянии. Этот закон непосредственно связан с законом необходимого разнообразия.

    Закон сохранения жизни : жизнь может существовать только в процессе движения через живое тело потока веществ, энергии, информации.

    Принцип сохранения упорядоченности (Я. Пригожий): в открытых системах энтропия не возрастает, а уменьшается до тех пор, пока не достигается минимальная постоянная величина, всегда больше нуля.

    Принцип Ле Шателье-Брауна : при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется.

    Принцип экономии энергии (Л. Онсагер): при вероятности развития процесса в некотором множестве направлений, допускаемых началами термодинамики, реализуется то, которое обеспечивает минимум рассеивания энергии.

    Закон максимизации энергии и информации : наилучшими шансами на самосохранение обладает система, в наибольшей степени способствующая поступлению, выработке и эффективному использованию энергии и информации; максимальное поступление вещества не гарантирует системе успеха в конкурентной борьбе.

    Закон развития системы за счет окружающей среды : любая система может развиваться только за счет использования материально-энергетических и информационных возможностей окружающей ее среды; абсолютно изолированное саморазвитие невозможно.

    Правило Шредингера «о питании» организма отрицательной энтропией: упорядоченность организма выше окружающей среды, и организм отдает в эту среду больше неупорядоченности, чем получает. Это правило соотносится с принципом сохранения упорядоченности Пригожина.

    Правило ускорения эволюции : с ростом сложности организации биосистем продолжительность существования вида в среднем сокращается, а темпы эволюции возрастают. Средняя продолжительность существования вида птиц — 2 млн лет, вида млекопитающих — 800 тыс. лет. Число вымерших видов птиц и млекопитающих в сравнении со всем их числом велико.

    Закон относительной независимости адаптации : высокая адаптивность к одному из экологических факторов не дает такой же степени приспособления к другим условиям жизни (наоборот, она может ограничивать эти возможности в силу физиолого-морфологических особенностей организмов).

    Принцип минимального размера популяций : существует минимальный размер популяции, ниже которого ее численность не может опускаться.

    Правило представительства рода одним видом : в однородных условиях и на ограниченной территории таксономический род, как правило, представлен только одним видом. По-видимому, это связано с близостью экологических ниш видов одного рода.

    Закон обеднения живого вещества в островных его сгущениях (Г.Ф. Хильми): «Индивидуальная система, работающая в среде с уровнем организации более низким, чем уровень самой системы, обречена: постепенно теряя структуру, система через некоторое время растворится в окружающей среде». Из этого следует важный вывод для человеческой природоохранной деятельности: искусственное сохранение экосистем малого размера (на ограниченной территории, например, заповедника) ведет к их постепенной деструкции и не обеспечивает сохранения видов и сообществ.

    Закон пирамиды энергий (Р. Линдеман): с одного трофического уровня экологической пирамиды переходит на другой, более высокий уровень в среднем около 10% поступившей на предыдущий уровень энергии. Обратный поток с более высоких на более низкие уровни намного слабее — не более 0,5-0,25%, и потому говорить о круговороте энергии в биоценозе не приходится.

    Правило обязательности заполнения экологических ниш : пустующая экологическая ниша всегда и обязательно бывает естественно заполнена («природа не терпит пустоты»).

    Принцип формирования экосистемы : длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и взаимно приспособлены. Из этих экологических законов и принципов следуют некоторые выводы, справедливые для системы «человек — природная среда». Они относятся к типу закона ограничения разнообразия, т.е. накладывают ограничения на деятельность человека по преобразованию природы.

    Закон бумеранга : все, что извлечено из биосферы человеческим трудом, должно быть возвращено ей.

    Закон незаменимости биосферы : биосферу нельзя заменить искусственной средой, как, скажем, нельзя создать новые виды жизни. Человек не может построить вечный двигатель, в то время как биосфера и есть практически «вечный» двигатель.

    Закон шагреневой кожи : глобальный исходный природно-ресурсный потенциал в ходе исторического развития непрерывно истощается. Это следует из того, что никаких принципиально новых ресурсов, которые могли бы появиться, в настоящее время нет. Для жизни каждого человека в год необходимо 200 т твердых веществ, которые он с помощью 800 т воды и в среднем 1000 Вт энергии превращает в полезный для себя продукт. Все это человек берет из уже имеющегося в природе.

    Принцип удаленности события : потомки что-нибудь придумают для предотвращения возможных отрицательных последствий. Вопрос о том, насколько законы экологии можно переносить на взаимоотношения человека с окружающей средой, остается открытым, так как человек отличается от всех других видов. Например, у большинства видов скорость роста популяции уменьшается с увеличением ее плотности; у человека, наоборот, рост населения в этом случае ускоряется. Некоторые регулирующие механизмы природы отсутствуют у человека, и это может служить дополнительным поводом для технологического оптимизма у одних, а для экологических пессимистов свидетельствовать об опасности такой катастрофы, которая невозможна ни для одного иного вида.