Джеймс клерк максвелл - биография. Биография джеймса максвелла

МАКСВЕЛЛ (Maxwell ) Джеймс Клерк (Clerk ) (1831-79), английский физик, создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Развивая идеи М. Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

МАКСВЕЛЛ (Maxwell ) Джеймс Клерк (13 июня 1831, Эдинбург, - 5 ноября 1879, Кембридж), английский физик, создатель классической электродинамики, один из основоположников статистической физики, основатель одного из крупнейших мировых научных центров конца 19 - нач. 20 вв. - Кавендишской лаборатории; создал теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Семья. Годы учения

Максвелл был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр ("Приют в долине"), где и прошло детство мальчика. В 1841 отец отправил Джеймса в школу, которая называлась "Эдинбургская академия". Здесь в 15 лет Максвелл написал свою первую научную статью "О черчении овалов". В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Г. Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно; дневников не вел. В 1858 Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи "О фарадеевых силовых линиях" (1855-56), "О физических силовых линиях" (1861-62), "Динамическая теория электромагнитного поля" (1869). Исследования были завершены выходом в свет двухтомной монографии "Трактат об электричестве и магнетизме" (1873).

Создание теории электромагнитного поля

Когда Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан М. Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Г. Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Р. Фейнман: "В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием".

Максвелл похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

Джеймс Клерк Максвелл (1831-79) - английский физик, создатель классической электродинамики , один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Развивая идеи Майкла Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Максвелл показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Семья. Годы учения

Джеймс Максвелл родился 13 июня 1831, в Эдинбурге. Он был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр («Приют в долине»), где и прошло детство мальчика.

В 1841 отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». Здесь в 15 лет Максвелл написал свою первую научную статью «О черчении овалов». В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Джеймс Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Джеймс Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865 года.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Генри Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Вообще фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно и не вел дневников. В 1858 Джеймс Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Джеймс Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Д. Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).

Создание теории электромагнитного поля

Когда Джеймс Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан Майклом Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Д.К. Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Уравнения Максвелла - основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Распределение Максвелла - распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Генрих Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Ричард Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Джеймс Максвелл скончался 5 ноября 1879, Кембридж. Он похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Джеймс-Клерк МАКСВЕЛЛ (Maxwell)

(13.6.1831, Эдинбург, - 5.11.1879, Кембридж)

Джеймс-Клерк Максвелл -- английский физик, создатель классической электродинамики, один из основателей статистической физики, родился в Эдинбурге в 1831 году.
Максвелл - сын шотландского дворянина из знатного рода Клерков. Учился в Эдинбургском (1847-50) и Кембриджском (1850-54) университетах. Член Лондонского королевского общества (1860). Профессор Маришал-колледжа в Абердине (1856-60), затем Лондонского университета (1860-65). С 1871 года Максвелл -- профессор Кембриджского университета. Там он основал первую в Великобритании специально оборудованную физическую лабораторию - Кавендишскую лабораторию, директором которой он был с 1871 года.
Научная деятельность Максвелла охватывает проблемы электромагнетизма, кинетической теории газов, оптики, теории упругости и многое другое. Свою первую работу "О черчении овалов и об овалах со многими фокусами" Максвелл выполнил, когда ему ещё не было 15 лет (1846 г., опубликована в 1851 г.). Одними из первых его исследований были работы по физиологии и физике цветного зрения и колориметрии (1852-72). В 1861 году Максвелл впервые демонстрировал цветное изображение, полученное от одновременного проецирования на экран красного, зелёного и синего диапозитивов, доказав этим справедливость трёхкомпонентной теории цветного зрения и одновременно наметив пути создания цветной фотографии. Он создал один из первых приборов для количественного измерения цвета, получившего название диска Максвелл.
В 1857-59 гг. Максвелл провёл теоретическое исследование устойчивости колец Сатурна и показал, что кольца Сатурна могут быть устойчивыми лишь в том случае, если они состоят из не связанных между собой твёрдых частиц.
В исследованиях по электричеству и магнетизму (статьи "О фарадеевых силовых линиях", 1855-56 гг.; "О физических силовых линиях", 1861-62 гг.; "Динамическая теория электромагнитного поля", 1864 г.; двухтомный фундаментальный "Трактат об электричестве и магнетизме", 1873 г.) Максвелл математически развил воззрения Майкла Фарадея на роль промежуточной среды в электрических и магнитных взаимодействиях. Он попытался (вслед за Фарадеем) истолковать эту среду как всепроникающий мировой эфир, однако эти попытки не были успешны.
Дальнейшее развитие физики показало, что носителем электромагнитных взаимодействий является электромагнитное поле , теорию которого (в классической физике) Максвелл и создал. В этой теории Максвелл обобщил все известные к тому времени факты макроскопической электродинамики и впервые ввёл представление о токе смещения, порождающем магнитное поле подобно обычному току (току проводимости, перемещающимся электрическим зарядам). Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла ).
Общий и исчерпывающий характер этих уравнений проявился в том, что их анализ позволил предсказать многие неизвестные до того явления и закономерности.
Так, из них следовало существование электромагнитных волн, впоследствии экспериментально открытых Г. Герцем. Исследуя эти уравнения, Максвелл пришёл к выводу об электромагнитной природе света (1865 г.) и показал, что скорость любых других электромагнитных волн в вакууме равна скорости света.
Он измерил (с большей точностью, чем В. Вебер и Ф. Кольрауш в 1856 году) отношение электростатической единицы заряда к электромагнитной и подтвердил его равенство скорости света. Из теории Максвелл вытекало, что электромагнитные волны производят давление.
Давление света было экспериментально установлено в 1899 П. Н. Лебедевым.
Теория электромагнетизма Максвелл получила полное опытное подтверждение и стала общепризнанной классической основой современной физики. Роль этой теории ярко охарактеризовал А. Эйнштейн: "... тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона ".
В исследованиях по молекулярно-кинетической теории газов (статьи "Пояснения к динамической теории газов", 1860 г., и "Динамическая теория газов", 1866 г.) Максвелл впервые решил статистическую задачу о распределении молекул идеального газа по скоростям (распределение Максвелла ). Максвелл рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул (1860), вычислив абсолютную величину последней, вывел ряд важных соотношений термодинамики (1860). Экспериментально измерил коэффициент вязкости сухого воздуха (1866). В 1873-74 гг. Максвелл открыл явление двойного лучепреломления в потоке (эффект Максвелла ).
Максвелл был крупным популяризатором науки. Он написал ряд статей для Британской энциклопедии, популярные книги - такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на русский язык. Важным вкладом в историю физики является опубликование Максвеллом рукописей работ Г. Кавендиша по электричеству (1879) с обширными комментариями.

13 июня 1831 года в Эдинбурге, в семье аристократа из старинного рода Клерков родился мальчик, названный Джеймсом. Отец его, Джон Клерк Максвелл, член адвокатской коллегии, имел университетское образование, но профессию свою не любил и увлекался в свободные часы техникой и наукой. Мать Джеймса, Фрэнсис Кей, была дочерью судьи. После рождения мальчика семья переехала в Миддлби, фамильное имение Максвеллов на юге Шотландии. Вскоре Джон построил там новый дом, получивший имя Гленлэр.

Детство будущего великого физика омрачилось лишь слишком ранней кончиной матери. Джеймс рос любознательным мальчиком и благодаря отцовским увлечениям был с детства окружен «техническими» игрушками, такими, как модель небесной сферы и «магический диск», предшественник кинематографа. Тем не менее, интересовался он и поэзией и даже сам писал стихи, кстати, не оставив это занятие до конца своих дней. Начальное образование дал Джеймсу отец - первого домашнего учителя наняли, только когда Джеймсу исполнилось десять лет. Правда, отец быстро понял, что подобное обучение вовсе неэффективно, и отправил сына в Эдинбург, к своей сестре Изабелле. Здесь Джеймс поступил в Эдинбургскую Академию, в которой детям давали чисто классическое образование - латынь, греческий, античная литература, Священное Писание и немножко математики. Учиться мальчику понравилось не сразу, но постепенно он стал лучшим в классе учеником и заинтересовался в первую очередь геометрией. В это время он изобрел собственный способ рисования овалов.

В шестнадцать лет Джеймс Максвелл закончил академию и поступил в университет Эдинбурга. Здесь он окончательно увлекся точными науками, и уже в 1850 году Эдинбургское королевское общество признало серьезными его труды по теории упругости. В этом же году отец Джеймса согласился, что сыну необходимо более престижное образование, и Джеймс уехал в Кембридж, где сначала учился в колледже Питерхаус, а на втором семестре перевелся в Тринити-колледж. Два года спустя Максвелл получил за свои успехи университетскую стипендию. Впрочем, в Кембридже он занимался наукой очень мало - больше читал, заводил новые знакомства и активно вращался в среде университетских интеллектуалов. В это время сформировались и его религиозные взгляды - безусловная вера в Бога и скептичность по отношению к теологии, которую Джеймс Максвелл ставил на последнее место среди прочих наук. В студенческие годы он стал также приверженцем так называемого «христианского социализма» и принял участие в работе «Рабочего колледжа», читая там популярные лекции.

В двадцать три года Джеймс сдал итоговый экзамен по математике, заняв в студенческом списке второе место. Получив степень бакалавра, он принял решение остаться в университете и готовиться к званию профессора. Он преподавал, продолжал сотрудничать с Рабочим колледжем и начал книгу об оптике, которую, правда, так и не закончил. Тогда же Максвелл создал экспериментальное шуточное исследование, вошедшее в фольклор Кембриджа. Целью этого исследования было «котоверчение» - Максвелл определял минимальную высоту, с которой кошка, падая, встает на лапки. Но основным интересом Джеймса была тогда теория цвета, взявшая начало от идеи Ньютона о существовании семи основных цветов. К тому же времени относится и его серьезное увлечение электричеством. Сразу после получения степени бакалавра Максвелл начал исследовать электричество и магнетизм. В вопросе о природе магнитных и электрических эффектов он принял позицию Майкла Фарадея, согласно которой силовые линии соединяют отрицательный и положительный заряды и заполняют окружающее пространство. Но были получены верные результаты и уже оформившейся и строгой наукой электродинамикой, а потому Максвелл задался вопросом построения теории, включавшей и представления Фарадея, и результаты электродинамики. Максвеллом была разработана гидродинамическая модель силовых линий, и ему же удалось впервые выразить на языке математики закономерности, открытые Фарадеем - в виде дифференциальных уравнений.

Осенью 1855 года Джеймс Максвелл, успешно сдав необходимый экзамен, стал членом университетского совета, что, кстати, подразумевало в то время принятие обета безбрачия. С началом нового семестра он приступил к чтению в колледже лекций по оптике и гидростатике. Однако зимой ему пришлось поехать в родное имение, чтобы перевезти в Эдинбург тяжело заболевшего отца. Вернувшись в Англию, Джеймс узнал, что в Абердинском Маришаль-колледже свободна вакансия преподавателя натуральной философии. Это место давало ему возможность быть ближе к отцу, да и перспектив в Кембридже Максвелл для себя не видел. В середине весны 1856 года он стал профессором в Абердине, но Джон Клерк Максвелл умер еще до назначения сына. Джеймс провел в родовом имении лето и в октябре уехал в Абердин.

Абердин был главным портом Шотландии, но вот многие кафедры его университета пребывали в печальной заброшенности. В первые же дни своей профессорской деятельности Джеймс Максвелл принялся исправлять это положение хотя бы на своей кафедре. Он работал над новыми методиками обучения и пытался заинтересовать студентов научной работой, но не преуспел в этом начинании. Лекции нового профессора, полные юмора и игры слов, касались весьма сложных вещей, и сей факт отпугивал большинство учеников, привыкших к популярности изложения, отсутствию демонстраций и пренебрежению математикой. Из восьми десятков студентов Максвелл сумел научить лишь несколько человек, действительно хотевших учиться.

В Абердине Максвелл устроил и свою личную жизнь - летом 1858 года он женился на младшей дочери директора колледжа Маришаль, Кэтрин Дьюар. Немедленно после венчания Джеймса исключили из совета Тринити-колледжа, как нарушившего обет безбрачия.

Еще в 1855 году Кембридж предложил на соискание престижной премии Адамса работу по исследованию колец Сатурна, и именно Джеймс Максвелл в 1857 стал обладателем премии. Но премией он не удовольствовался и продолжал разрабатывать тему, в итоге издав в 1859 году трактат «On the stability of the motion of Saturn’s rings», мгновенно получивший признание среди ученых. О трактате сказали, что это - самое блестящее из существующих применение математики к физике. Во время профессорства в Абердинском колледже Максвелл занимался также темой преломления света, геометрической оптикой и, главное, кинетической теорией газов. В 1860 году им была построена первая статистическая модель микропроцессов, ставшая основой для развития статистической механики.

Профессорская должность в Абердинском университете вполне устраивала Максвелла - колледж требовал его присутствия лишь с октября до мая, а остальное время ученого было совершенно свободно. В колледже царила атмосфера свободы, профессора не имели жестких обязанностей, а кроме того, каждую неделю Максвелл читал в научной школе Абердина платные лекции для механиков и ремесленников, обучением которых всегда интересовался. Это замечательное положение дел изменилось в 1859 году, когда постановили объединить два колледжа университета, и должность профессора кафедры натуральной философии была упразднена. Максвелл попытался получить ту же должность в Эдинбургском университете, но пост достался по конкурсу его старому другу Питеру Тэту. В июне 1860 года Джеймсу предложили профессорство на кафедре натуральной философии в столичном Кингз-колледже. В том же месяце он сделал доклад о своих исследованиях теории цвета и вскоре был награжден медалью Румфорда за работы в области оптики и смешения цветов. Однако все оставшееся время до начала семестра он провел в Гленлэре, родовом имении - и не в научных занятиях, а тяжело болея оспой.

Быть профессором в Лондоне оказалось куда менее приятно, чем в Абердине. В Кингз-колледже были великолепно оснащенный физические лаборатории и почиталась экспериментальная наука, но и студентов обучалось гораздо больше. Работа оставляла Максвеллу время лишь на домашние эксперименты. Тем не менее, в 1861 году его включили в Комитет по эталонам, перед которым стояла задача определения основных единиц электричества. Два года спустя были опубликованы итоги тщательных измерений, в 1881 году послужившие основанием для принятия вольта, ампера и ома. Продолжал Максвелл и работы по теории упругости, создал теорему Максвелла, рассматривающую напряжение в фермах методами графостатики, занимался анализом условий равновесия у сферических оболочек. За эти и другие работы, имевшие существенное практическое значение, он получил премию Кейта от королевского общества Эдинбурга. В мае 1861 года, читая лекцию о теории цвета, Максвелл представил весьма убедительное доказательство своей правоты. Это была первая в мире цветная фотография.

Но самым великим вкладом Джеймса Максвелла в физику явилось открытие тока. Придя к выводу, что электрический ток имеет поступательную природу, а магнетизм - вихревую, Максвелл создал новую модель - чисто механическую, согласно которой «молекулярные вихри производят», вращаясь, магнитное поле, а «холостые передаточные колеса» обеспечивают их одностороннее вращение. Формирование электрического тока обеспечивалось поступательным движением передаточных колес (по Максвеллу - «частичек электричества»), а магнитное поле, будучи направленным вдоль оси вихревого вращения, оказывалось перпендикулярно направлению тока. Это выразилось в «правиле буравчика», которое обосновал Максвелл. Благодаря своей модели он сумел не только наглядно проиллюстрировать явление электромагнитной индукции и вихревой характер поля, которое порождает ток, но и доказать, что изменения в электрическом поле, названные током смещения, приводят к возникновению поля магнитного. Ну а ток смещения дал представление о существовании незамкнутых токов. В своей статье «On physical lines of force» (1861-1862 гг.) Максвелл изложил данные результаты, а также отметил сходство свойств вихревой среды со свойствами светоносного эфира - и это был серьезный шаг к возникновению электромагнитной теории света.

Статья Максвелла о динамической теории электромагнитного поля вышла в 1864 году, и в ней механическую модель сменили «уравнения Максвелла» - математическая формулировка уравнений поля - а само поле впервые трактовалось в качестве реальной физически системы, имеющей определенную энергию. В этой статье он предсказал и существование не только магнитных, но и электромагнитных волн. Параллельно изучению электромагнетизма Максвелл провел несколько экспериментов, проверяя свои результаты в кинетической теории. Сконструировав прибор, определяющий вязкость воздуха, он убедился, что коэффициент внутреннего трения действительно не зависит от плотности.

В 1865 году Максвелл окончательно устал от своей педагогической деятельности. Неудивительно - лекции его были слишком сложны, чтобы еще и поддерживать на них дисциплину, да и научная работа, в отличие от преподавания, занимала все его мысли. Решение было принято, и ученый переехал в родной Гленлэр. Почти сразу после переезда он получил травму на конной прогулке и заболел рожистым воспалением. Выздоровев, Джеймс активно взялся за хозяйство, перестраивая и расширяя свое имение. Однако и о студентах не забывал - регулярно ездил в Лондон и в Кембридж принимать экзамены. Именно он добился введения в экзамены вопросов и задач прикладного характера. В начале 1867 года врач посоветовал часто болевшей жене Максвелла лечение в Италии, и всю весну Максвеллы провели во Флоренции и Риме. Здесь ученый встречался с профессором Маттеучи, итальянским физиком, и практиковался в иностранных языках. Кстати, Максвелл неплохо владел латинским, итальянским, греческим, немецким и французским. На родину Максвеллы возвращались через Германию, Голландию и Францию.

В том же году Максвелл сочинил стихотворение, посвященное Питеру Тэту. Шуточная ода называлась «Главному музыканту по игре на набла» и оказалась настолько успешной, что закрепила в науке новый термин «набла», произошедший от названия древнеассирийского музыкального инструмента и обозначающий символ векторного дифференциального оператора. Заметим, что своему другу Тэту, представившему вместе с Томсоном второе начало термодинамики как JCM = dp/dt, Максвелл обязан собственным псевдонимом, которым подписывал стихи и письма. Левая часть формулы совпала с инициалами Джеймса, а потому он решил использовать в качестве подписи правую - dp/dt.

В 1868 году Максвеллу предложили пост ректора в университете Сент-Эндрюс, но ученый отказался, не желая менять свой уединенный образ жизни в Гленлэре. Лишь через три года он после длительных раздумий возглавил только что открывшуюся в Кембридже физическую лабораторию и, соответственно, стал профессором экспериментальной физики. Согласившись на этот пост, Максвелл сразу принялся налаживать строительные работы и оснащать лабораторию (сначала собственными приборами). В Кембридже он стал читать курсы электричества, теплоты и магнетизма.

В том же 1871 году был опубликован учебник Максвелла «Theory of Heat» («Теория теплоты»), впоследствии неоднократно переизданный. В последней главе книги содержались основные постулаты молекулярно-кинетической теории и статистические идеи Максвелла. Здесь же он опроверг второе начало термодинамики, сформулированное Клаузиусом и Томсоном. В этой формулировке предсказывалась «тепловая смерть Вселенной» - чисто механическая точка зрения. Максвелл утверждал статистический характер пресловутого «второго начала», которое по его убеждению может нарушаться лишь отдельными молекулами, оставаясь справедливым в случае больших совокупностей. Это положение он проиллюстрировал парадоксом, названным «демоном Максвелла». Парадокс заключается в способности «демона» (управляющей системы) уменьшать энтропию этой системы, не затрачивая работу. Парадокс этот разрешили в двадцатом веке, указав на роль, которую играют в управляющем элементе флуктуации, и доказав, что когда «демон» получает информацию о молекулах, это повышает энтропию, а потому нарушения второго начала термодинамики не происходит.

Два года спустя увидел свет двухтомник Максвелла, названный «Трактат о магнетизме и электричестве». В нем содержались уравнения Максвелла, следствием которых стало открытие Герцем электромагнитных волн (1887 год). В трактате также была доказана электромагнитная природа света и предсказан эффект давления света. На основе этой теории Максвелл объяснил и влияние магнитного поля на распространение света. Однако сей фундаментальный труд весьма прохладно приняли корифеи науки - Стокс, Томсон, Эйри, Тэт. Особенно сложной для понимания оказалась концепция пресловутого тока смещения, существующего по Максвеллу даже в эфире, то есть в отсутствие материи. Кроме того, сильно мешал восприятию и стиль Максвелла, порой очень сумбурный в изложении.

Лаборатория в Кембридже, названная в честь Генри Кавендиша, открылась в июне 1874 года, и герцог Девонширский торжественно передал Джеймсу Максвеллу рукописи Кавендиша. В течение пяти лет Максвелл изучал наследие этого ученого, воспроизводил в лаборатории его опыты и в 1879 году выпустил под своей редакцией собрание сочинений Кавендиша, состоявшее из двух томов.

Около десяти последних лет своей жизни Максвелл занимался популяризацией науки. В своих книгах, написанных именно с этой целью, он более свободно излагал свои идеи и взгляды, делился с читателем сомнениями и говорил о проблемах, в то время еще не разрешимых. В Кавендишской лаборатории он продолжал разрабатывать совершенно конкретные вопросы, касающиеся молекулярной физики. Две его последние работы вышли в 1879 году - о теории разреженных неоднородных газов и о распределении газа под воздействием центробежных сил. Множество обязанностей он исполнял и в университете - состоял в совете университетского сената, в комиссии по реформированию математического экзамена, побывал на посту президента философского общества. В семидесятые годы у него появились ученики, среди которых были будущие известные ученые Джордж Кристалл, Артур Шустер, Ричард Глэйзбург, Джон Пойнтинг, Амброз Флеминг. И ученики, и сотрудники Максвелла отмечали его сосредоточенность, простоту общения, проницательность, утонченный сарказм и полное отсутствие честолюбия.

Зимой 1877 года у Максвелла появились первые симптомы погубившей его болезни, и через два года врачи определили у него рак. Великий ученый скончался в Кембридже 5 ноября 1879 года, в возрасте сорока восьми лет. Тело Максвелла перевезли в Гленлэр и похоронили неподалеку от имения, на скромном кладбище в деревушке Партон.

Роль Джеймса Клерка Максвелла в науке не сумели оценить по достоинству его современники, но важность его работ оказалась несомненной для следующего века. Ричард Фейман, американский физик, сказал, что открытие законов электродинамики - самое значительное событие девятнадцатого столетия, на фоне которого меркнет гражданская война в Соединенных Штатах, произошедшая в то же время…

(13.06.1831 - 05.11.1879)

((1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847-1850), затем в Кембриджском (1850-1854) университете. В 1855 стал членом совета Тринити-колледжа, в 1856-1860 был профессором натурфилософии Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Здесь он продолжал заниматься наукой, написал несколько сочинений по физике и математике.

В 1871 в Кембриджском университете была учреждена кафедра экспериментальной физики, которую Максвелл согласился занять. Здесь он взял на себя бремя по организации при кафедре научно-исследовательской лаборатории, первой физической лаборатории в Англии. Средства на ее создание были пожертвованы герцогом Девонширским, лордом-канцлером Университета, но все организационные работы велись под наблюдением и по указаниям Максвелла (кроме того, он вложил в нее немало личных средств). Лаборатория открылась 16 июня 1874 и была названа Кавендишской - в честь замечательного английского ученого конца 18 в. Г.Кавендиша, которому герцог доводился внучатым племянником. Лаборатория была приспособлена как для научной работы, так и для лекционных демонстраций. Впоследствии она стала одной из самых знаменитых физических лабораторий мира.

Последние годы жизни Максвелл много занимался подготовкой к печати и изданием огромного рукописного наследия Кавендиша - его теоретических и экспериментальных работ по электричеству. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879. После отпевания в часовне Тринити-колледжа он был похоронен на фамильном кладбище в Шотландии.

Свою первую научную работу Максвелл выполнил еще в школе: в возрасте 15 лет он придумал простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его "Трудах". В бытность членом Тринити-колледжа он занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца. В своих экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета ("диск Максвелла"). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. Разные комбинации цветов давали разные оттенки. Несколько позже Максвелл с успехом демонстрировал этот прибор на своих лекциях в Королевском обществе. В 1860 за работы по восприятию цвета и оптике он был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна, в котором Максвелл решил принять участие. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура является устойчивой только в том случае, если она состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса и сразу же стал лидером математической физики.

Одной из первых работ Максвелла, внесших наиболее весомый вклад в науку, стала его кинетическая теория газов. В 1859 он выступил на заседании Британской ассоциации с докладом, в котором дал вывод распределения молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие "средней длины свободного пробега" (среднего расстояния, проходимого молекулой газа между ее столкновением с другой молекулой). Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве и претерпевающих лишь упругие столкновения. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что "частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса". Так впервые в описание физических явлений вошла статистика. В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса).

В 1867 показал статистическую природу второго начала термодинамики ("демон Максвелла"). В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Они заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Максвелл самым тщательным образом изучил работы Фарадея и почти всю свою творческую жизнь развивал идеи поля.

Следуя Фарадею, он разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force), направленной Фарадею в 1857. В 1860-1865 Максвелл создал теорию электромагнитного поля, которую он сформулировал в виде системы уравнений (уравнения Максвелла), описывающих все основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля. Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы электричества к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч1010 см/с, что очень близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап был отражен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873). Экспериментальная и техническая задача получения и использования электромагнитных волн в широком спектральном диапазоне, в котором на долю видимого света приходится лишь малая часть, была успешно решена последующими поколениями ученых и инженеров. Применения теории Максвелла дали миру все виды радиосвязи, включая радиовещание и телевидение, радиолокацию и навигационные средства, а также средства для управления ракетами и спутниками. 1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики.