Деление окружности на равные части. Деление окружности на любое количество равных частей

1. К РАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1. Геометрические построения

Деление окружности на равные части

Некоторые детали имеют элементы, равномерно распределенные по окружности. При выполнении чертежей деталей, имеющих подобные элементы, необходимо уметь делить окружность на равные части. Приемы деления окружности на равные части приведены на рис. 1

Рис. 1. Деление окружности на равные части

С достаточной точностью можно делить окружность, на любое число равных частей пользуясь таблицей коэффициентов для подсчета длины ходы.

По количеству равных отрезков на окружности (таблица 1) находим соответствующий коэффициент. При перемножении полученного коэффициента на диаметр окружности, получаем длину хорды, которую циркулем откладываем на окружности.

Таблица 1 - Коэффициент для определения длинны хорды

Количество частей окружности

Коэффициент

Выполнение сопряжения между двумя линиями

При вычерчивании контуров технических деталей и в других технических построениях часто приходится выполнять сопряжения (плавные переходы) от одних линий к другим. Сопряжение двух сторон угла дугой заданного радиусу дуги R выполняют в следующей последовательности:

- параллельно сторонам угла на расстоянии, равном R, проводят две вспомогательные прямые линии;

- точка пересечения этих прямых будет центром сопряжения;

- из центра сопряжения выполняют перпендикуляры на заданные прямые;

- точки пересечения перпендикуляров с заданными прямыми называют точками сопряжения;

- из центра сопряжения строят дугу радиусом R, соединяя точки сопряжения.

На рис. 2 приведены примеры построения сопряжений, когда задан радиус дуги сопряжения. В этом случае необходимо определить центр сопряжения и точки сопряжения. Обводку контура детали производят с помощью циркуля.

Рис. 2. Приемы построения сопряжений

В технике часто приходится вычерчивать кривые линии, составленные из большого количества малых дуг окружностей с постепенным изменением радиуса их кривизны. Такие линии невозможно провести циркулем. Эти кривые вычерчивают с помощью лекал и называют лекальными. Необходимо изучить закономерность образования лекальной кривой и нанести на чертёж ряд принадлежащих ей точек. Точки соединяют плавной кривой тонкой линией от руки, а обводку выполняют с помощью лекала.

Для обводки лекальных кривых нужно иметь набор нескольких лекал. Выбрав подходящее лекало, подгоняют кромку части лекала к возможно большему количеству найденных точек. Чтобы обвести

следующий участок, нужно подогнать кромку лекала ещё к двум-трём точкам, при этом лекало должно касаться части уже обведённой кривой. Способ проведения кривой по лекалу приведён на рис. 3.

Рис. 3. Построение кривой по лекалу.

На рис. 4 показан пример построения эллипса по заданным осям

Рис. 4. Построение эллипса

На рис. 5 показан пример построения параболы с помощью деления сторон угла AOC на одинаковое количество равных частей. На рис. 6 дан пример построения эвольвенты окружности. Заданная

окружность разделена на 12 равных частей. Через точки деления проведены касательные к окружности. На касательной, проведённой через точку 12, отложена длина данной окружности и разделена на 12 равных частей. Начиная от точки l на касательных к окружности, последовательно откладывают отрезки, равные 1/12 длины окружности, 1/6, 1/4 и т. д.

Рис. 5. Построение параболы

Рис. 6. Построение эвольвенты

Рис. 7.Построение синусоиды

Рис.8 Построение спирали Архимеда

На рис. 7 показан приём построения синусоиды. Заданная окружность разделена на 12 равных частей, на такое же число равных частей делится отрезок прямой, равный длине развёрнутой

Деление окружности на равные части, построение правильных многоугольников

Деление окружности на 4 и 8 равных частей

Концы взаимно перпендикулярных диаметров АС и BD (рис. 1) делят окружность с центром в точке О на 4 равные части. Соединив концы этих диаметров, можно получить квадрат A ВС D .

Если угол СОА между взаимно перпендикулярными диаметрами АЕ и С G (рис. 2) разделить пополам и провести взаимно перпендикулярные диаметры DH и BF , то их концы разделят окружность с центром в точке О на 8 равных частей. Соединив концы этих диаметров, можно получить правильный восьмиугольник ABCDEFGH .

Рис. 1 Рис. 2

Деление окружности на 3, 6 и 12 частей

Для деления окружности на 6 равных частей используют равенство сторон правильного шестиугольника радиусу описанной окружности. Если задана окружность с центром в точке О (рис. 3) и радиусом R , то из концов одного из ее диаметров (точек А и D ), как из центров, проводят дуги окружностей радиусом R . Точки пересечения этих дуг с заданной окружностью разделят ее на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник ABCDEF .

Если окружность в центре с точкой О (рис.4) необходимо разделить на 3 равные части, то радиусом, равным радиусу этой окружности, следует провести дугу лишь из одного конца диаметра, например точки D . Точки В и С пересечения этой дуги с заданной окружностью, а так же точка А разделят последнюю на 3 равные части. Соединив точки А , В и С , можно получить равносторонний треугольник АВС .

Рис. 3 Рис. 4

Чтобы разделить окружность на 12 частей, деление окружности на 6 частей повторяют дважды (рис. 5), используя в качестве центров концы взаимно перпендикулярных диаметров: точки А и G , D и J . Точки пересечения проведенных дуг с заданной окружностью разделят ее на 12 частей. Соединив построенные точки, можно получить правильный двенадцати угольник.

Рис. 5

Деление окружности на 5 частей

О (рис. 6) на 5 частей, поступают следующим образом. Один из радиусов окружности, например ОМ , делят пополам описанным ранее способом. Из середины отрезка ОМ точка N радиусом R 1 , равным отрезку А N , проводят дугу окружности и отмечают точку Р пересечения этой дуги с диаметром, которому принадлежит радиус ОМ . Отрезок АР равен стороне вписанного в окружность правильного пятиугольника. Поэтому из конца А диаметра, перпендикулярного к ОМ , радиусом R 2 , равным отрезку АР , проводят дугу окружности. Точки В и Е пересечения этой дуги с заданной окружностью позволяют отметить две вершины пятиугольника.

Еще две вершины ( С и D ) являются точками пересечения дуг окружностей радиусом R 2 с центрами в точках В и Е с заданной окружностью с центром в точки О . Вершины правильного пятиугольника ABCDE делят заданную окружность на 5 равных частей.

Рис. 6

Деление окружности на 7 частей

Чтобы разделить окружность с центром в точке О (рис. 6) на 7 частей, необходимо из точки 1 провести вспомогательную дугу радиусом R , равным радиусу данной окружности, которая пересечет окружность в точке М . Из точки N опускаю перпендикуляр на горизонтальную осевую линию. Из точки А радиусом, равным радиусу MN , делают по окружности 7 засечек и получают семь искомых точек, соединив которые получают правильный семиугольник ABCDEFG .

Рис. 7

Деление окружности на произвольное число равных частей

Если ни в одном из рассмотренных ранее вариантов не удовлетворяет условию поставленной задачи, то используют прием, позволяющий разделить окружность на произвольное число равных частей и построить соответственно вписанные в нее правильные многоугольники с произвольным числом сторон.

Рассмотрим такое построение на примере деления окружности с центром в точке О (рис. 8а) на 7 равных частей. Сначала необходимо провести два взаимно перпендикулярных диаметра, один из которых, например проходящий через точку А , следует разделить на 7 равных частей, ограниченными точками 1…7. Из точки А , как из центра, радиусом R равным диаметру заданной окружности, надо провести дугу, пересечение которой с продолжением второго диаметра определит точки Р 1 и Р 2 . Затем через точки Р 1 и Р 2 (рис.8б), и четные точки, полученные при делении диаметра А7 (точки 2. 4 и 6), проводят прямые. Точки В , С , D и Е , F , G пересечения этих прямых с заданной окружностью и точка А делят окружность с центром О на 7 равных частей. Последовательно соединив построенные точки можно изобразить вписанный в окружность правильный семиугольник.

Рис. 8

Деление окружности на три равные части. Устанавливают угольник с углами 30 и 60° большим катетом параллельно одной из центровых линий. Вдоль гипотенузы из точки 1 (первое деление) проводят хорду (рис. 2.11, а ), получая второе деление – точку 2. Перевернув угольник и проведя вторую хорду, получают третье деление – точку 3 (рис. 2.11, б ). Соединив точки 2 и 3; 3 и 1 прямыми, получают равносторонний треугольник.

Рис. 2.11.

а, б – с помощью угольника; в – с помощью циркуля

Ту же задачу можно решить с помощью циркуля. Поставив опорную ножку циркуля в нижний или верхний конец диаметра (рис. 2.11, в ), описывают дугу, радиус которой равен радиусу окружности. Получают первое и второе деления. Третье деление находится на противоположном конце диаметра.

Деление окружности на шесть равных частей

Раствор циркуля устанавливают равным радиусу R окружности. Из концов одного из диаметров окружности (из точек 1, 4 ) описывают дуги (рис. 2.12, а, б ). Точки 1, 2, 3, 4, 5, 6 делят окружность на шесть равных частей. Соединив их прямыми, получают правильный шестиугольник (рис. 2.12, б ).

Рис. 2.12.

Ту же задачу можно выполнить с помощью линейки и угольника с углами 30 и 60° (рис. 2.13). Гипотенуза угольника при этом должна проходить через центр окружности.

Рис. 2.13.

Деление окружности на восемь равных частей

Точки 1, 3, 5, 7 лежат на пересечении центровых линий с окружностью (рис. 2.14). Еще четыре точки находят с помощью угольника с углами 45°. При получении точек 2, 4, 6, 8 гипотенуза угольника проходит через центр окружности.

Рис. 2.14.

Деление окружности на любое число равных частей

Для деления окружности на любое число равных частей пользуются коэффициентами, приведенными в табл. 2.1.

Длину l хорды, которую откладывают на заданной окружности, определяют по формуле l = dk, где l – длина хорды; d – диаметр заданной окружности; k – коэффициент, определяемый по табл. 1.2.

Таблица 2.1

Коэффициенты для деления окружностей

Чтобы разделить окружность заданного диаметра 90 мм, например, на 14 частей, поступают следующим образом.

В первой графе табл. 2.1 находят число делений п, т.е. 14. Из второй графы выписывают коэффициент k, соответствующий числу делений п. В данном случае он равен 0,22252. Диаметр заданной окружности умножают на коэффициент и получают длину хорды l= dk = 90 0,22252 = 0,22 мм. Полученную длину хорды откладывают циркулем-измерителем 14 раз на заданной окружности.

Нахождение центра дуги и определение величины радиуса

Задана дуга окружности, центр и радиус которой неизвестны.

Для их определения нужно провести две непараллельные хорды (рис. 2.15, а ) и восставить перпендикуляры к серединам хорд (рис. 2.15, б ). Центр О дуги находится на пересечении этих перпендикуляров.

Рис. 2.15.

Сопряжения

При выполнении машиностроительных чертежей, а также при разметке заготовок деталей на производстве часто приходится плавно соединять прямые линии с дугами окружностей или дугу окружности с дугами других окружностей, т.е. выполнять сопряжение.

Сопряжением называют плавный переход прямой в дугу окружности или одной дуги в другую.

Для построения сопряжений надо знать величину радиуса сопряжений, найти центры, из которых проводят дуги, т.е. центры сопряжений (рис. 2.16). Затем нужно найти точки, в которых одна линия переходит в другую, т.е. точки сопряжений. При построении чертежа сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения дуги окружности и прямой лежит на перпендикуляре, опущенном из центра дуги на сопрягаемую прямую (рис. 2.17, а ), или на линии, соединяющей центры сопрягаемых дуг (рис. 2.17, б ). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку (точки ) сопряжения.

Рис. 2.16.

Рис. 2.17.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 2.18, а ). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Рис. 2.18.

Для всех трех случаев можно применять следующее построение.

1. Находят точку О – центр сопряжения, который должен лежать на расстоянии R от сторон угла, т.е. в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 2.18, б ).

Для проведения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные (рис. 2.18, б ).

  • 2. Находят точки сопряжений (рис. 2.18, в). Для этого из точки О опускают перпендикуляры на заданные прямые.
  • 3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 2.18, в).

Сегодня в посте выкладываю несколько картинок кораблей и схем к ним для вышивания изонитью (картинки кликабельные).

Изначально второй парусник выполнен на гвоздиках. А поскольку гвоздик имеет определенную толщину, получается, что от каждого отходит две нитки. Плюс к этому наслоение одного паруса на второй. В итоге в глазах возникает некоторый эффект раздвоения изображения. Если вышивать корабль на картоне, думаю, он будет выглядеть более привлекательно.
Второй и третий кораблики вышивать несколько проще, чем первый. В каждом из парусов есть центральная точка (на нижней стороне паруса), из которой выходят лучи к точкам по периметру паруса.
Анекдот :
— У вас нитки есть?
— Есть.
— А суровые?
— Да кошмар просто! Подойти боюсь!

У меня дебют – первый мастер-класс . Надеюсь, не последний. Будем вышивать павлина.Схема изделия .Размечая места проколов, обратите особое внимание, чтобы в замкнутых контурах их было четное количество .Основа картинки – плотный картон (я брал коричневый плотностью 300 г/м2, можно попробовать и на черном, тогда цвета буду смотреться еще ярче), лучше прокрашенный с обеих сторон (для киевлян - я брал в отделе канцтоваров в ЦУМе на Крещатике). Нитки - мулине (любого производителя, у меня были DMC), в одну нитку, т.е. пучки разматываем на отдельные волокна. Вышивка состоит из трех слоев ниток. Сначала вышиваем методом настила первый слой в перышках на голове павлина, крыло (светло-голубой цвет ниток), а также темно-синие круги хвоста. Первый слой туловища вышивается хордами с переменным шагом, стараясь, чтобы нитки проходили по касательной к контуру крыла.Затем вышиваем веточки (шов-змейка, нитки горчичного цвета), листья (сначала темно-зеленые, потом остальн…

Деление окружности на 3 равные части.

Чтобы разделить окружность радиуса R на 3 равные части и вписать в нее равносторонний треугольник, из точки пересечения диаметра с окружностью (например из точки А) описывают как из центра дополнительную дугу радиусом R. Получают точки 2 и 3. Точки 1, 2, 3 делят окружность на три равные части. Соединив прямыми линиями точки 1, 2, 3 строят вписанный равносторонний треугольник.

Деление окружности на 6 равных частей.

Чтобы разделить окружность на 6 равных частей, из двух противоположных точек (1 и 4) пересечения диаметра с окружностью описывают две дуги радиусом R. Получают точки (2, 3, 5, 6). Вместе с точками которые получились при пересечении диаметра с окружностью он делят окружность на 6 равных частей.

Деление окружности на 12 равных частей.

Для деления окружности на 12 равных частей из четырех точек пересечения осей симметрии с окружностью описывают 4 дуги радиусом R. Полученные точки, вместе с теми, которые получились при пересечении осей симметрии с окружностью, делят окружность на 12 равных частей.

Виды обозначений сечений на чертежах

Чтобы показать поперечную форму деталей, пользуются изображениями, называемыми сечениями (рис. 13). Для того, чтобы получить сечение, деталь мысленно рассекают воображаемой секущей плоскостью в том месте, где нужно выявить её форму. Фигура, полученная в результате рассечения детали секущей плоскостью, изображается на чертеже. Следовательно сечением называется изображение фигуры, получающейся при мысленном рассечении предмета плоскостью или несколькими плоскостями.

На сечении показывается только то, что получается непосредственно в секущей плоскости.

Для ясности чертежа сечения выделяют штриховкой. Наклонные параллельные линии штриховки проводят под углом 45° к линиям рамки чертежа, а если они совпадают по направлению с линиями контура или осевыми линиями, то под углом 30° или 60°.

Вынесенное сечение.

Контур вынесенного сечения обводят сплошной толстой линией такой же толщины, как и линия, принятая для видимого контура изображения. Если сечение вынесенное, то, как правило проводят разомкнутую линию, два утолщенных штриха, и стрелки, указывающие направление взгляда. С внешней стороны стрелок наносят одинаковые прописные буквы. Над сечением пишут те же буквы через тире с тонкой чертой внизу. Если сечение представляет собой симметричную фигуру и расположено на продолжении линии сечения (штрихпунктирная), то обозначений не наносят.



Наложенное сечение.

Контур наложенного сечения – сплошная тонкая линия (S/2 – S/3), причем контур вида в месте расположения наложенного сечения не прерывают. Наложенное сечение обычно не обозначают. Но если сечение представляет собой не симметричную фигуру, проводят штрихи разомкнутой линии и стрелки, но буквы не наносят.

Обозначение сечений

Положение секущей плоскости указывают на чертеже линией сечения - разомкнутой линией, которая проводится в виде отдельных штрихов, не пересекающих контур соответствующего изображения. Толщина штрихов берётся в пределах от $ до 1 1/ 2 S, а длина их от 8 до 20 мм. На начальном и конечном штрихах перпендикулярно им, на расстоянии 2-3 мм от конца штриха, ставят стрелки, указывающие направление взгляда. У начала и конца линии сечения ставят одну и ту же прописную букву русского алфавита. Буквы наносят около стрелок, указывающих направление взгляда с внешней стороны, рис. 12. Над сечением делают надпись по типу А-А. Если сечение находится в разрыве между частями одного и того же вида, то при симметричной фигуре линию сечения не проврдяЯ4. Сечение можно располагать с поворотом, тогда к надписи А-А должен быть добавлен символ

повёрнуто О, то есть А-АО.