Докажите что четырехугольник является параллелограммом. Теоремы параллелограмма

На этой странице собраны все формулы, необходимые для сдачи контрольных и самостоятельных работ, экзаменов по по алгебре, геометрии, тригонометрии, стереометрии и другим разделам математики.

Здесь вы можете скачать или посмотреть онлайн все основные тригонометрические формулы, формулу площади круга, формулы сокращенного умножения, формула длины окружности, формулы приведения и многие другие.

Можно так же распечатать необходимые сборники математических формул.

Успехов в учебе!

Формулы Арифметики:

Формулы Алгебры:

Геометрические Формулы:

Арифметические формулы:

Законы действий над числами

Переместительный закон сложения: a + b = b + a.

Сочетательный закон сложения: (a + b) + с = a + (b + c).

Переместительный закон умножения: ab = ba.

Сочетательный закон умножения: (ab)с = a(bc).

Распределительный закон умножения относительно сложения: (a + b)с = aс + bс.

Распределительный закон умножения относительно вычитания: (a — b)с = aс — bс.

Некоторые математические обозначения и сокращения:

Признаки делимости

Признаки делимости на «2»

Число, делящееся на «2» без остатка называется чётным , не делящееся – нечётным . Число делится на «2» без остатка, если его последняя цифра чётная (2, 4, 6, 8) или ноль

Признаки делимости на «4»

Число делится на «4» без остатка, если две последние его цифры нули или в сумме образуют число, делящееся без остатка на «4»

Признаки делимости на «8»

Число делится на «8» без остатка, если три последние его цифры нули или в сумме образуют число, делящееся без остатка на «8» (пример: 1 000 — три последние цифры «00», а при делении 1 000 на 8 получается 125; 104 — две последние цифры «12» делятся на 4, а при делении 112 на 4 получается 28; и.т.д.)

Признаки делимости на «3» и на «9»

Без остатка на «3» делятся только те числа, у которых сумма цифр делится без остатка на «3»; на «9» — только те, у которых сумма цифр делится без остатка на «9»

Признаки делимости на «5»

Без остатка на «5» делятся числа, последняя цифра которых «0» или «5»

Признаки делимости на «25»

Без остатка на «25» делятся числа, две последние цифры которых нули или в сумме образуют число, делящееся без остатка на «25» (т.е. числа, оканчивающиеся на «00», «25», «50», «75»

Признаки делимости на «10», «100» и на «1 000»

Без остатка на «10» делятся только те числа, последняя цифра которых ноль, на «100» — только те числа, у которых две последние цифры нули, на «1000» — только те числа, у которых три последние цифры нули

Признаки делимости на «11»

Без остатка на «11» делятся только те числа, у которых сумма цифр, занимающих нечётные места, либо равна сумме цифр, занимающих чётные места, либо отличается от неё на число, делящееся на «11»

Абсолютная величина — формулы ( модуль)

|a| ? 0, причём |a| = 0 только если a = 0; |-a|=|a| |a2|=|a|2=a2 |ab|=|a|*|b| |a/b|=|a|/|b|, причём b ? 0; |a+b|?|a|+|b| |a-b|?|a|-|b|

Формулы Действия с дробями

Формула обращения конечной десятичной дроби в рациональную дробь:

Пропорции

Два равных отношения образуют пропорцию :

Основное свойство пропорции

Нахождение членов пропорции

Пропорции , равносильные пропорции : Производная пропорция — следствие данной пропорции в виде

Средние величины

Среднее арифметическое

Двух величин: n величин:

Среднее геометрическое (среднее пропорциональное)

Двух величин: n величин:

Среднее квадратичное

Двух величин: n величин:

Среднее гармоническое

Двух величин: n величин:

Некоторые конечные числовые ряды

Свойства числовых неравенств

1) Если a < b , то при любом c : a + с < b + с .

2) Если a < b и c > 0 , то aс < bс .

3) Если a < b и c < 0 , то aс > bс .

4) Если a < b , a и b одного знака, то 1/a > 1/b .

5) Если a < b и c < d , то a + с < b + d , a — d < b — c .

6) Если a < b , c < d , a > 0 , b > 0 , c > 0 , d > 0 , то ac < bd .

7) Если a < b , a > 0 , b > 0 , то

8) Если , то

  • Формулы Прогрессии:

  • Производная

  • Логарифмы:
  • Координаты и векторы

    1. Расстояние между точками A1(x1;y1) и A2(x2;y2) находится по формуле:

    2. Координаты (x;y) середины отрезка с концами A1(x1;y1) и A2(x2;y2) находится по формулам:

    3. Уравнение прямой с угловым коэффициентом и начальной ординатой имеет вид:

    Угловой коэффициент k представляет собой значение тангенса угла, образуемого прямой с положительным направлением оси Ox, а начальная ордината q – значение ординаты точки пересечения прямой с осью Oy.

    4. Общее уравнение прямой имеет вид: ax + by + c = 0.

    5. Уравнения прямых, параллельных соответственно осям Oy и Ox, имеют вид:

    Ax + by + c = 0.

    6. Условия параллельности и перпендикулярности прямых y1=kx1+q1 и y2=kx2+q2 соответственно имеют вид:

    7. Уравнения окружностей с радиусом R и с центром соответственно в точках O(0;0) и C(xo;yo) имеют вид:

    8. Уравнение:

    представляет собой уравнение параболы с вершиной в точке, абсцисса которой

  • Прямоугольная декартова система координат в пространстве

    1. Расстояние между точками A1(x1;y1;z1) и A2(x2;y2;z2) находится по формуле:

    2. Координаты (x;y;z) середины отрезка с концами A1(x1;y1;z1) и A2(x2;y2;z2) находятся по формулам:

    3. Модуль вектора заданного своими координатами, находится по формуле:

    4. При сложении векторов их соответствующие координаты складываются, а при умножении вектора на число все его координаты умножаются на это число, т.е. справедливы формулы:

    5. Единичный вектор сонаправленный с вектором находится по формуле:

    6. Скалярным произведением векторов называется число:

    где — угол между векторами.

    7. Скалярное произведение векторов

    8. Косинус угла между векторами и находится по формуле:

    9. Необходимое и достаточное условие перпендикулярности векторов и имеет вид:

    10. Общее уравнение плоскости, перпендикулярной вектору имеет вид:

    Ax + by + cz + d = 0.

    11. Уравнение плоскости, перпендикулярной вектору и проходящей через точку (xo;yo;zo), имеет вид:

    A(x — xo) + b(y — yo) + c(z — zo) = 0.

    12. Уравнение сферы с центром O(0;0;0) записывается в виде.

Образование - то, что остается после того, как забыто все, чему учили в школе.

Игорь Хмелинский, новосибирский учёный, ныне работающий в Португалии, доказывает, что без прямого запоминания текстов и формул развитие абстрактной памяти у детей затруднительно. Приведу выдержки из его статьи " Уроки образовательных реформ в Европе и странах бывшего СССР"

Заучивание наизусть и долговременная память

Незнание таблицы умножения имеет и более серьезные последствия, чем неспособность обнаружить ошибки в расчетах на калькуляторе. Наша долговременная память работает по принципу ассоциативной базы данных, то есть, одни элементы информации при запоминании оказываются связанными с другими на основе ассоциаций, установленных в момент знакомства с ними. Поэтому, чтобы в голове образовалась база знаний в какой-либо предметной области, например, в арифметике, нужно для начала выучить хоть что-то наизусть. Далее, вновь поступающая информация попадет из кратковременной памяти в долговременную, если в течение короткого промежутка времени (несколько дней) мы столкнемся с нею многократно, и, желательно, в разных обстоятельствах (что способствует созданию полезных ассоциаций). Однако при отсутствии в постоянной памяти знаний из арифметики, вновь поступающие элементы информации связываются с элементами, которые к арифметике никакого отношения не имеют – например, личностью преподавателя, погодой на улице и т.п. Очевидно, такое запоминание никакой реальной пользы учащемуся не принесет – поскольку ассоциации уводят из данной предметной области, то никаких знаний, относящихся к арифметике, учащийся вспомнить не сможет, кроме смутных идей о том, что он вроде бы что-то когда-то об этом должен был слышать. Для таких учащихся роль недостающих ассоциаций обычно выполняют разного рода подсказки – списать у коллеги, воспользоваться наводящими вопросами в самой контрольной, формулами из списка формул, которым пользоваться разрешено, и т.п. В реальной жизни, без подсказок, такой человек оказывается совершенно беспомощным и неспособным применить имеющиеся у него в голове знания.

Формирование математического аппарата, при котором формулы не заучиваются, происходит медленнее, нежели в противном случае. Почему? Во-первых, новые свойства, теоремы, взаимосвязи между математическими объектами почти всегда используют какие-то особенности ранее изученных формул и понятий. Концентрировать внимание ученика на новом материале будет сложнее, если эти особенности не смогут извлекаться из памяти за короткий промежуток времени. Во-вторых, незнание формул наизусть препятствует поиску решения содержательных задач с большим количеством мелких операций, в которых требуется не только провести определенные преобразования, но и выявить последовательность этих ходов, анализируя применение нескольких формул на два-три шага вперед.

Практика показывает, что интеллектуальное и математическое развитие ребенка, формирование его базы знаний и навыков, происходит значительно быстрее, если большая часть используемой информации (свойства и формулы) находиться в голове. И чем прочнее и дольше она там удерживается, тем лучше.

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, x 2 = 1 {\displaystyle x^{2}=1} является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например x 2 = a {\displaystyle x^{2}=a} понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: a = x 2 {\displaystyle a=x^{2}} .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество a + b = b + a {\displaystyle a+b=b+a} утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство (a + b) 2 = a 2 + 2 a b + b 2 {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}} ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например 6 3 = 3 3 + 4 3 + 5 3 {\displaystyle 6^{3}=3^{3}+4^{3}+5^{3}} .

Приближённые равенства

Например: x ≈ sin ⁡ (x) {\displaystyle x\approx \sin(x)} - приближённое равенство при малых x {\displaystyle x} ;

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очерёдность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

2 + 2 = 7 {\displaystyle 2+2=7} - пример формулы, имеющей значение «ложь»;

Y = ln ⁡ (x) + sin ⁡ (x) {\displaystyle y=\ln(x)+\sin(x)} - функция одного действительного аргумента;

Z = y 3 y 2 + x 2 {\displaystyle z={\frac {y^{3}}{y^{2}+x^{2}}}} - функция нескольких аргументов (график одной из самых замечательных кривых - верзьера Аньези);

Y = 1 − | 1 − x | {\displaystyle y=1-|1-x|} - не дифференцируемая функция в точке x = 1 {\displaystyle x=1} (непрерывная ломаная линия не имеет касательной);

X 3 + y 3 = 3 a x y {\displaystyle x^{3}+y^{3}=3axy} - уравнение, то есть неявная функция (график кривой «

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако, важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

В 7-8 классе изучают решение уравнений графическим способом. В это время на решение даются простые уравнения("с хорошим корнем") которые легко отыскиваются с помощью графиков, особенно на клетчатой бумаге. Но существуют примеры где с корнем немного иначе. Рассмотрим два уравнения:√х=2-х и √х=4-х. Первое уравнение имеет единственный корень х=1, поскольку графики функций у =√х и у =2-хпересекаются в одной точке А(1,1). Во втором случае графики функций у =√х-фс у =4-х также пересекаются в одной точке А(1,1), но с "плохими" координатами. С помощью чертежа, делаем вывод, что абсцисса точки В примерно равна 2,5. В таких случаях говорят не о точном, а о приближённом решении уравнения и записывают так: х≈2,5.

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

Функция одного действительного аргумента или однозначная функция;

Функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези) ;

Не дифференцируемая функция в точке (непрерывная ломаная линия не имеет касательной) ;

- целочисленная функция;

- чётная функция ;

- нечётная функция ;

Функция точки, расстояние от точки до начала (декартовых) координат;

Разрывная функция в точке ;

Параметрически заданная функция (график циклоиды) ;

Прямая и обратная функции;

Интегральное уравнение;

Ссылки

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Математическая формула" в других словарях:

    - (от лат. formula форма, правило, предписание): Математическая формула Формула в Microsoft Excel Химическая формула Эпическая формула Физическая формула Зубная формула Формула цветка Магическая формула Формула технических видов… … Википедия

    Формула произведения корангов математическая формула, выражающая коразмерность множества точек, в которых ядро производной отображения имеет заданную размерность, в виде произведения корангов данного отображения в прообразе и образе.… … Википедия

    Формула Грассмана математическая формула, описывающая размерность подпространства конечномерного пространства. Выведена немецким ученым Г. Г. Грассманом. Формулировка: Если линейное пространство V конечномерно, то конечномерными… … Википедия

    Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия

    Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия