Дуговой реактор холодного синтеза. Холодный термоядерный синтез

В Университете Осаки состоялся необычный публичный эксперимент. В присутствии 60 гостей, среди которых были журналисты шести японских газет и двух ведущих телеканалов, группа японских физиков под руководством профессора Ёсиаки Араты продемонстрировали реакцию холодного термоядерного синтеза.

Эксперимент был не из простых и мало чем напоминал сенсационную работу физиков Мартина Флейшмана и Стенли Понса 1989 года, в результате которой они с помощью почти обычного электролиза умудрились, по их заявлению, соединить атомы водорода и дейтерия (изотоп водорода с атомным числом 2) в один атом трития. Правду они сказали тогда или ошиблись, теперь уже выяснить невозможно, но многочисленные попытки получить холодный термояд таким же образом в других лабораториях не увенчались успехом, и эксперимент был дезавуирован.

Так началась в чем-то драматическая, а в чем-то и трагикомическая жизнь холодного термояда. С самого начала над ней дамокловым мечом висело одно из самых серьезных обвинений в науке – неповторяемость эксперимента. Это направление называли маргинальной наукой, даже «патологической», но, несмотря ни на что, оно не умирало. Все это время с риском для собственной научной карьеры холодный термояд пытались получить не только «маргиналы» – изобретатели вечных двигателей и прочие восторженные невежды, но и вполне серьезные ученые. Но – неповторяемость! Вот что-то там такое пошло, датчики зафиксировали эффект, но его никому не предъявишь, потому что уже в следующем эксперименте никакого эффекта нет. А даже если и есть, то в другой лаборатории он, в точности повторенный, не воспроизводится.

Скепсис научного сообщества сами колдфьюзионисты (производное от cold fusion – холодный синтез) объясняли, в частности, непониманием. Один из них рассказывал корреспонденту «НГ»: «Каждый ученый хорошо разбирается только в своей узкой области. Он следит за всеми публикациями по теме, знает цену каждому коллеге по направлению, а если он хочет определить свое отношение к тому, что находится за пределами этого направления, то идет к признанному эксперту и, не особо вникая, принимает его мнение за истину в последней инстанции. Ему ведь некогда разбираться в деталях, у него есть собственная работа. А сегодняшние признанные эксперты к холодному термояду относятся отрицательно».

Так это или не так, но факт оставался фактом – холодный термояд проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. Многие уставали и уходили, на их место приходили немногие – ни денег, ни славы, а взамен – перспектива стать отверженным, получить клеймо «маргинального ученого».

Потом, несколько лет спустя, кажется, поняли, в чем дело – в неустойчивости свойств образца палладия, применяемого в экспериментах. Одни образцы давали эффект, другие категорически отказывались, а те, что давали, в любой момент могли передумать.

Похоже, сейчас, после майского публичного эксперимента в Университете Осаки, период неповторяемости заканчивается. Японцы утверждают, что им удалось с этой напастью справиться.

«Они создали особые структуры, наночастицы, – объяснил корреспонденту «НГ» Андрей Липсон, ведущий научный сотрудник Институт химии и электрохимии РАН, – специально подготовленные кластеры, состоящие из нескольких сотен атомов палладия. Главная особенность этих нанокластеров состоит в том, что они имеют внутри пустоты, в которые можно закачивать атомы дейтерия до очень высокой концентрации. И когда эта концентрация превысит определенный предел, дейтоны сближаются друг с другом настолько, что могут сливаться, и начинается термоядерная реакция. Там совсем другая физика, чем, скажем, в ТОКАМАКах. Термоядерная реакция идет там сразу по нескольким каналам, основной из них – слияние двух дейтонов в атом лития-4 с выделением тепла».

Когда Ёсиака Арата стал добавлять дейтериевый газ к смеси, содержащей упомянутые наночастицы, ее температура поднялась до 70 градусов по Цельсию. После того как газ был отключен, температура в ячейке оставалась повышенной больше 50 часов, причем выделяемая энергия превысила затраченную. По мнению Араты, это можно объяснить только ядерным синтезом.

Конечно, с первой фазой жизни холодного термояда – неповторяемостью – эксперимент Араты далеко не покончил. Для того чтобы его результаты были признаны научным сообществом, необходимо, чтобы он с тем же успехом был повторен сразу в нескольких лабораториях. А поскольку тема очень специфическая, с намеком на маргинальность, похоже, что и этого будет мало. Возможно, что и после этого холодному термояду (если он все-таки существует) долго придется ждать полного признания, как это, например, происходит с историей вокруг так называемого пузырькового термояда, полученного Рузи Талейарханом из Окриджской национальной лаборатории.

«НГ-наука» уже рассказывала об этом скандале. Талейархан утверждал, что получил термояд, пропуская звуковые волны через сосуд с тяжелым ацетоном. При этом в жидкости образовывались и взрывались пузырьки, выделяя энергию, достаточную для осуществления термоядерного синтеза. Поначалу эксперимент независимо повторить не удалось, Талейархана обвинили в фальсификации. Он в ответ напал на оппонентов, обвиняя их в том, что у них плохие приборы. Но в конце концов в феврале прошлого года эксперимент, проведенный независимо в Университете Пердью, подтвердил результаты Талейархана и восстановил репутацию физика. С тех пор – полное молчание. Ни признаний, ни обвинений.

Холодным термоядом эффект Талейархана можно назвать только с очень большой натяжкой. «На самом деле это горячий термояд, – подчеркивает Андрей Липсон. – Там работают энергии в тысячи электронвольт, а в экспериментах с холодным термоядом эти энергии оцениваются долями электронвольта». Но, думается, эта энергетическая разница не очень-то повлияет на отношение научного сообщества, и даже если японский эксперимент будет успешно повторен в других лабораториях, колдфьюзионистам еще очень долго придется ожидать полного признания.

Впрочем, многие из тех, кто занимается холодным термоядом несмотря ни на что, полны оптимизма. Еще в 2003 году Митчелл Шварц, физик из Массачусетского технологического института, заявил на одной из конференций: «Мы занимаемся этими экспериментами так долго, что вопрос стоит уже не в том, можем ли мы получить с помощью холодного термояда дополнительное тепло, а в том, можем ли мы получать его киловаттами».

Действительно, киловаттами пока не получается, и конкуренции мощным термоядерным проектам, в частности многомиллиардному проекту международного реактора ИТЕР, холодный термояд пока даже в перспективе не представляет. По оценкам американцев, их исследователям понадобится от 50 до 100 млн. долл. и 20 лет на проверку жизнеспособности эффекта и возможностей его коммерческого использования.

В России о подобных суммах на такие исследования даже и мечтать не приходится. Да и мечтать-то, похоже, почти некому.

«Здесь никто этим не занимается, – говорит Липсон. – Для этих экспериментов требуется специальная аппаратура, специальное финансирование. Но официальных грантов мы на такие эксперименты не получаем, а если и занимаемся ими, то факультативно, параллельно с основной работой, за которую мы получаем зарплату. Так что в России идет только «повторение задов».

Условием для обычной термоядерной реакции являются очень высокаятемпература и давление.

В прошлом столетии было высказано желание осуществлять холодную термоядерную реакцию при комнатной температуре и обычном атмосферном давлении. Но всё же, несмотря на многочисленные исследования в данной отрасли, в реальности осуществить подобную реакцию до сих пор не получалось. Более того, многие учёные и эксперты саму идею признали ошибочной.

Методику осуществления так называемой реакции холодного термоядерного синтеза удалось разработать американским учёным. Об это говорится в немецком авторитетном журнале Naturwissenschaften, где была опубликована статья, в которой описывается способ осуществления ядерной реакции низкой энергии.

Исследования проводились под руководством Памелы Мосер-Босс и Александра Шпака из Центра космических и морских военных систем в штате Сан-Диего.

В ходе исследовний воздействию магнитных и электрических полей подвергался тонкий провод, покрытый тонким слоем палладия.

Для обнаружения заряжённых частиц, появлявшихся в результате подобного опыта, использовались детекторы из пластиковой плёнки.

В ближайшее время результаты исследований американских специалистов должны быть проверены независимыми экспертами.

Ининский сад камней расположен в Баргузинской долине. Огромные камни как будто кто-то специально разбросал или расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Одной из достопримечательностей Бурятии является Ининский сад камней в Баргузинской долине. Он производит удивительное впечатление – огромные камни, разбросанные в беспорядке на совершенно ровной поверхности. Как будто кто-то специально то ли разбросал их, то ли расставил с умыслом. А в местах, где расставлены мегалиты, всегда происходит что-то таинственное.

Сила природы

Вообще «сад камней» - это японское название искусственного ландшафта, в котором ключевую роль играют камни, расставленные по строгим правилам. «Карэсансуй» (сухой пейзаж) в Японии культивируется с 14-го века, и появился он не просто так. Считалось, что в местах с большим скоплением камней обитают боги, вследствие этого и самим камням стали придавать божественное значение. Конечно, сейчас японцы используют сады камней как место для медитации, где удобно предаваться философским размышлениям.

А философия здесь вот при чём. Хаотичное, на первый взгляд, расположение камней, на самом деле строго подчинено определённым законам. Во-первых, должна соблюдаться асимметрия и разность размеров камней. В саду есть определённые точки наблюдения – в зависимости от времени, когда вы собираетесь созерцать устройство своего микромира. И главная хитрость – с любой точки наблюдения всегда должен быть один камень, который… не виден.

Самый известный в Японии сад камней находится в Киото – древнейшей столице страны самураев, в храме Рёандзи. Это пристанище буддийских монахов. А у нас в Бурятии «сад камней» появился без усилий человека – его автором является сама Природа.

В юго-западной части Баргузинской долины, в 15 километрах от посёлка Суво, где река Ина выходит из Икатского хребта, расположено это место площадью более 10 квадратных километров. Значительно больше, чем любой японский сад камней – в той же пропорции, как японский бонсаи меньше бурятского кедра. Здесь из ровной земли выступают крупные глыбы камня, достигающего 4-5 метров в поперечнике, а в глубину эти валуны уходят до 10 метров!

Удаление этих мегалитов от горного хребта достигает 5 километров и более. Какая же сила могла разметать эти огромные камни на такие расстояния? То, что это сделал не человек, стало ясно из недавней истории: для гидромелиоративных целей здесь был прорыт 3-километровый канал. И в русле канала там и сям лежат огромные глыбы, уходящие на глубину до 10 метров. С ними бились, конечно, но безуспешно. В результате все работы на канале были остановлены.

Учёные выдвигали разные версии происхождения Ининского сада камней. Многие считают эти глыбы мореными валунами, то есть ледниковыми отложениями. Возраст учёными называется разный (Э. И. Муравский считает, что им 40-50 тысяч лет, а В. В. Ламакин - более 100 тысяч лет!), в зависимости от какого оледенения отсчитывать.

По предположениям геологов, в древности Баргузинская котловина представляла собой пресноводное неглубокое озеро, которое было отделено от Байкала неширокой и невысокой горной перемычкой, соединяющей Баргузинский и Икатский хребты. При повышении уровня воды образовался сток, превратившийся в русло реки, которая все глубже и глубже врезалась в твёрдые кристаллические породы. Известно, как ливневые потоки воды весной или после сильного дождя размывают крутые склоны, оставляя глубокие борозды балок и оврагов. Со временем уровень воды упал, и площадь озера из-за обилия взвешенного материала, приносимого в него реками, уменьшилась. В результате озеро исчезло, а на его месте осталась широкая долина с валунами, которые отнесли позже к памятникам природы.

А вот недавно доктор геолого-минералогических наук Г.Ф. Уфимцев предложил очень оригинальную идею, никак не связанную с оледенениями. По его мнению, Ининский сад камней образовался в результате сравнительно недавнего, имевшего катастрофический характер гигантского выброса крупно-глыбового материала.

По его наблюдениям, ледниковая деятельность на Икатском хребте проявилась только лишь на небольшой площади в верховьях рек Турокчи и Богунды, в средней же части этих рек следов оледенения не наблюдается. Таким образом, по мнению ученого, произошёл прорыв плотины подпрудного озера в течении реки Ины и её притоков. В результате прорыва с верховья Ины селем или грунтовой лавиной в Баргузинскую долину был выброшен большой объем глыбового материала. В пользу этой версии говорит факт сильного разрушения коренных бортов долины реки Ины на месте слияния с Турокчей, что может свидетельствовать о снесении селем большого объема горных пород.

На этом же участке реки Ины Уфимцевым отмечены два крупных «амфитеатра» (напоминают огромную воронку) размерами 2,0 на 1,3 километра и 1,2 на 0,8 километра, которые, вероятно, могли быть ложем крупных подпрудных озер. Прорыв плотины и спуск воды, по мнению Уфимцева, мог произойти в результате проявлений сейсмических процессов, поскольку оба склоновых «амфитеатра» приурочены к зоне молодого разлома с выходами термальных вод.

Здесь шалили боги

Удивительное место издавна интересовало местных жителей. И для «сада камней» люди придумали легенду, уходящую корнями в седую древность. Начало нехитрое. Поспорили как-то две реки, Ина и Баргузин, кто из них первым (первой) добежит до Байкала. Баргузин схитрил и отправился в дорогу тем же вечером, а утром рассерженная Ина помчалась следом, в гневе отбрасывая огромные валуны со своего пути. Так и лежат они до сих пор по обоим берегам реки. Не правда ли, это просто поэтическое описание мощного селя, предложенного для объяснения доктором Уфимцевым?

Камни всё ещё хранят тайну своего образования. Они ведь не только разного размера и цвета, они вообще из разных пород. То есть выломаны были не из одного места. А глубина залегания говорит о многих тысячах лет, за которые вокруг валунов наросли метры грунта.

Тем, кто видел фильм «Аватар», туманным утром камни Ины напомнят висячие горы, вокруг которых летают крылатые драконы. Вершины гор выступают из облаков тумана, как отдельные крепости или головы великанов в шлемах. Впечатления от созерцания сада камней удивительные, и люди не случайно наделили камни магической силой: считается, если прикоснуться к валунам руками, они будут забирать отрицательную энергию, взамен одаряя положительной.

В этих удивительных местах есть ещё одно место, где шалили боги. Это место прозвали «Сувинским саксонским замком». Это природное образование находится недалеко от группы солёных Алгинских озёр возле села Суво, на степных склонах сопки у подножья Икатского хребта. Живописные скалы очень напоминают развалины древнего замка. Эти места служили для эвенкийских шаманов особо почитаемым и священным местом. На эвенкийском языке «сувойя», или «суво» означает «вихрь».

Считалось, что именно здесь обитают духи - хозяева местных ветров. Главным и самым известным из которых был легендарный ветер Байкала «Баргузин». По легенде, в этих местах жил злой правитель. Он отличался свирепым нравом, ему доставало удовольствие приносить несчастья бедным и неимущим людям.

У него был единственный и любимый сын, которого заколдовали духи в наказание жестокому отцу. После осознания своего жестокого и несправедливого отношения к людям правитель пал на колени, стал умолять и слёзно просить вернуть здоровье сыну и сделать его счастливым. А все свои богатства он раздал людям.

И духи освободили из власти недуга сына правителя! Считается, что по этой причине скалы разделены на несколько частей. Среди бурят есть поверье, что в скалах живут хозяева Суво - Тумуржи-Нойон и его жена Тутужиг-Хатан. В честь сувинских владык были установлены бурханы. В особые дни в этих местах проводят целые ритуалы.

Холодный термоядерный синтез - что это? Миф или все-таки реальность? Это направление научной деятельности появилось еще в прошлом веке и до сих пор волнует многие научные умы. С таким видом связаны многие сплетни, слухи, домыслы. У него есть свои поклонники, жадно верующие в то, что в один прекрасный день какой-нибудь ученый создаст установку, которая спасет мир не столько от расходов на энергию, сколько от радиационного воздействия. Есть и противники, горячо настаивающие на том, что Между тем еще во второй половине прошлого века умнейший советский человек Филимоненко Иван Степанович чуть не создал подобный реактор.

Экспериментальные установки

1957 год был ознаменован тем, что Филимоненко Иван Степанович вывел совершенно другой вариант создания энергии при помощи ядерного синтеза из дейтерия гелия. А уже в июле шестьдесят второго года он запатентовал свою работу по процессам и системам термоэмиссии. Основной принцип работы: вид теплого где температурный режим составляет 1000 градусов. Для внедрения этого патента в жизнь было выделено восемьдесят организаций и предприятий. Когда Курчатов умер, разработку стали прижимать, а после смерти Королева совсем прекратили разрабатывать термоядерный синтез (холодный).

В 1968-ом все работы Филимоненко остановили, так как он проводил с 1958 года исследования по определению радиационной опасности на АЭС и ТЭС, а также испытания ядерного оружия. Его доклад на сорок шесть страниц помог остановить программу, которая предлагалась для запуска на Юпитер и Луну ракеты с ядерной установкой. Ведь при любой аварии или по возвращении космического корабля мог произойти взрыв. Он бы имел мощность в шестьсот раз больше, чем в Хиросиме.

Но многим это решение не понравилось, и на Филимоненко организовали травлю, а через некоторое время его сняли с работы. Так как он не прекращал своих исследований, его обвинили в подрывной деятельности. Иван Степанович получил шесть лет заключения в тюрьме.

Холодный термоядерный синтез и алхимия

Спустя много лет, в 1989 году Мартин Флейшман и Стэнли Понс, используя электроды, создали из дейтерия гелий, как и Филимоненко. Физики произвели впечатление на все научное сообщество и прессу, расписавшую в ярких красках жизнь, которая будет после внедрения установки, разрешающей производить термоядерный синтез (холодный). Конечно, их результаты физики всего мира стали проверять самостоятельно.

В первых рядах для проверки теории стоял технологический институт Массачусетса. Его директор Рональд Паркер подверг критике термоядерный синтез. «Холодный синтез - это миф», - заявил этот человек. Газеты обличали физиков Понса и Флейшмана в шарлатанстве и мошенничестве, так как теорию не смогли проверить, потому что получался всегда разный результат. В отчетах говорилось о большом количестве выделяемого тепла. Но в итоге был сделан подлог, данные подкорректировали. И после этих событий физики отказались от поиска решения теории Филимоненко «Холодный термоядерный синтез».

Кавитационный ядерный синтез

Но в 2002 году об этой теме вспомнили. Американские физики Рузи Талейархан и Ричард Лейхи рассказали о том, что добились сближения ядер, но применили при этом эффект кавитации. Это когда в жидкой полости образуются газообразные пузырьки. Они могут появляться из-за прохождения звуковых волн через жидкость. Когда пузырьки лопаются, то образуется большое количество энергии.

Ученые сумели зарегистрировать нейтроны с высокой энергией, при этом образовывались гелий и тритий, который считается продуктом ядерного синтеза. После проверки данного эксперимента фальсификации не обнаружили, но и признавать его пока не собирались.

Зигелевские чтения

Они проходят в Москве, а названы в честь астронома и уфолога Зигеля. Такие чтения проводятся два раза в год. Они больше похожи на заседания научных деятелей в психиатрической больнице, потому что здесь выступают ученые со своими теориями и гипотезами. Но так как они связаны с уфологией, их сообщения выходят за рамки разумного. Однако иногда бывают высказаны интересные теории. Например, академик А. Ф. Охатрин сообщил о своем открытии микролептонов. Это очень легкие элементарные частицы, которые имеют новые свойства, не поддающиеся объяснению. На практике его разработки могут предупредить о надвигающемся землетрясении или помочь при поиске полезных ископаемых. Охатрин разработал такой метод геологической разведки, который показывает не только залежи нефти, но и ее химическую составляющую.

Испытания на севере

В Сургуте на старой скважине были проведены испытания установки. В глубину на три километра был опущен вибрационный генератор. Он приводил в движение микролептонное поле Земли. Через несколько минут в нефти уменьшилось количество парафина и битума, а также стала меньше вязкость. Качество поднялось с шести до восемнадцати процентов. Этой технологией заинтересовались зарубежные фирмы. А российские геологи до сих пор не используют эти разработки. Правительство страны только приняло их к сведению, но дальше этого дело не продвинулось.

Поэтому приходится Охатрину работать на зарубежные организации. В последнее время академик больше занимается исследованием другого характера: как влияет купол на человека. Многие утверждают, что у него имеется обломок НЛО, упавшего в семьдесят седьмом году в Латвии.

Ученик академика Акимов

Анатолий Евгеньевич Акимов руководит межотраслевым научным центром «Вент». У него разработки такие же интересные, как и у Охатрина. Он пытался привлечь внимание правительства к своей работе, но от этого только врагов стало больше. Его изыскания тоже отнесли к лженауке. Была создана целая комиссия по борьбе с фальсификацией. Даже был представлен на обозрение проект закона о защите психосферы человека. Некоторые депутаты уверены, что есть генератор, который может действовать на психику.

Ученый Иван Степанович Филимоненко и его открытия

Вот и открытия нашего ученого-физика не нашли продолжения в науке. Его все знают как изобретателя которая передвигается при помощи магнитной тяги. И говорят, что был создан такой аппарат, который мог поднять пять тонн. Но некоторые утверждают, что тарелка не летает. Филимоненко создал прибор, который снижает радиоактивность некоторых объектов. В его установках используется энергия холодного термоядерного синтеза. Они делают неактивными радиоизлучения, а также производят энергию. Отходы у таких установок - это водород и кислород, а также пар высокого давления. Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен.

Конечно, его работы поддерживали Королев и Курчатов, поэтому эксперименты проводились. Но довести до логического завершения их не удалось. Установка холодного термоядерного синтеза позволила бы каждый год экономить около двухсот миллиардов рублей. Деятельность академика была возобновлена только в восьмидесятые годы. В 1989-ом начали изготавливать опытные образцы. Был создан дуговой реактор холодного термоядерного синтеза для подавления радиации. Также в Челябинской области было сконструировано несколько установок, но в работе они не были. Даже в Чернобыле не пользовались установкой с термоядерным синтезом (холодным). А ученый опять был уволен с работы.

Жизнь на Родине

В нашей стране не собирались развивать открытия ученого Филимоненко. Холодный термоядерный синтез, установка которого была завершена, могли бы продать за границу. Говорили, что в семидесятые годы кто-то вывез в Европу документы по установкам Филимоненко. Но у ученых за рубежом ничего не получилось, потому что Иван Степанович специально не дописал данные, по которым можно было создать реактор на холодном термоядерном синтезе.

Ему делали выгодные предложения, но он - патриот. Лучше будет жить в нищете, но в своей стране. У Филимоненко есть собственный огород, который приносит урожай четыре раза в год, так как физик использует пленку, которую сам создал. Однако ее никто не вводит в производство.

Гипотеза Авраменко

Этот ученый-уфолог посвятил свою жизнь изучению плазмы. Авраменко Римлий Федорович хотел создать плазменный генератор в качестве альтернативы современным источникам энергии. В 1991 году в лаборатории он проводил опыты по образованию шаровой молнии. А плазма, которая из нее выстреливалась, расходовала энергии намного больше. Ученый предлагал этот плазмоид использовать для обороны против ракет.

Испытания были проведены на военном полигоне. Действие такого плазмоида могло бы помочь при борьбе с астероидами, которые грозят катастрофой. Разработка Авраменко также не получила продолжения, а почему - никто не знает.

Схватка жизни с радиацией

Более сорока лет назад существовала секретная организация «Красная звезда», руководил которой И. С. Филимоненко. Он со своей группой проводил разработки комплекса жизненного обеспечения для полетов на Марс. Он разработал термоядерный синтез (холодный) для своей установки. Последняя, в свою очередь, должна была стать двигателем для космических кораблей. Но когда был верифицирован реактор холодного термоядерного синтеза, стало понятно, что он может помочь и на Земле. С помощью этого открытия можно обезвреживать изотопы и избежать

Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Кризис на Карибах показывает, что СССР и Америка готовы были ввязаться в ядерную войну. Но их сдерживало то, что отсутствовала подобная установка, которая бы смогла защитить от воздействия радиации.

На то время прочно был связан с фамилией Филимоненко холодный термоядерный синтез. Реактор вырабатывал чистую энергию, что позволило бы защитить партийную верхушку от радиационного заражения. Отказавшись предоставить в руки власти свои разработки, ученый не дал руководству страны «козыря», в случае если бы началась Без его установки подземные бункеры защитили бы высших партийных деятелей от ядерного удара, но рано или поздно их бы достала радиация. Таким образом, Иван Степанович защитил мир от глобальной ядерной войны.

Забвение ученого

После отказа ученого ему пришлось выдержать не одни переговоры по поводу своих разработок. В результате Филимоненко уволили с работы и лишили всех званий и регалий. И вот уже тридцать лет физик, который мог бы вывести холодный термоядерный синтез в обыкновенной кружке, с семьей живет на даче. Все открытия Филимоненко могли внести большой вклад в развитие науки. Но, как бывает в нашей стране, его холодный термоядерный синтез, реактор которого был создан и проверен на практике, был забыт.

Экология и ее проблемы

Сегодня Иван Степанович занимается проблемами экологии, он обеспокоен тем, что на Землю надвигается катастрофа. Он считает, что главная причина ухудшения экологической обстановки - это задымление крупными городами воздушного пространства. Кроме выхлопных газов, многие предметы выделяют вредные вещества для человека: радон и криптон. А утилизировать последний еще не научились. И холодный термоядерный синтез, принцип которого в том, чтобы поглощать радиацию, помог бы в охране окружающей среды.

Кроме того, особенности действия холодного термояда, по мнению ученого, могли бы спасти людей от многих болезней, продлили бы многократно человеческую жизнь, ликвидировав все очаги радиационного излучения. А таковых, как утверждает Иван Степанович, весьма много. Они встречаются буквально на каждом шагу и даже дома. По словам научного деятеля, в древние времена люди жили веками, а все потому, что отсутствовала радиация. Его установка могла бы ее устранить, но, видимо, это произойдет еще нескоро.

Заключение

Таким образом, вопрос о том, что такое холодный термоядерный синтез и когда он встанет на защиту человечества, достаточно актуален. И если это не миф, а реальность, то необходимо направить все силы и ресурсы на изучение этого направления ядерной физики. Ведь в конечном счете установка, которая бы смогла производить такую реакцию, была бы полезна всем и каждому.

Утром человек просыпается, включает тумблер – в квартире появляется электричество, которое греет воду в чайнике, дает энергию для работы телевизора и компьютера, заставляет светиться лампочки. Человек завтракает, выходит из дома и садится в машину, которая уезжает, не оставляя после себя привычного облака выхлопных газов. Когда человек решает, что надо заправиться, он покупает баллон с газом, который не пахнет, не токсичен и очень дешев - нефтепродукты больше не используются как топливо. Топливом стала океаническая вода. Это не утопия, это обычный день в мире, где человек освоил реакцию холодного ядерного синтеза.

В четверг, 22 мая 2008 года, группа японских физиков из Университета Осаки под руководством профессора Араты провела демонстрацию реакции холодного ядерного синтеза. Некоторые из присутствовавших на демонстрации ученых назвали ее успешной, однако большинство заявило, что для подобных утверждений необходимо независимо повторить опыт в других лабораториях. О заявлении японцев написало несколько физических изданий, однако наиболее уважаемые в научном мире журналы, такие как Science и Nature , пока не опубликовали своей оценки этого события. Чем объясняется такой скепсис научного сообщества?

Все дело в том, что холодный ядерный синтез с некоторых пор пользуется у ученых дурной славой. Несколько раз заявления об успешном проведении этой реакции на поверку оказывались фальсификацией либо неверно поставленным экспериментом. Чтобы понять, в чем трудность осуществления ядерного синтеза в лабораторных условиях, необходимо коротко коснуться теоретических основ реакции.

Куры и ядерная физика

Ядерный синтез - это реакция, при которой атомные ядра легких элементов сливаются, образуя ядро более тяжелого. При реакции выделяется огромное количество энергии. Это обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения, которые удерживают вместе входящие в состав ядра протоны и нейтроны. На маленьких расстояниях – около 10 -13 сантиметров - эти силы чрезвычайно сильны. С другой стороны, протоны в ядрах заряжены положительно, и, соответственно, стремятся оттолкнуться друг от друга. Радиус действия электростатических сил намного больше, чем у ядерных, поэтому когда ядра удалены друг от друга, первые начинают преобладать.

В обычных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы они смогли преодолеть электростатическое отталкивание и вступить в ядерную реакцию. Заставить атомы сблизиться можно, сталкивая их на большой скорости или используя сверхвысокие давления и температуры. Однако теоретически существует и альтернативный способ, позволяющий проводить желанную реакцию практически "на столе". Одним из первых идею осуществления ядерного синтеза при комнатной температуре высказал в 60-е годы прошлого века французский физик, лауреат Нобелевской премии Луис Кервран (Louis Kervran).

Ученый обратил внимание на тот факт, что куры, не получающие кальция с пищей, тем не менее несут нормальные яйца, покрытые скорлупой. В скорлупе, как известно, содержится очень много кальция. Кервран заключил, что куры синтезируют его у себя в организме из более легкого элемента – калия. В качестве места протекания реакций ядерного синтеза физик определил митохондрии – внутриклеточные энергетические станции. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза.

Две почти детективные истории

В 1989 году Мартин Флейшман и Стэнли Понс объявили о том, что им удалось покорить природу и заставить дейтерий превратиться в гелий при комнатной температуре в приборе для электролиза воды. Схема эксперимента была следующей: в подкисленную воду опускали электроды и пропускали ток – обычный опыт по электролизу воды. Однако ученые использовали необычную воду и необычные электроды.

Вода была "тяжелой". То есть, легкие ("обычные") изотопы водорода в ней были заменены на более тяжелые, содержащие помимо протона еще и один нейтрон. Такой изотоп называется дейтерием. Кроме того, Флейшман и Понс использовали электроды, сделанные из палладия. Палладий отличает удивительная способность "впитывать" в себя большое количество водорода и дейтерия. Число атомов дейтерия в палладиевой пластине может сравниться с числом атомов самого палладия. В своем эксперименте физики использовали электроды, предварительно "насыщенные" дейтерием.

При прохождении электрического тока через "тяжелую" воду образовывались положительно заряженные ионы дейтерия, которые под действием сил электростатического притяжения устремлялись к отрицательно заряженному электроду и "врезались" в него. При этом, как были уверены экспериментаторы, они сближались с уже находящимися в электродах атомами дейтерия на расстояние, достаточное для протекания реакции ядерного синтеза.

Доказательством протекания реакции стало бы выделение энергии – в данном случае это выразилось бы в увеличении температуры воды - и регистрация потока нейтронов. Флейшман и Понс заявили, что в их установке наблюдалось и то и другое. Сообщение физиков вызвало чрезвычайно бурную реакцию научного сообщества и прессы. СМИ расписывали прелести жизни после повсеместного внедрения холодного ядерного синтеза, а физики и химики по всему миру принялись перепроверять их результаты.

Поначалу в нескольких лабораториях вроде бы смогли повторить эксперимент Флейшмана и Понса, о чем радостно сообщали газеты, однако постепенно стало выясняться, что при одних и тех же начальных условиях разные ученые получают совершенно несхожие результаты. После перепроверки расчетов выяснилось, что если бы реакция синтеза гелия из дейтерия шла бы так, как описали физики, то выделившийся поток нейтронов должен был бы немедленно убить их. Прорыв Флейшмана и Понса оказался просто неграмотно поставленным экспериментом. И заодно научил исследователей доверять только результатам, сначала опубликованным в рецензируемых научных журналах, и только потом в газетах.

После этой истории большинство серьезных исследователей прекратили работы по поиску путей осуществления холодного ядерного синтеза. Однако в 2002 году эта тема снова всплыла в научных дискуссиях и прессе. На сей раз с претензией на покорение природы выступили физики из США Рузи Талейархан (Rusi Taleyarkhan) и Ричард Лейхи (Richard T. Lahey, Jr.). Они заявили, что смогли добиться необходимого для реакции сближения ядер, используя не палладий, а эффект кавитации.

Кавитацией называют образование в жидкости полостей, или пузырьков, заполненных газом. Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии. Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию – что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез.

Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода (протий) был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития – еще одного продукта ядерного синтеза.

Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний – и снова получили тот же результат. Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации.

В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование. По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе.

Новая надежда

Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий. Точнее, смесь палладия с оксидом циркония. "Дейтериевая емкость" этой смеси, по утверждениям японцев, еще выше, чем у палладия. Ученые пропускали дейтерий через ячейку, содержащую эту смесь. После добавления дейтерия температура внутри ячейки поднялась до 70 градусов по Цельсию. По словам исследователей, в этот момент в ячейке происходили ядерные и химические реакции. После того как поступление дейтерия в ячейку прекратилось, температура внутри нее оставалась повышенной еще в течение 50 часов. Физики утверждают, что это свидетельствует о протекании внутри ячейки реакций ядерного синтеза - из атомов дейтерия, сблизившихся на достаточное расстояние, образовывались ядра гелия.

Пока рано говорить, правы японцы или нет. Эксперимент должен быть неоднократно повторен, а результаты проверены. Скорее всего, несмотря на скепсис, многие лаборатории займутся этим. Тем более что руководитель исследования – профессор Йошиаки Арата (Yoshiaki Arata) – очень уважаемый физик. О признании заслуг Араты свидетельствует тот факт, что демонстрация работы прибора проходила в аудитории, носящей его имя. Но, как известно, ошибаться могут все, особенно тогда, когда очень хотят получить вполне определенный результат.

July 24th, 2016

23 марта 1989 года Университет Юты сообщил в пресс-релизе, что «двое ученых запустили самоподдерживающуюся реакцию ядерного синтеза при комнатной температуре». Президент университета Чейз Петерсон заявил, что это эпохальное достижение сравнимо лишь с овладением огнем, открытием электричества и окультуриванием растений. Законодатели штата срочно выделили $5 млн на учреждение Национального института холодного синтеза, а университет запросил у Конгресса США еще 25 млн. Так начался один из самых громких научных скандалов XX века. Печать и телевидение мгновенно разнесли новость по миру.

Ученые, сделавшие сенсационное заявление, вроде бы имели солидную репутацию и вполне заслуживали доверия. Переселившийся в США из Великобритании член Королевского общества и экс-президент Международного общества электрохимиков Мартин Флейшман обладал международной известностью, заработанной участием в открытии поверхностно-усиленного рамановского рассеяния света. Соавтор открытия Стэнли Понс возглавлял химический факультет Университета Юты.

Так что же это все таки, миф или реальность?


Источник дешевой энергии

Флейшман и Понс утверждали, что они заставили ядра дейтерия сливаться друг с другом при обычных температурах и давлениях. Их «реактор холодного синтеза» представлял собой калориметр с водным раствором соли, через который пропускали электрический ток. Правда, вода была не простой, а тяжелой, D2O, катод был сделан из палладия, а в состав растворенной соли входили литий и дейтерий. Через раствор месяцами безостановочно пропускали постоянный ток, так что на аноде выделялся кислород, а на катоде — тяжелый водород. Флейшман и Понс якобы обнаружили, что температура электролита периодически возрастала на десятки градусов, а иногда и больше, хотя источник питания давал стабильную мощность. Они объяснили это поступлением внутриядерной энергии, выделяющейся при слиянии ядер дейтерия.

Палладий обладает уникальной способностью к поглощению водорода. Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит. Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков.

Физики вносят ясность

Однако физики-ядерщики и специалисты по физике плазмы не спешили бить в литавры. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии (около 2,45 МэВ). Их нетрудно обнаружить либо непосредственно (с помощью нейтронных детекторов), либо косвенно (поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации). В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры.

Однако из этого ничего не вышло. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего! Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно. Поэтому не стоит удивляться, что заявка на великое открытие подверглась сокрушительному разгрому на конференции Американского физического общества (АФО), которая состоялась в Балтиморе 1 мая того же года.


Sic transit gloria mundi

От этого удара Понс и Флейшман уже не оправились. В газете New York Times появилась разгромная статья, а к концу мая научное сообщество пришло к выводу, что претензии химиков из Юты — либо проявление крайней некомпетентности, либо элементарное жульничество.

Но имелись и диссиденты, даже среди научной элиты. Эксцентричный нобелевский лауреат Джулиан Швингер, один из создателей квантовой электродинамики, настолько уверовал в открытие химиков из Солт-Лейк-Сити, что в знак протеста аннулировал свое членство в АФО.

Тем не менее академическая карьера Флейшмана и Понса завершилась — быстро и бесславно. В 1992 году они ушли из Университета Юты и на японские деньги продолжали свои работы во Франции, пока не лишились и этого финансирования. Флейшман возвратился в Англию, где живет на пенсии. Понс отказался от американского гражданства и поселился во Франции.

Пироэлектрический холодный синтез

Холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Так, в 2005 году исследователям из Калифорнийского университета в Лос-Анджелесе удалось запустить подобную реакцию в контейнере с дейтерием, внутри которого было создано электростатическое поле. Его источником служила вольфрамовая игла, подсоединенная к пироэлектрическому кристаллу танталата лития, при охлаждении и последующем нагревании которого создавалась разность потенциалов 100−120 кВ. Поле напряженностью порядка 25 ГВ/м полностью ионизировало атомы дейтерия и так разгоняло его ядра, что при столкновении с мишенью из дейтерида эрбия они давали начало ядрам гелия-3 и нейтронам. Пиковый нейтронный поток составил порядка 900 нейтронов в секунду (в несколько сотен раз выше типичного фонового значения). Хотя такая система имеет перспективы в качестве генератора нейтронов, говорить о ней как об источнике энергии нельзя. Подобные устройства потребляют намного больше энергии, чем генерируют: в экспериментах калифорнийских ученых в одном цикле охлаждения-нагревания длительностью несколько минут выделялось примерно 10-8 Дж (на 11 порядков меньше, чем нужно для нагрева стакана воды на 1°С).

На этом история не заканчивается.

В начале 2011 года в мире науки вновь вспыхнул интерес к холодному термоядерному синтезу, или, как его называют отечественные физики, холодному термояду. Поводом для этого ажиотажа послужила демонстрация итальянскими учеными Серджио Фокарди и Андреа Росси из Университета Болоньи необычной установки, в которой, по словам ее разработчиков, этот синтез осуществляется достаточно легко.

В общих чертах работает этот аппарат так. В металлическую трубку с электрическим подогревателем помещаются нанопорошок никеля и обычный изотоп водорода. Далее нагнетается давление около 80 атмосфер. При первоначальном нагреве до высокой температуры (сотни градусов), как говорят ученые, часть молекул H2 разделяется на атомарный водород, далее тот вступает в ядерную реакцию с никелем.

В результате этой реакции порождается изотоп меди, а также большое количество тепловой энергии. Андреа Росси объяснил, что при первых испытаниях прибора они получали от него около 10-12 киловатт на выходе, в то время как на входе система требовала в среднем 600-700 ватт (имеется в виду электроэнергия, поступающая в прибор при включении его в розетку). По всему получалось, что производство энергии в данном случае было многократно выше затрат, а ведь именно этого эффекта в свое время ждали от холодного термояда.

Тем не менее, по сообщению разработчиков, в данном приборе пока вступает в реакцию далеко не весь водород и никель, а очень малая их доля. Однако ученые уверены, что то, что происходит внутри, представляет собой именно ядерные реакции. Доказательством этого они считают: появление меди в большем количестве, чем могла бы составлять примесь в исходном "топливе" (то есть никеле); отсутствие большого (то есть измеримого) расхода водорода (поскольку он ведь мог бы выступать как топливо в химической реакции); выделяемое тепловое излучение; ну и, конечно, сам энергетический баланс.

Итак, неужели итальянским физикам все-таки удалось добиться термоядерного синтеза при низких температурах (сотни градусов Цельсия — это ничто для подобных реакций, которые обычно идут при миллионах градусах Кельвина!)? Сложно сказать, поскольку до сих пор все рецензируемые научные журналы даже отклонили статьи ее авторов. Скептицизм многих ученых вполне понятен — уже много лет слова "холодный синтез" вызывают у физиков усмешку и ассоциации с вечным двигателем. Кроме того, сами авторы устройства честно признают, что тонкие детали его работы пока остаются вне их понимания.

Что же это за такой неуловимый холодный термояд, доказать возможность протекания которого многие ученые пытаются уже не один десяток лет? Для того чтобы понять сущность данной реакции, а также перспективность подобных исследований, давайте сначала поговорим о том, что такое вообще термоядерный синтез. Под этим термином понимают процесс, при котором происходит синтез более тяжелых атомных ядер из более легких. При этом выделяется огромное количество энергии, куда больше, чем при ядерных реакциях распада радиоактивных элементов.

Подобные процессы постоянно происходят на Солнце и других звездах, из-за чего они могут выделять и свет, и тепло. Так, например, каждую секунду наше Солнце излучает в космическое пространство энергию, эквивалентную четырем миллионам тонн массы. Эта энергия рождается в ходе слияния четырех ядер водорода (проще говоря, протонов) в ядро гелия. При этом на выходе в результате превращения одного грамма протонов выделяется в 20 миллионов раз больше энергии, чем при сгорании грамма каменного угля. Согласитесь, подобное весьма впечатляет.

Но неужели люди не могут создать реактор, подобный Солнцу, для того чтобы производить большое количество энергии для своих нужд? Теоретически, конечно, могут, поскольку прямой запрет на такое устройство не устанавливает ни один из законов физики. Тем не менее, сделать это достаточно сложно, и вот почему: данный синтез требует очень высокой температуры и такого же нереально высокого давления. Поэтому создание классического термоядерного реактора получается экономически невыгодным — на то, чтобы запустить его, нужно будет затратить куда больше энергии, чем он сможет выработать за последующие несколько лет работы.

Возвращаясь к итальянским первооткрывателям приходится признать, что и сами «ученые» не внушают особого доверия, ни своими прошлыми достижениями, ни своим нынешним положением. Имя Серджио Фокарди до сих пор было мало кому известно, но зато благодаря своему ученому званию профессора, можно хотя бы не сомневаться в его причастности к науке. А вот в отношении коллеги по открытию, Андреа Росси, такого уже не скажешь. На данный момент Андреа является сотрудником некой американской корпорации Leonardo Corp, и в свое время отличился лишь привлечением к суду за уклонение от уплаты налогов и контрабанду серебра из Швейцарии. Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились. Выяснилось, что научный журнал Journal of Nuclear Physics, в котором были опубликованы статьи итальянцев о своем открытие, на самом деле представляет собой скорее блог, а неполноценный журнал. И, вдобавок, его владельцами оказались ни кто иные, как уже знакомые итальянцы Серджио Фокарди и Андреа Росси. А ведь публикация в серьезных научных изданиях служит подтверждением «правдоподобности» открытия.

Не остановившись на достигнутом, и капнув еще глубже, журналисты также выяснили, что идея представленного проекта принадлежит совершенного другому человеку — итальянскому ученому Франческо Пьянтелли. Похоже, именно на этом, бесславно и закончилась очередная сенсация, и мир в очередной раз лишился «вечного двигателя». Но как, не без иронии, утешают себя итальянцы, если это всего лишь выдумка, то, по-крайней мере, она не лишена остроумия, ведь одно дело разыграть знакомых и совсем другое, попытаться обвести вокруг пальца целый мир.

В настоящее время все права на данное устройство принадлежат американской компании Industrial Heat, где Росси возглавляет всю научно-исследовательскую и конструкторскую деятельность в отношении реактора.

Существуют низкотемпературная (E-Cat) и высокотемпературная (Hot Cat) версии реактора. Первая для температур примерно 100-200 °C, вторая для температур порядка 800-1400 °C. В настоящее время компания продала низкотемпературный реактор на 1МВт неназванному заказчику для коммерческого использования и, в частности, на этом реакторе Industrial Heat проводит тестирование и отладку для того, чтобы начать полномасштабное промышленное производство подобных энергетических блоков. Как заявляет Андреа Росси, реактор работает главным образом за счет реакции между никелем и водородом, в ходе которой происходит трансмутация изотопов никеля с выделением большого количества тепла. Т.е. одни изотопы никеля переходят в другие изотопы. Тем не менее был проведен ряд независимых испытаний, наиболее информативным из которых было испытание высокотемпературной версии реактора в швейцарском городе Лугано. Об этом испытании уже писали .

Еще в 2012 году сообщалось, что продана первая установка холодного синтеза Росси.

27 декабря на сайте E-Cat World была опубликована статья о независимом воспроизведении реактора Росси в России . В этой же статье содержится ссылка на доклад «Исследование аналога высокотемпературного теплогенератора Росси» физика Пархомова Александра Георгиевича . Доклад подготовлен для всероссийского физического семинара «Холодный ядерный синтез и шаровая молния», который прошел 25 сентября 2014 года в Российском университете дружбы народов.

В докладе автор представил свою версию реактора Росси, данные по его внутреннему устройству и проведенным испытаниям. Главным вывод: реактор действительно выделяет больше энергии, чем потребляет. Отношение выделенного тепла к потребленной энергии составило 2.58. Более того, около 8 минут реактор проработал вообще без подачи входной мощности, после того, как питающий провод перегорел, производя при этом около киловата тепловой мощности на выходе.

В 2015 году А.Г. Пархомову удалось сделать длительно работающий реактор с замером давления. С 23:30 16 марта температура держится до сих пор. Фото реактора.

Наконец, удалось сделать длительно работающий реактор. Температура 1200оС достигнута в 23:30 16 марта после 12- часового постепенного нагрева и держится до сих пор. Мощность нагревателя 300 Вт, COP=3.
Впервые успешно удалось вмонтировать в установку манометр. При медленном нагреве максимальное давление 5 бар было достигнуто при 200оС, потом давление снижалось и при температуре около 1000оС стало отрицательным. Наиболее сильный вакуум около 0,5 бар был при температуре 1150оС.

При длительной непрерывной работе нет возможности круглосуточно подливать воду. Поэтому пришлось отказаться от использованной в предыдущих экспериментах калориметрии, основанной на измерении массы испарившейся воды. Определение теплового коэффициента в этом эксперименте проводится путем сравнения потребляемой электронагревателем мощности при наличии и отсутствии топливной смеси. Без топлива температура 1200оС достигается при мощности около 1070 Вт. При наличии топлива (630 мг никеля +60 мг алюмогидрида лития) такая температура достигается при мощности около 330 Вт. Таким образом, реактор вырабатывает около 700 Вт избыточной мощности (COP ~ 3,2). (Объяснение А.Г. Пархомова, более точное значение СОР требует более детального расчета)

источники