Детектор элементарных частиц своими руками. Детекторы нейтронов и гамма-квантов

В гл. ХХIII мы познакомились с приборами, служащими для обнаружения микрочастиц,- камерой Вильсона, счетчиком сцинтилляций, газоразрядным счетчиком. Эти детекторы, хотя и применяются в исследованиях элементарных частиц, однако не всегда удобны. Дело в том, что наиболее интересные процессы взаимодействия, сопровождающиеся взаимными превращениями элементарных частиц, происходят весьма редко. Частица должна встретить на своем пути очень много нуклонов или электронов, чтобы произошло интересное столкновение. Практически она должна пройти в плотном веществе путь, измеряемый десятками сантиметров - метрами (yа таком пути заряженная частица с энергией в миллиарды электрон-вольт теряет вследствие ионизации только часть своей энергии).

Однако в камере Вильсона или газоразрядном счетчике чувствительный слой (в пересчете на плотное вещество) крайне тонок. В связи с этим получили применение некоторые другие методы регистрации частиц.

Очень плодотворным оказался фотографический метод. В специальных мелкозернистых фотоэмульсиях каждая заряженная частица, пересекающая эмульсию, оставляет след, который после проявления пластинки обнаруживается под микроскопом в виде цепочки черных зерен. По характеру следа, оставленного частицей в фотоэмульсии, можно установить природу этой частицы - ее заряд, массу, а также энергию. Фотографический метод удобен не только из-за того, что можно использовать толстые слон вещества, но и потому, что в фотопластинке, в отличие от камеры Вильсона, следы заряженных частиц не исчезают вскоре после пролета частицы. При изучении редко случающихся событий пластинки могут экспонироваться длительное время; это особенно полезно в исследованиях космических лучей. Примеры редких событии, запечатленных в фотоэмульсии, приведены выше на рис. 414, 415; особенно интересен рис. 418.

Другой замечательный метод основан на использовании свойств перегретых жидкостей (см. том I, § 299). При нагреве очень чистой жидкости до температуры, даже чуть большей температуры кипения, жидкость не вскипает, так как поверхностное натяжение препятствует образованию пузырьков пара. Американский физик Дональд Глезер (р. 1926) заметил в 1952г., что перегретая жидкость мгновенно вскипает при достаточно интенсивном -облучении; добавочная энергия, выделяемая в следах быстрых электронов, создаваемых в жидкости -излучением, обеспечивает условия для образования пузырьков.

На основе этого явления Глезер разработал так называемую жидкостную пузырьковую камеру. Жидкость при повышенном давлении нагревается до температуры, близкой, но меньшей температуры кипения. Затем давление, а с ним и температура кипения понижаются, и жидкость оказывается перегретой. Вдоль траектории заряженной частицы, пересекающей в этот момент жидкость, формируется след пузырьков пара. При подходящем освещении он может быть запечатлен фотоаппаратом. Как правило, пузырьковые камеры располагают между полюсами сильного электромагнита, магнитное поле искривляет траектории частиц. Измеряя длину следа частицы, радиус его кривизны, плотность пузырьков, можно установить характеристики частицы. Сейчас пузырьковые камеры достигли высокого совершенства; работают, например, камеры, заполненные жидким водородом, с чувствительным объемом в несколько кубических метров. Примеры фотографий следов частиц в пузырьковой камере приведены на рис. 416, 417, 419, 420.

Рис. 418. Превращения частиц, зафиксированные в стопке фотоэмульсий, облученной космическими лучами. В точке невидимая быстрая нейтральная частица вызвала расщепление одного из ядер фотоэмульсии и образовала мезоны («звезда» из 21 следа). Один из мезонов, -мезон, пройдя путь около (на снимке приведены лишь начало и конец следа; при использованном на фотографии увеличении длина всего следа была бы ), остановился в точке и распался по схеме . -мезон, след которого направлен вниз, в точке захватился ядром , вызвав его расщепление. Одним из осколков расщепления было ядро , которое путем -распада превратилось в ядро , мгновенно распадающееся на две летящие в противоположные стороны -частнцы - на снимке они образуют «молоток». -мезон, остановившись, превратился в -мюон (и нейтрино) (точка ). Окончание следа -мюона приведено в правом верхнем углу рисунка; виден след позитрона, образованного при распаде .

Рис. 419. Образование и распад -гиперонов. В водородной пузырьковой камере, находившейся в магнитном поле и облученной антипротонами, зафиксирована реакция . Она произошла в точке окончания следа (см. схему в верхней части рисунка). Нейтральные лямбда- и антилямбда-гипероны, пролетев без образования следа небольшой путь, распадаются по схемам . Антипротон аннигилирует с протоном, образуя два и два -мезона

Через наше тело каждую секунду пролетают десятки тысяч элементарных частиц из космоса - мюонов, электронов, нейтрино и так далее. Мы их не чувствуем и не видим, но это не значит, что их нет. И не значит, что их нельзя зафиксировать. Мы предлагаем читателям N + 1 своими руками собрать устройство, которое позволит вам «увидеть» этот непрерывный космический дождь.

«Настоящие» детекторы частиц, например те, что стоят на Большом адронном коллайдере, стоят миллионы долларов и весят сотни тонн, но мы попробуем обойтись значительно более скромным бюджетом.

Нам понадобятся:

  • сухой лед (примерно 80 рублей за килограмм, желательно купить пенопластовый термоконтейнер еще за 300 рублей - иначе все, что вы купили, испарится слишком быстро). Очень много сухого льда не нужно, килограмма хватит;
  • изопропиловый спирт (стоит 370 рублей за 0,5 литра, продается в магазинах радиотехники);
  • кусок фетра (швейный магазин, около 150 рублей);
  • клей, чтобы приклеить фетр к дну контейнера («Момент», 150 рублей);
  • прозрачный контейнер, например пластмассовый аквариум с крышкой (мы купили пищевой контейнер из твердого пластика за 1,5 тысячи рублей);
  • подставка под сухой лед, это может быть фотографическая кювета (нашлась на редакционной кухне);
  • фонарик.

Итак, приступаем. Сперва нужно приклеить кусок фетра на дно контейнера и подождать несколько часов, пока клей высохнет. После этого фетр нужно пропитать изопропиловым спиртом (следите, чтобы спирт не попал в глаза!). Желательно, чтобы фетр полностью пропитался спиртом, остаток которого потом надо слить. Затем на дно кюветы нужно высыпать сухой лед, закрыть контейнер крышкой и поставить его в сухой лед крышкой вниз. Теперь нужно подождать, чтобы воздух внутри камеры насытился парами спирта.

Принцип работы камеры Вильсона (она же «туманная камера») состоит в том, что даже очень слабое воздействие заставляет насыщенный пар спирта конденсироваться. В результате даже воздействие космических частиц заставляет пар конденсироваться, и в камере формируются цепочки микроскопических капель - треки.

Посмотреть на эксперимент можно на нашем видео:


Несколько замечаний из опыта: не стоит покупать слишком много сухого льда - он испарится полностью меньше чем за сутки даже их термоконтейнера, а промышленный холодильник найдется у вас навряд ли. Нужно, чтобы крышка прозрачного контейнера была черной, например, можно закрыть его снизу черным стеклом. На черном фоне лучше будут видны треки. Смотреть нужно именно в нижнюю часть контейнера, там образуется характерный туман, похожий на моросящий дождь. В этом тумане и возникают треки частиц.

Какие треки можно увидеть:


Symmetry Magazine

Это не космические частицы. Короткие и толстые треки - следы альфа-частиц, испускаемых атомами радиоактивного газа радона, который непрерывно просачивается из недр Земли (и накапливается в непроветриваемых помещениях).


Symmetry Magazine

Длинные узкие треки оставляют мюоны - тяжелые (и короткоживущие) родственники электронов. Они рождаются во множестве в верхних слоях атмосферы, когда частицы высоких энергий сталкиваются с атомами и порождают целые ливни частиц, в основном состоящие из мюонов.

Детектор элементарных частиц , детектор ионизирующего излучения в экспериментальной физике элементарных частиц - устройство, предназначенное для обнаружения и измерения параметров элементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях .

Основные типы [ | ]

Устаревшие

Детекторы для радиационной защиты

Детекторы для ядерной физики и физики элементарных частиц

  • Годоскопические камеры
  • Счетчики
  • Трековые детекторы
  • Масс-анализаторы

Детекторы для экспериментов на встречных пучках [ | ]

В физике элементарных частиц понятие «детектор» относится не только к различного типа датчикам для регистрации частиц, но и к большим установкам, созданным на их основе и включающим в себя также инфраструктуру для поддержания их работоспособности (криогенные системы, системы кондиционирования, электропитания), электронику для считывания и первичной обработки данных, вспомогательные системы (напр. сверхпроводящие соленоиды для создания внутри установки магнитного поля). Как правило, такие установки сейчас создаются большими международными группами.

Поскольку постройка большой установки требует значительных финансовых затрат и человеческих усилий, в большинстве случаев она применяется не для одной определенной задачи, а для целого спектра различных измерений. Основными требованиями, предъявляемыми к современному детектору для экспериментов на ускорителе являются:

Для специфических задач могут потребоваться дополнительные требования, например, для экспериментов, измеряющих CP-нарушение в системе B-мезонов важную роль играет координатное разрешение в области взаимодействия пучков.

Условное изображение многослойного универсального детектора для ускорителя на встречных пучках.

Необходимость выполнения этих условий приводит к типичной на сегодняшний день схеме универсального многослойного детектора. В англоязычной литературе такую схему принято сравнивать с луковицей (onion-like structure). В направлении от центра (области взаимодействия пучков) к периферии типичный детектор для ускорителя на встречных пучках состоит из следующих систем:

Трековая система [ | ]

Трековая система предназначена для регистрации траектории прохождения заряженной частицы: координат области взаимодействия, углов вылета. В большинстве детекторов трековая система помещена в магнитное поле, что приводит к искривлению траекторий движения заряженных частиц и позволяет определить их импульс и знак заряда.

Трековая система обычно выполняется на основе или полупроводниковых кремниевых детекторов.

Система идентификации [ | ]

Система идентификации позволяет отделить друг от друга различные типы заряженных частиц. Принцип работы систем идентификации чаще всего заключается в измерении скорости пролета частицы одним из трех способов:

Совместно с измерением импульса частицы в трековой системе это дает информацию о массе, а, следовательно, и о типе частицы.

Калориметр [ | ]

Список работающих или строящихся детекторов для ускорителей на встречных пучках [ | ]

Прикладное применение [ | ]

Помимо научных экспериментов, детекторы элементарных частиц находят применение и в прикладных задачах - в медицине (рентгеновские аппараты с малой дозой облучения,

Как и в любом физическом эксперименте, при изучении элементарных частиц требуется сначала поставить эксперимент, а потом зарегистрировать его результаты. Постановкой эксперимента (столкновением частиц) занимается ускоритель, а результаты столкновений изучаются с помощью детекторов элементарных частиц .

Для того чтобы восстановить картину столкновения, требуется не просто узнать, какие частицы родились, но и с большой точностью измерить их характеристики, прежде всего траекторию, импульс и энергию. Всё это измеряется с помощью разных типов детекторов, которые концентрическими слоями окружают место столкновения частиц.

Детекторы элементарных частиц можно разбить на две группы: трековые детекторы , которые измеряют траекторию частиц, и калориметры , которые измеряют их энергии. Трековые детекторы стараются проследить за движением частиц, не внося при этом никаких искажений. Калориметры, наоборот, должны полностью поглотить частицу, чтобы измерить ее энергию. В результате возникает стандартная компоновка современного детектора: внутри расположено несколько слоев трековых детекторов, а снаружи - несколько слоев калориметров, а также специальные мюонные детекторы . Общий вид типичного современного детектора показан на рис. 1.

Ниже кратко описаны строение и принцип работы основных компонентов современных детекторов. Акцент сделан на некоторых, самых общих принципах детектирования. Устройство конкретных детекторов, работающих на Большом адронном коллайдере, см. на странице Детекторы на LHC .

Трековые детекторы

Трековые детекторы восстанавливают траекторию частицы. Они обычно расположены в области магнитного поля, и тогда по искривлению траектории частицы можно определить ее импульс.

Работа трековых детекторов основана на том, что пролетающая заряженная частица создает ионизационный след - то есть она выбивает электроны из атомов на пути своего движения. При этом интенсивность ионизации зависит как от типа частицы, так и от материала детектора. Свободные электроны собираются электроникой, сигнал с которой сообщает о координатах частиц.

Вершинный детектор

Вершинный (микровершинный, пиксельный) детектор - это многослойный полупроводниковый детектор, состоящий из отдельных тонких пластинок с нанесенной прямо на них электроникой. Это самый внутренний слой детекторов: начинается он обычно сразу за пределами вакуумной трубы (иногда первый слой монтируется прямо на внешней стенке вакуумной трубы) и занимает в радиальном направлении первые несколько сантиметров. В качестве полупроводникового материала обычно выбирается кремний из-за его высокой радиационной стойкости (внутренние слои детектора подвержены огромным дозам жесткой радиации).

По сути, вершинный детектор работает так же, как матрица цифрового фотоаппарата. Когда заряженная частица пролетает сквозь эту пластинку, она оставляет в ней след - облачко ионизации размером в несколько десятков микрон. Эта ионизация считывается электронным элементом непосредственно под пикселем. Узнав координаты точек пересечения частицы с несколькими идущими подряд пластинками пиксельного детектора, можно восстановить трехмерные траектории частиц и проследить их назад, внутрь трубы. Через пересечение таких восстановленных траекторий в какой-то точке в пространстве восстанавливается вершина - та точка, в которой эти частицы родились.

Иногда оказывается, что таких вершин несколько, причем одна из них обычно лежит прямо на оси столкновения встречных пучков (первичная вершина), а вторая - поодаль. Это обычно означает, что в первичной вершине столкнулись протоны и сразу породили несколько частиц, но некоторые из них успели пролететь какую-то дистанцию, прежде чем распасться на дочерние частицы.

В современных детекторах точность восстановления вершины достигает 10 микрон. Это позволяет надежно регистрировать случаи, когда вторичные вершины отстоят от оси столкновений на 100 микрон. Как раз на такие дистанции отлетают разнообразные метастабильные адроны, имеющие в своем составе c- или b-кварк (так называемые «очарованные» и «прелестные» адроны). Поэтому вершинный детектор является важнейшим инструментом детектора LHCb , главной задачей которого как раз будет изучение этих адронов.

По похожему принципу работают и полупроводниковые микрополосковые детекторы , в которых вместо маленьких пикселей используются тончайшие, но довольно длинные полоски чувствительного материала. В них ионизация не оседает тут же, а смещается вдоль полоски и считывается на ее конце. Полоски конструируются с таким расчетом, чтобы скорость смещения облачка заряда по ней была постоянной и чтобы оно не расплывалось. Поэтому, зная момент прихода заряда на считывающий элемент, можно вычислить координаты той точки, где заряженная частица пронзила полоску. Пространственное разрешение у микрополосковых детекторов хуже, чем у пиксельных, но ими зато можно покрыть намного бо льшую площадь, поскольку они не требуют столь большого числа считывающих элементов.

Дрейфовые камеры

Дрейфовые камеры - это газонаполненные камеры, которые ставятся снаружи полупроводниковых трековых детекторов, там, где уровень радиации относительно низкий и не требуется столь большая точность определения координат, как у полупроводниковых детекторов.

Классическая дрейфовая камера - это заполненная газом трубка, внутри которой натянуто много тончайших проволочек. Работает она наподобие вершинного детектора, но только не на плоской пластинке, а в объеме. Все проволочки находятся под напряжением, а их расположение выбрано таким образом, чтобы в пространстве между двумя массивами проволочек возникало однородное электрическое поле. Когда заряженная частица пролетает сквозь газовую камеру, она оставляет пространственный ионизационный след. Под действием электрического поля ионизация (прежде всего, электроны) движется с постоянной скоростью (физики говорят «дрейфует») вдоль линий поля по направлению к проволочкам-анодам. Достигнув края камеры, ионизация тут же поглощается электроникой, которая передает на выход сигнальный импульс. Поскольку считывающих элементов очень много, по сигналам с них можно с хорошей точностью восстановить координаты пролетевшей частицы, а значит, и траекторию.

Обычно количество ионизации, которое создает в газовой камере пролетающая частица, невелико. Для того чтобы увеличить надежность сбора и регистрации заряда и уменьшить погрешность его измерения, требуется усилить сигнал еще до регистрации его электроникой. Делается это с помощью специальной сети анодных и катодных проволочек, натянутых вблизи считывающей аппаратуры. Проходя вблизи анодной проволочки, облачко электронов порождает на ней лавину, в результате которой электронный сигнал многократно усиливается.

Чем сильнее магнитное поле и чем больше размеры самого детектора, тем сильнее траектория частицы отклоняется от прямой, а значит, тем надежнее можно измерить ее радиус кривизны и восстановить отсюда импульс частицы. Поэтому для изучения реакций с частицами очень высоких энергий, в сотни ГэВ и ТэВы, желательно построить детекторы побольше и использовать магнитные поля посильнее. По чисто инженерным причинам обычно удается увеличить только одну из этих величин в ущерб другой. Два крупнейших детектора на LHC - ATLAS и CMS - как раз отличаются тем, какая из этих величин оптимизирована. У детектора ATLAS побольше размеры, но поменьше поле, в то время как в детекторе CMS сильнее поле, но в целом он более компактен.

Время-проекционная камера

Особый тип дрейфовой камеры - это так называемая время-проекционная камера (ВПК). По сути дела, ВПК - это одна большая, размером в несколько метров, цилиндрическая дрейфовая ячейка. Во всём ее объеме создано однородное электрическое поле вдоль оси цилиндра. Весь закрученный ионизационный след, который оставляют частицы при пролете сквозь эту камеру, равномерно дрейфует к торцам цилиндра, сохраняя свою пространственную форму. Траектории как бы «проецируются» на торцы камеры, где большой массив из считывающих элементов регистрирует приход заряда. Радиальная и угловая координаты определяются по номеру датчика, а координата вдоль оси цилиндра - по времени прихода сигнала. Благодаря этому удается восстановить трехмерную картину движения частиц.

Среди работающих на LHC экспериментов время-проекционную камеру использует детектор ALICE .

Детекторы Roman Pots

Существует особый тип полупроводниковых пиксельных детекторов, которые работают прямо внутри вакуумной трубы , в непосредственной близости к пучку. Впервые их предложила в 1970-е годы исследовательская группа из Рима, и за ними с тех пор закрепилось название Roman Pots («римские горшочки»).

Детекторы Roman Pots были разработаны для детектирования частиц, отклонившихся в процессе столкновения на очень малые углы. Обычные детекторы, располагающиеся снаружи вакуумной трубы, здесь непригодны просто потому, что частица, испущенная под очень малым углом, может многие километры лететь внутри вакуумной трубы, поворачивая вместе с основным пучком и не выходя наружу. Для того чтобы зарегистрировать такие частицы, приходится ставить маленькие детекторы внутри вакуумной трубы поперек оси пучка, но не задевая при этом сам пучок.

Для этого на определенном участке ускорительного кольца, обычно на расстоянии сотни метров от места столкновения встречных пучков, вставляется специальный участок вакуумной трубы с поперечными «рукавами». В них на подвижных платформах размещены небольшие, размером несколько сантиметров, пиксельные детекторы. Когда пучок только впрыснут, он еще нестабилен и имеет большие поперечные колебания. Детекторы в это время прячутся внутри рукавов для того, чтобы избежать повреждений при прямом попадании пучка. После того как пучок стабилизируется, платформы выдвигаются из своих рукавов и пододвигают чувствительные матрицы детекторов Roman Pots в непосредственную близость к пучку, на расстояние 1-2 миллиметра. В конце очередного цикла ускорителя, перед сбросом старого пучка и инжекцией нового, детекторы вновь втягиваются в свои рукава и ждут очередного сеанса работы.

Пиксельные детекторы, используемые в Roman Pots, отличаются от обычных вершинных детекторов тем, что в них максимизирована доля поверхности пластины, занятая чувствительными элементами. В частности, на той кромке пластины, которая ближе всего подносится к пучку, практически отсутствует нечувствительная «мертвая» зона (“edgeless” -технология).

Один из экспериментов на Большом адронном коллайдере, TOTEM , как раз будет использовать несколько таких детекторов. Еще несколько подобных проектов находятся в разработке. Вершинный детектор эксперимента LHCb тоже несет в себе некоторые элементы этой технологии.

Подробнее про эти детекторы можно прочитать в статье Roman pots for the LHC из журнала CERN Courier или в технической документации эксперимента TOTEM .

Калориметры

Калориметры измеряют энергию элементарных частиц. Для этого на пути частиц ставят толстый слой плотного вещества (обычно тяжелого металла - свинца, железа, латуни). Частица в нём сталкивается с электронами или ядрами атомов и порождает в результате поток вторичных частиц - ливень . Энергия исходной частицы распределяется между всеми частицами ливня, так что энергия каждой отдельной частицы в этом ливне становится небольшой. В результате ливень застревает в толще вещества, его частицы поглощаются и аннигилируют, и некоторая, вполне определенная, доля энергии выделяется в виде света. Эта вспышка света собирается на торцах калориметра фотоумножителями, которые превращают ее в электрический импульс. Кроме того, энергию ливня можно измерить, собирая ионизацию чувствительными пластинками.

Электроны и фотоны, проходя через вещество, сталкиваются в основном с электронными оболочками атомов и порождают электромагнитный ливень - поток из большого числа электронов, позитронов и фотонов. Такие ливни быстро развиваются на небольшой глубине и обычно поглощаются в слое вещества толщиной несколько десятков сантиметров. Высокоэнергетические адроны (протоны, нейтроны, пи-мезоны и К-мезоны) теряют энергию преимущественно за счет столкновений с ядрами. При этом порождается адронный ливень, который проникает гораздо глубже в толщу вещества, чем электромагнитный, и к тому же он более широкий. Поэтому для того, чтобы полностью поглотить адронный ливень от частицы очень высокой энергии, требуется один-два метра вещества.

Различие характеристик электромагнитный и адронных ливней максимально используется в современных детекторах. Калориметры часто делают двухслойными: внутри расположены электромагнитные калориметры , в которых поглощаются преимущественно электромагнитные ливни, а снаружи - адронные калориметры , до которых «достают» только адронные ливни. Таким образом, калориметры не только измеряют энергию, но и определяют «тип энергии» - является ли она электромагнитного или адронного происхождения. Это очень важно для правильного понимания произошедшего в центре детектора столкновения протонов.

Для регистрации ливня оптическим способом вещество калориметра должно обладать сцинтилляционными свойствами. В сцинтилляторе фотоны одной длины волны поглощаются очень эффективно, приводя к возбуждению молекул вещества, и это возбуждение снимается за счет испускания фотонов более низкой энергии. Для излученных фотонов сцинтиллятор уже прозрачен, и поэтому они могут долететь до края калориметрической ячейки. В калориметрах используются стандартные, давно изученные сцинтилляторы, для которых хорошо известно, какая часть от энергии исходной частицы превращается в оптическую вспышку.

Для эффективного поглощения ливней требуется использовать как можно более плотное вещество. Имеется два способа, как совместить это требование с требованиями к сцинтилляторам. Во-первых, можно выбрать очень тяжелые сцинтилляторы и заполнить ими калориметр. Во-вторых, можно сделать «слойку» из чередующихся пластин тяжелого вещества и легкого сцинтиллятора. Имеются и более экзотические варианты устройства калориметров, например «спагетти"-калориметры, в которых в матрицу из массивного поглотителя внедрено множество тонких кварцевых оптоволокон. Ливень, развиваясь вдоль такого калориметра, создает в кварце черенковский свет, который выводится по оптоволокнам на торец калориметра.

Точность восстановления энергии частицы в калориметре улучшается с ростом энергии. Для частиц с энергиями в сотни ГэВ погрешность составляет порядка процента для электромагнитных калориметров и несколько процентов - для адронных.

Мюонные камеры

Характерная особенность мюонов заключается в том, что они очень медленно теряют энергию при движении сквозь вещество. Так происходит из-за того, что они, с одной стороны, очень тяжелые, поэтому не могут эффективно передавать энергию электронам при столкновении, а во-вторых, они не участвуют в сильном взаимодействии, поэтому они слабо рассеиваются на ядрах. В результате мюоны могут пролететь до момента своей остановки многие метры вещества, проникнув туда, куда не долетают никакие другие частицы.

Это, с одной стороны, делает невозможным измерение энергии мюонов с помощью калориметров (ведь полностью мюон поглотить не удастся), но с другой стороны, позволяет хорошо отличать мюоны от других частиц. В современных детекторах мюонные камеры расположены в самых внешних слоях детектора, часто даже снаружи массивного металлического ярма, создающего магнитное поле в детекторе. Такие трубки измеряют не энергию, а импульс мюонов, и при этом можно с хорошей достоверностью считать, что эти частицы - именно мюоны, а не что-либо еще. Имеется несколько разновидностей мюонных камер, используемых для разных целей.

Идентификация частиц

Отдельный вопрос - это идентификация частиц , то есть выяснение того, что за частица пролетела сквозь детектор. Это не составило бы труда, знай мы массу частицы, но как раз ее мы обычно и не знаем. С одной стороны, массу в принципе можно вычислить по формулам релятивистской кинематики, зная энергию и импульс частицы, но, к сожалению, погрешности в их измерении обычно столь велики, что не позволяют отличить, например, пи-мезон от мюона из-за близости их масс.

В этой ситуации имеется четыре основных метода идентификации частиц:

  • По отклику в разных типах калориметрах и в мюонных трубках.
  • По энерговыделению в трековых детекторах. Разные частицы производят разное количество ионизации на сантиметр пути, и ее можно измерить по силе сигнала с трековых детекторов.
  • С помощью черенковских счетчиков . Если частица летит сквозь прозрачный материал с коэффициентом преломления n со скоростью больше, чем скорость света в этом материале (то есть больше, чем c/n ), то она испускает черенковское излучение в строго определенных направлениях. Если в качестве вещества детектора взять аэрогель (типичный показатель преломления n = 1,03), то черенковское излучение от частиц, движущихся со скоростью 0,99·c и 0,995·c , будет существенно различаться.
  • С помощью времяпролетных камер . В них с помощью детекторов с очень высоким временным разрешением измеряется время пролета частицей определенного участка камеры и из этого вычисляется ее скорость.

У каждого из этих методов есть свои сложности и погрешности, поэтому идентификация частиц обычно не бывает гарантированно правильной. Иногда программа обработки «сырых» данных с детектора может прийти к выводу, что в детекторе пролетел мюон, хотя на самом деле это был пион. Полностью избавиться от таких погрешностей невозможно. Остается лишь тщательно изучать детектор перед работой (например, с помощью космических мюонов), выяснить процент случаев неверной идентификации частиц и уже в дальнейшем при обработке реальных данных всегда его принимать в расчет.

Требования к детекторам

Современные детекторы элементарных частиц иногда называют «большими братьями» цифровых фотоаппаратов. Однако стоит помнить, что условия эксплуатации фотоаппарата и детектора кардинально различаются.

Прежде всего, все элементы детектора должны быть очень быстрыми и очень точно синхронизованными друг с другом. На Большом адронном коллайдере в пике производительности сгустки будут сталкиваться 40 миллионов раз в секунду. В каждом столкновении будет происходить рождение частиц, которые оставят свою «картинку» в детекторе, и детектор должен не «захлебнуться» этим потоком «снимков». В результате за 25 наносекунд требуется собрать всю ионизацию, которую оставили пролетевшие частицы, превратить ее в электрические сигналы, а также очистить детектор, подготовив его к очередной порции частиц. За 25 наносекунд частицы пролетают всего 7,5 метров, что сопоставимо с размерами крупных детекторов. Пока во внешних слоях детектора собирается ионизация от пролетевших частиц, сквозь его внутренние слои уже летят частицы из следующего столкновения!

Второе ключевое требование к детектору - радиационная стойкость . Элементарных частицы, разлетающиеся от места столкновения сгустков, - это самая настоящая радиация, причем очень жесткая. Например, ожидаемая поглощенная доза ионизирующей радиации, которую получит вершинный детектор за время работы, составляет 300 килогрей плюс суммарный нейтронный поток 5·10 14 нейтронов на см 2 . В этих условиях детектор должен работать годами и при этом оставаться исправным. Это касается не только материалов самого детектора, но и электроники, которой он напичкан. На создание и тестирование отказоустойчивой электроники, которая будет работать в столь радиационно жестких условиях, ушло несколько лет.

Еще одно требование к электронике - низкое энерговыделение . Внутри многометровых детекторов нет свободного места - каждый кубический сантиметр объема заполнен полезной аппаратурой. Система охлаждения неизбежно отбирает рабочий объем детектора - ведь если частица пролетит прямо сквозь охлаждающую трубу, она просто не будет зарегистрирована. Поэтому энерговыделение от электроники (а это сотни тысяч отдельных плат и проводов, снимающих информацию со всех компонентов детектора) должно быть минимальным.

Дополнительная литература:

  • К. Групен. «Детекторы элементарных частиц» // Сибирский Хронограф, Новосибирск, 1999.
  • Particle Detectors (PDF, 1,8 Мб).
  • Детекторы частиц // глава из учебного пособия Б. С. Ишханов, И. М. Капитонов, Э. И. Кэбин. «Частицы и ядра. Эксперимент». М.: Издательство МГУ, 2005.
  • Н. М. Никитюк. Прецизионные микровершинные детекторы (PDF, 2,9 Мб) // ЭЧАЯ, т. 28, вып. 1, стр.191–242 (1997).

Детекторы для радиационной защиты

Детекторы для ядерной физики и физики элементарных частиц

  • Детектор черенковского излучения
  • Газовый ионизационный детектор

Детекторы для экспериментов на встречных пучках

В физике элементарных частиц понятие «детектор» относится не только к различного типа датчикам для регистрации частиц, но и к большим установкам, созданным на их основе и включающим в себя также инфраструктуру для поддержания их работоспособности (криогенные системы, системы кондиционирования, электропитания), электронику для считывания и первичной обработки данных, вспомогательные системы (напр. сверхпроводящие соленоиды для создания внутри установки магнитного поля). Как правило, такие установки сейчас создаются большими международными группами.

Поскольку постройка большой установки требует значительных финансовых затрат и человеческих усилий, в большинстве случаев она применяется не для одной определенной задачи, а для целого спектра различных измерений. Основными требованиями, предъявляемыми к современному детектору для экспериментов на ускорителе являются:

  • Высокая эффективность (малый процент потерянных частиц или частиц с плохо определенными параметрами)
  • Способность к разделению различных типов частиц, образующихся в распаде (пионов , каонов , протонов и т. д.)
  • Способность точного измерения импульса заряженных частиц для восстановления инвариантной массы нестабильных состояний.
  • Способность точного измерения энергии фотонов .

Для специфических задач могут потребоваться дополнительные требования, например, для экспериментов, измеряющих CP-нарушение в системе B-мезонов важную роль играет координатное разрешение в области взаимодействия пучков.

Необходимость выполнения этих условий приводит к типичной на сегодняшний день схеме универсального многослойного детектора. В англоязычной литературе такую схему принято сравнивать с луковицей (onion-like structure). В направлении от центра (области взаимодействия пучков) к периферии типичный детектор для ускорителя на встречных пучках состоит из следующих систем:

Трековая система

Трековая система предназначена для регистрации траектории прохождения заряженной частицы: координат области взаимодействия, углов вылета. В большинстве детекторов трековая система помещена в магнитное поле, что приводит к искривлению траекторий движения заряженных частиц и позволяет определить их импульс и знак заряда.

Трековая система обычно выполняется на основе газовых ионизационных детекторов или полупроводниковых кремниевых детекторов.

Система идентификации

Система идентификации позволяет отделить друг от друга различные типы заряженных частиц. Принцип работы систем идентификации чаще всего заключается в измерении скорости пролета частицы одним из трех способов:

  • по углу излучения черенковского света в специальном радиаторе (а также по самому факту наличия или отсутствия черенковского излучения),
  • по времени пролета до точки регистрации,
  • по плотности удельной ионизации вещества.

Совместно с измерением импульса частицы в трековой системе это дает информацию о массе, а, следовательно, и о типе частицы.

Калориметр

Список работающих или строящихся детекторов для ускорителей на встречных пучках

  • Детекторы на коллайдере LHC (CERN)
  • Детекторы на коллайдере Tevatron
  • Детекторы на электрон-позитронных коллайдерах
    • BaBar (коллайдер PEP-II, SLAC)
    • Belle (коллайдер KEKB, KEK)
    • BES (коллайдер BEPC, Пекин)
    • CLEO (коллайдер CESR)
    • КЕДР (коллайдер ВЭПП-4, Новосибирск)
    • КМД, СНД (коллайдер ВЭПП-2М, ВЭПП-2000 , Новосибирск)

Прикладное применение

Помимо научных экспериментов, детекторы элементарных частиц находят применение и в прикладных задачах - в медицине (рентгеновские аппараты с малой дозой облучения, томографы , лучевая терапия), материаловедении (дефектоскопия), для предполетного досмотра пассажиров и багажа в аэропортах.

Напишите отзыв о статье "Детектор элементарных частиц"

Литература

  • K. Групен. Детекторы элементарных частиц. Новосибирск. Сибирский хронограф, 1999.
  • Grupen, C. (June 28-July 10 1999). "Physics of Particle Detection". AIP Conference Proceedings, Instrumentation in Elementary Particle Physics, VIII 536 : 3–34, Istanbul: Dordrecht, D. Reidel Publishing Co.. DOI :.
  • Полупроводниковые детекторы в дозиметрии ионизирующих излучений / В. К. Ляпидевский.. - М .: Атомиздат, 1973. - 179 с.
  • Николаев, В. А. Твердотельные трековые детекторы в радиационных исследованиях / Николаев, В. А.. - СПб. : Изд-во Политехн. ун-та, 2012. - 284 с. - ISBN 978-5-7422-3530-9 .
  • Пропорциональные и дрейфовые камеры / Международное совещание по методике проволочных камер (17 - 20 июня 1975 ; Дубна) .. - Шаблон:Дубна : Изд-во Объед. инст. яд. исслед., 1975. - 344 с. - ISBN 978-5-7422-3530-9 .
  • Акимов, Ю. К. Газовые детекторы ядерных излучений. - Шаблон:Дубна. : ОИЯИ, 2011. - 243 с. - ISBN 978-5-9530-0272-1 .

Отрывок, характеризующий Детектор элементарных частиц

– Такая странная антипатия, – думал Пьер, – а прежде он мне даже очень нравился.
В глазах света Пьер был большой барин, несколько слепой и смешной муж знаменитой жены, умный чудак, ничего не делающий, но и никому не вредящий, славный и добрый малый. В душе же Пьера происходила за всё это время сложная и трудная работа внутреннего развития, открывшая ему многое и приведшая его ко многим духовным сомнениям и радостям.

Он продолжал свой дневник, и вот что он писал в нем за это время:
«24 ro ноября.
«Встал в восемь часов, читал Св. Писание, потом пошел к должности (Пьер по совету благодетеля поступил на службу в один из комитетов), возвратился к обеду, обедал один (у графини много гостей, мне неприятных), ел и пил умеренно и после обеда списывал пиесы для братьев. Ввечеру сошел к графине и рассказал смешную историю о Б., и только тогда вспомнил, что этого не должно было делать, когда все уже громко смеялись.
«Ложусь спать с счастливым и спокойным духом. Господи Великий, помоги мне ходить по стезям Твоим, 1) побеждать часть гневну – тихостью, медлением, 2) похоть – воздержанием и отвращением, 3) удаляться от суеты, но не отлучать себя от а) государственных дел службы, b) от забот семейных, с) от дружеских сношений и d) экономических занятий».
«27 го ноября.
«Встал поздно и проснувшись долго лежал на постели, предаваясь лени. Боже мой! помоги мне и укрепи меня, дабы я мог ходить по путям Твоим. Читал Св. Писание, но без надлежащего чувства. Пришел брат Урусов, беседовали о суетах мира. Рассказывал о новых предначертаниях государя. Я начал было осуждать, но вспомнил о своих правилах и слова благодетеля нашего о том, что истинный масон должен быть усердным деятелем в государстве, когда требуется его участие, и спокойным созерцателем того, к чему он не призван. Язык мой – враг мой. Посетили меня братья Г. В. и О., была приуготовительная беседа для принятия нового брата. Они возлагают на меня обязанность ритора. Чувствую себя слабым и недостойным. Потом зашла речь об объяснении семи столбов и ступеней храма. 7 наук, 7 добродетелей, 7 пороков, 7 даров Святого Духа. Брат О. был очень красноречив. Вечером совершилось принятие. Новое устройство помещения много содействовало великолепию зрелища. Принят был Борис Друбецкой. Я предлагал его, я и был ритором. Странное чувство волновало меня во всё время моего пребывания с ним в темной храмине. Я застал в себе к нему чувство ненависти, которое я тщетно стремлюсь преодолеть. И потому то я желал бы истинно спасти его от злого и ввести его на путь истины, но дурные мысли о нем не оставляли меня. Мне думалось, что его цель вступления в братство состояла только в желании сблизиться с людьми, быть в фаворе у находящихся в нашей ложе. Кроме тех оснований, что он несколько раз спрашивал, не находится ли в нашей ложе N. и S. (на что я не мог ему отвечать), кроме того, что он по моим наблюдениям не способен чувствовать уважения к нашему святому Ордену и слишком занят и доволен внешним человеком, чтобы желать улучшения духовного, я не имел оснований сомневаться в нем; но он мне казался неискренним, и всё время, когда я стоял с ним с глазу на глаз в темной храмине, мне казалось, что он презрительно улыбается на мои слова, и хотелось действительно уколоть его обнаженную грудь шпагой, которую я держал, приставленною к ней. Я не мог быть красноречив и не мог искренно сообщить своего сомнения братьям и великому мастеру. Великий Архитектон природы, помоги мне находить истинные пути, выводящие из лабиринта лжи».
После этого в дневнике было пропущено три листа, и потом было написано следующее:
«Имел поучительный и длинный разговор наедине с братом В., который советовал мне держаться брата А. Многое, хотя и недостойному, мне было открыто. Адонаи есть имя сотворившего мир. Элоим есть имя правящего всем. Третье имя, имя поизрекаемое, имеющее значение Всего. Беседы с братом В. подкрепляют, освежают и утверждают меня на пути добродетели. При нем нет места сомнению. Мне ясно различие бедного учения наук общественных с нашим святым, всё обнимающим учением. Науки человеческие всё подразделяют – чтобы понять, всё убивают – чтобы рассмотреть. В святой науке Ордена всё едино, всё познается в своей совокупности и жизни. Троица – три начала вещей – сера, меркурий и соль. Сера елейного и огненного свойства; она в соединении с солью, огненностью своей возбуждает в ней алкание, посредством которого притягивает меркурий, схватывает его, удерживает и совокупно производит отдельные тела. Меркурий есть жидкая и летучая духовная сущность – Христос, Дух Святой, Он».
«3 го декабря.
«Проснулся поздно, читал Св. Писание, но был бесчувствен. После вышел и ходил по зале. Хотел размышлять, но вместо того воображение представило одно происшествие, бывшее четыре года тому назад. Господин Долохов, после моей дуэли встретясь со мной в Москве, сказал мне, что он надеется, что я пользуюсь теперь полным душевным спокойствием, несмотря на отсутствие моей супруги. Я тогда ничего не отвечал. Теперь я припомнил все подробности этого свидания и в душе своей говорил ему самые злобные слова и колкие ответы. Опомнился и бросил эту мысль только тогда, когда увидал себя в распалении гнева; но недостаточно раскаялся в этом. После пришел Борис Друбецкой и стал рассказывать разные приключения; я же с самого его прихода сделался недоволен его посещением и сказал ему что то противное. Он возразил. Я вспыхнул и наговорил ему множество неприятного и даже грубого. Он замолчал и я спохватился только тогда, когда было уже поздно. Боже мой, я совсем не умею с ним обходиться. Этому причиной мое самолюбие. Я ставлю себя выше его и потому делаюсь гораздо его хуже, ибо он снисходителен к моим грубостям, а я напротив того питаю к нему презрение. Боже мой, даруй мне в присутствии его видеть больше мою мерзость и поступать так, чтобы и ему это было полезно. После обеда заснул и в то время как засыпал, услыхал явственно голос, сказавший мне в левое ухо: – „Твой день“.
«Я видел во сне, что иду я в темноте, и вдруг окружен собаками, но иду без страха; вдруг одна небольшая схватила меня за левое стегно зубами и не выпускает. Я стал давить ее руками. И только что я оторвал ее, как другая, еще большая, стала грызть меня. Я стал поднимать ее и чем больше поднимал, тем она становилась больше и тяжеле. И вдруг идет брат А. и взяв меня под руку, повел с собою и привел к зданию, для входа в которое надо было пройти по узкой доске. Я ступил на нее и доска отогнулась и упала, и я стал лезть на забор, до которого едва достигал руками. После больших усилий я перетащил свое тело так, что ноги висели на одной, а туловище на другой стороне. Я оглянулся и увидал, что брат А. стоит на заборе и указывает мне на большую аллею и сад, и в саду большое и прекрасное здание. Я проснулся. Господи, Великий Архитектон природы! помоги мне оторвать от себя собак – страстей моих и последнюю из них, совокупляющую в себе силы всех прежних, и помоги мне вступить в тот храм добродетели, коего лицезрения я во сне достигнул».
«7 го декабря.
«Видел сон, будто Иосиф Алексеевич в моем доме сидит, я рад очень, и желаю угостить его. Будто я с посторонними неумолчно болтаю и вдруг вспомнил, что это ему не может нравиться, и желаю к нему приблизиться и его обнять. Но только что приблизился, вижу, что лицо его преобразилось, стало молодое, и он мне тихо что то говорит из ученья Ордена, так тихо, что я не могу расслышать. Потом, будто, вышли мы все из комнаты, и что то тут случилось мудреное. Мы сидели или лежали на полу. Он мне что то говорил. А мне будто захотелось показать ему свою чувствительность и я, не вслушиваясь в его речи, стал себе воображать состояние своего внутреннего человека и осенившую меня милость Божию. И появились у меня слезы на глазах, и я был доволен, что он это приметил. Но он взглянул на меня с досадой и вскочил, пресекши свой разговор. Я обробел и спросил, не ко мне ли сказанное относилось; но он ничего не отвечал, показал мне ласковый вид, и после вдруг очутились мы в спальне моей, где стоит двойная кровать. Он лег на нее на край, и я будто пылал к нему желанием ласкаться и прилечь тут же. И он будто у меня спрашивает: „Скажите по правде, какое вы имеете главное пристрастие? Узнали ли вы его? Я думаю, что вы уже его узнали“. Я, смутившись сим вопросом, отвечал, что лень мое главное пристрастие. Он недоверчиво покачал головой. И я ему, еще более смутившись, отвечал, что я, хотя и живу с женою, по его совету, но не как муж жены своей. На это он возразил, что не должно жену лишать своей ласки, дал чувствовать, что в этом была моя обязанность. Но я отвечал, что я стыжусь этого, и вдруг всё скрылось. И я проснулся, и нашел в мыслях своих текст Св. Писания: Живот бе свет человеком, и свет во тме светит и тма его не объят. Лицо у Иосифа Алексеевича было моложавое и светлое. В этот день получил письмо от благодетеля, в котором он пишет об обязанностях супружества».