Двухщелевой эксперимент уиллера. Эксперимент с двойной щелью юнга Квантовая теория эксперимент с 2 мя щелями

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

Интерференция света в опыте Юнга

Иллюстрация: Timm Weitkamp (CC BY)

Команда физиков из Австралийского национального университета реализовала мысленный эксперимент Уилера с отложенным выбором, заменив фотоны сверххолодными метастабильными атомами гелия. Новая работа подтвердила классические положения принципа дополнительности Нильса Бора. опубликована в Nature Physics .

В 1978 году Джон Арчибальд Уилер предложил более изощренный вариант классического двущелевого опыта Юнга, доказавшего волновую природу света. По Юнгу пучок света направляется на перегородку с двумя узкими щелями. При этом размер каждой щели примерно соответствует длине волны излучаемого света. Проходя сквозь щели, свет попадает на проекционный экран позади. Если бы фотоны проявляли исключительно корпускулярные свойства, то на экране были бы два ярко освещенных участка позади щелей и темный участок между ними. В то же время, если фотоны проявляют волновые свойства, то каждая щель становится вторичным источником волн. Эти волны интерферируют, и вместо двух освещенных полос, возникает множество светлых и темных зон на проекционном экране. Причем один из локальных максимумов освещенности находится там, где должно быть темное место (в случае, если бы фотон был только частицей).

Казалось бы, волновая природа света экспериментально доказана, однако, математически это значило, что фотон одновременно проходит через обе щели. Тогда физики попытались, посредством измерения, определить - через какую щель в действительности пролетает один фотон. Выяснилось, что в случае наблюдения фотон вновь начал действовать как частица, как если бы «знал», что за ним наблюдают. Факт наблюдения словно разрушает волновую функцию. И наоборот, как только наблюдения нет, фотон вновь начинает интерферировать сам с собой, действуя как волна.

Констатируя экспериментально наблюдаемый корпускулярно-волновой дуализм, Нильс Бор постулировал принцип дополнительности. Он гласит, что если наблюдатель измеряет свойства квантового объекта как частицы, то он ведет себя как частица. Если же измеряются его волновые свойства, то для наблюдателя он ведет себя как волна. Поэтому для полного описания квантовомеханических явлений необходимо применять два, казалось бы, противоречащих друг другу представления, которые, в итоге, оказываются взаимно дополняющими, что и отражено в названии принципа.

Чтобы преодолеть это противоречие и проверить эффект наблюдателя Уилер предложил использовать интерферометр Маха – Цандера . Он состоит из четырех зеркал. Первое расщепляет поток света на два пучка, которые затем отражаются от двух непрозрачных зеркал и сводятся вновь вместе в четвертом зеркале. По двум сторонам от него стоят детекторы. Фотоны необходимо выпускать по одному.

Одиночный фотон как бы расщепляется на два в первом зеркале, или, иными словами, проявляет волновые свойства. Затем он отражается от двух идеальных зеркал, вновь интерферирует сам с собой в четвертом полупрозрачном зеркале, и наконец попадает в один из детекторов. Для каждого конкретного фотона срабатывает только один из детекторов, но если повторять опыт много раз, получится некоторое нетривиальное соотношение отсчетов двух детекторов. Это соотношение показывает, что частица, достигнув четвертого зеркала, ведет себя как волна. Если же четвертое зеркало убрать, то соотношение между срабатываниями будет 50:50. Это выглядит так, как будто в момент первого расщепления частица уже «решила», по какому пути она пойдет.

Идея Уилера заключалась в том, чтобы появление в схеме четвертого зеркала решалось посредством генератора случайных чисел уже после того, как фотон вошел в интерферометр, но до того, как его поглотил один из детекторов – так называемый отложенный выбор. Таким образом, экспериментаторы лишали бы фотон возможности «узнать», производится ли наблюдение или нет, и тем самым определить свое «поведение» – предстать частицей или волной. Впервые эту гипотетическую схему удалось реализовать лишь в 2007 году.


Схема интерферометра Маха - Цендера

Изображение: Wikimedia Commons


Слева классическая схема эксперимента Уиллера. Справа его новая реализация на атомах и с использованием лазерных имульсов

Изображение: Manning A.G. et als.

В новом исследовании австралийские физики использовали более массивные частицы – атомы, тем самым протестировав экспериментальную схему Уилера в совершенно новых условиях.

Ученые использовали сверххолодные атомы гелия, выпуская их поодиночке из оптической дипольной ловушки . Под действием гравитации атомы начинали падать в специальный детектор в виде микроканальной пластины . Спустя миллисекунду после начала падения лазерный луч «ударял» по атому, заставляя его занять суперпозицию двух дипольных моментов , направленных в разные стороны. Это был аналог «первого расщепляющего зеркала» Уилера.

Затем ученые решали – применить ли им второй лазерный импульс, для рекомбинации этих двух состояний. Всего могло быть два варианта такого смешанного состояния: первое в виде суммы двух волн и второе в виде разности. Какое из них возникнет, определял квантовый генератор случайных чисел. После применения второго лазерного импульса уже нельзя было определенно сказать - в каком из двух состояний находится атом. Всего таких экспериментальных проб было совершено больше тысячи.

Выяснилось, что если второй лазерный импульс не применялся, то вероятность детекции каждого из дипольных моментов равнялась 0,5. В то же время, после воздействия второго лазерного импульса наблюдалась четкая картина интерференции, выраженной в виде синусоиды, так же как и в опыте Юнга.

Таким образом, подтвердилось предположение Нильса Бора о том, что не имеет смысла приписывать то или иное поведение частицам – как волны или как собственно частицы - до того как было произведено измерение. Впрочем, существует еще одно маловероятное объяснение, что частицы каким-то образом получают информацию из будущего. Оно предполагает, что информация может передаваться быстрее света, что невозможно с точки зрения теории относительности.

  • квантовый объект (вроде электрона) может быть более чем в одном месте в одно время. Он может быть измерен как волна, размазанная в пространстве, и может располагаться в нескольких различных точках по всей волне. Это называется свойство волны.
  • квантовый объект перестает существовать здесь и спонтанно возникает там без перемещения в пространстве. Это известно как квантовый переход. По сути это телепорт.
  • проявление одного квантового объекта, вызванное нашими наблюдениями, спонтанно влияет на связанный с ним объект-близнец, вне зависимости от того, как далеко тот находится. Выбейте электрон и протон из атома. Что бы ни случилось с электроном, то же произойдет с протоном. Это называется «квантовое действие на расстоянии».
  • квантовый объект не может проявиться в обычном пространстве-времени, пока мы не будем наблюдать его как частицу. Сознание разрушает волновую функцию частицы.

Последний пункт интересен тем, что без осознанного наблюдателя, который заставляет волну коллапсировать, она будет оставаться без физического проявления. Наблюдение не только беспокоит измеряемый объект, оно вызывает эффект. Это было проверено так называемым двухщелевым экспериментом, когда присутствие сознательного наблюдателя изменяет поведение электрона, превращая его из волны в частицу. Так называемый эффект наблюдателя полностью потрясает то, что мы знаем о реальном мире. Вот, кстати, мультфильм, в котором все наглядно показано.

Как отмечал ученый Дин Радин, «мы заставляем электрон занимать определенную позицию. Мы сами производим результаты измерения». Теперь же полагают, что «это не мы измеряем электрон, а машина, которая стоит за наблюдением». Но машина просто дополняет наше сознание. Это все равно что сказать «это не я смотрю на того, кто переплывает озеро, это бинокль». Машина сама по себе видит не больше, чем компьютер, который может «слушать» песни, интерпретируя звуковой сигнал.

Некоторые ученые предполагают, что без сознания вселенная будет существовать неопределенно, как море квантового потенциала. Другими словами, физическая реальность не может существовать без субъективности. Без сознания нет физической материи. Это замечание известно как « », и его впервые вывел физик Джон Уилер. По сути, любая возможная вселенная, которую мы можем представить без сознательного наблюдателя, уже будет с ним. Сознание представляет собой основу бытия в таком случае и существовало, возможно, до возникновения физической вселенной. Сознание буквально создает физический мир.

Эти выводы гарантируют огромные последствия тому, как мы понимаем свою взаимосвязь с внешним миром, и какого рода отношения могут быть у нас со Вселенной. Как живые существа, мы обладаем прямым доступом ко всему сущему и фундаменту всего физически существующего. Это нам позволяет сознание. «Мы создаем реальность» означает в данном контексте то, что наши мысли создают перспективу того, что мы есть в нашем мире, но если разобраться, нам важно точное понимание этого процесса. Мы порождаем физическую вселенную своей субъективностью. Ткань вселенной - это сознание, а мы - просто рябь на море вселенной. Получается, нам повезло испытать чудо такой жизни, а Вселенная продолжает вливать в нас часть своего самосознания.

«Я считаю сознание фундаментальным. Я считаю материю производным от сознания. Мы не можем оставаться без сознания. Все, о чем мы говорим, все, что мы видим как существующее, постулирует сознание». - Макс Планк, лауреат Нобелевской премии и пионер квантовой теории.

print

В исследовании поведения квантовых частиц учёные из Австралийского национального университета подтвердили, что квантовые частицы могут вести себя настолько странно, что кажется, будто они нарушают принцип причинности.

Этот принцип - один из фундаментальных законов, который мало кто оспаривает. Хотя многие физические величины и явления не меняются, если мы обратим время вспять (являются Т-чётными), существует фундаментальный эмпирически установленный принцип: событие А может влиять на событие Б, только если событие Б произошло позже. С точки зрения классической физики - просто позже, с точки зрения СТО - позже в любой системе отсчёта, т.е., находится в световом конусе с вершиной в А.

Пока что только фантасты сражаются с «парадоксом убитого дедушки» (вспоминается рассказ, в котором оказалось, что дедушка вообще был ни при чём, а надо было заниматься бабушкой). В физике путешествие в прошлое обычно связано с путешествием быстрее скорости света, а с этим пока было всё спокойно.

Кроме одного момента - квантовой физики. Там вообще много странного. Вот, например, классический эксперимент с двумя щелями. Если мы поместим препятствие со щелью на пути источника частиц (например, фотонов), а за ним поставим экран, то на экране мы увидим полоску. Логично. Но если мы сделаем в препятствии две щели, то на экране мы увидим не две полоски, а картину интерференции. Частицы, проходя сквозь щели, начинают вести себя, как волны, и интерферируют друг с другом.

Чтобы исключить возможность того, что частицы на лету сталкиваются друг с другом и оттого не рисуют на нашем экране две чёткие полосы, можно выпускать их поодиночке. И всё равно, через какое-то время на экране нарисуется интерференционная картина. Частицы волшебным образом интерферируют сами с собою! Это уже гораздо менее логично. Выходит, что частица проходит сразу через две щели - иначе, как она сможет интерферировать?

А дальше - ещё интереснее. Если мы попытаемся понять, через какую всё-таки щель проходит частица, то при попытке установить этот факт частицы мгновенно начинают вести себя, как частицы и перестают интерферировать сами с собою. То есть, частицы практически «чувствуют» наличие детектора у щелей. Причём, интерференция получается не только с фотонами или электронами, а даже с довольно крупными по квантовым меркам частицами. Чтобы исключить возможность того, что детектор каким-то образом «портит» подлетающие частицы, были поставлены достаточно сложные эксперименты.

Например, в 2004 году был проведён эксперимент с пучком фуллеренов (молекул C 70 , содержащих 70 атомов углерода). Пучок рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом экспериментаторы могли контролируемо нагревать летящие в пучке молекулы посредством лазерного луча, что позволяло менять их внутреннюю температуру (среднюю энергию колебаний атомов углерода внутри этих молекул).

Любое нагретое тело испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта, определить траекторию испустившей их молекулы. Чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.

Соответственно, если бы кто-то окружил установку совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было.

В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было установлено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при T > 3000K, когда траектории фуллеренов «фиксируются» окружающей средой с необходимой точностью - как классические тела.

Таким образом, роль детектора, способного выделять компоненты суперпозиции, оказалась способна выполнять окружающая среда. В ней при взаимодействии с тепловыми фотонами в той или иной форме и записывалась информация о траектории и состоянии молекулы фуллерена. И совершенно не важно, через что идет обмен информацией: через специально поставленный детектор, окружающую среду или человека.

Для разрушения когерентности состояний и исчезновения интерференционной картины имеет значение только принципиальное наличие информации, через какую из щелей прошла частица - а кто ее получит, и получит ли, уже не важно. Важно только, что такую информацию принципиально возможно получить.

Вам кажется, что это - самое странное проявление квантовой механики? Как бы не так. Физик Джон Уиллер предложил в конце 70-х мысленный эксперимент, который он назвал «эксперимент с отложенным выбором». Рассуждения его были просты и логичны.

Хорошо, допустим, что фотон каким-то неведомым способом узнаёт, что его будут или не будут пытаться обнаружить, до подлёта к щелям. Ведь ему надо как-то определиться - вести себя, как волна, и проходить через обе щели сразу (чтобы в дальнейшем уложиться в интерференционную картину на экране), или же прикинуться частицей, и пройти только через одну из двух щелей. Но ему это нужно сделать до того, как он пройдёт через щели, так ведь? После этого уже поздно - там либо лети, как маленький шарик, либо интерферируй по полной программе.

Так давайте, предложил Уиллер, расположим экран подальше от щелей. А за экраном ещё поставим два телескопа, каждый из которых будет сфокусирован на одной из щелей, и будет реагировать только на прохождение фотона через одну из них. И будем произвольным образом убирать экран после того, как фотон пройдёт щели, как бы он их ни решил проходить.

Если мы не будем убирать экран, то по идее, на нём всегда должна быть картина интерференции. А если мы будем его убирать - тогда либо фотон попадёт в один из телескопов, как частица (он прошёл через одну щель), либо оба телескопа увидят более слабое свечение (он прошёл через обе щели, и каждый из них увидел свой участок интерференционной картины).

В 2006 году прогресс в физике позволил учёным поставить такой эксперимент с фотоном на самом деле. Выяснилось, что если экран не убирают, на нём всегда видна картина интерференции, а если убирают - то всегда можно отследить, через какую щель прошёл фотон. Рассуждая с точки зрения привычной нам логики, мы приходим к неутешительному выводу. Наше действие по решению, убираем мы экран или нет, влияло на поведение фотона, несмотря на то, что действие находится в будущем по отношению к «решению» фотона о том, как ему проходить щели. То есть, либо будущее влияет на прошлое, либо в интерпретации происходящего в эксперименте со щелями есть что-то в корне неправильное.

Австралийские учёные повторили этот эксперимент, только вместо фотона они использовали атом гелия. Важным отличием этого эксперимента является тот факт, что атом, в отличие от фотона, обладает массой покоя, а также разными внутренними степенями свободы. Только вместо препятствия со щелями и экрана они использовали сетки, созданные при помощи лазерных лучей. Это дало им возможность сразу же получать информацию о поведении частицы.

Как и следовало ожидать (хотя, с квантовой физикой вряд ли стоит что-то ожидать), атом повёл себя точно так же, как фотон. Решение о том, будет или нет существовать на пути атома «экран», принималось на основании работы квантового генератора случайных чисел. Генератор был по релятивистским меркам разделён с атомом, то есть никакого взаимодействия между ними быть не могло.

Получается, что отдельные атомы, имеющие массу и заряд, ведут себя точно так же, как отдельные фотоны. И пусть это не самый прорывной в квантовой области опыт, но он подтверждает тот факт, что квантовый мир совсем не такой, каким мы можем его себе представлять.