Деление название. Деление нацело или без остатка

Несмотря на то что математика кажется большинству людей наукой сложной, это далеко не так. Многие математические операции довольно легко понять, особенно если знать правила и формулы. Так, зная таблицу умножения, можно быстро перемножать в уме Главное - постоянно тренироваться и не забывать правил умножения. То же самое можно сказать и о делении.

Давайте же разберем деление целых чисел, дробных и отрицательных. Вспомним об основных правилах, приемах и методах.

Операция деления

Начнем, пожалуй, с самого определения и названия чисел, которые участвуют в данной операции. Это значительно облегчит дальнейшее изложение и восприятие информации.

Деление - одна из четырех основных математических операций. Изучение ее начинается еще в начальной школе. Именно тогда детям показывают первый пример деления числа на число, объясняют правила.

В операции участвуют два числа: делимое и делитель. Первое - число, которое делят, второе - на которое делят. Результатом деления является частное.

Имеется несколько обозначений для записи данной операции: «:», «/» и горизонтальная черта - запись в виде дроби, когда вверху находится делимое, а внизу, под чертой - делитель.

Правила

При изучении той или иной математической операции учитель обязан познакомить учеников с основными правилами, которые следует знать. Правда, не всегда они запоминаются так хорошо, как хотелось бы. Именно поэтому мы решили немного освежить в вашей памяти четыре фундаментальных правила.

Основные правила деления чисел, которые стоит помнить всегда:

1. Делить на ноль нельзя. Это правило следует запомнить в первую очередь.

2. Делить ноль можно на любое число, но в итоге всегда будет ноль.

3. Если число поделить на единицу, мы получим то же число.

4. Если число разделить на само себя, мы получим единицу.

Как видите, правила довольно простые и легко запоминаются. Хотя некоторые и могут забывать такое простое правило, как невозможность или же путать с ним деление ноля на число.

на число

Одно из наиболее полезных правил - признак, по которому определяется возможность деления натурального числа на другое без остатка. Так, выделяют признаки делимости на 2, 3, 5, 6, 9, 10. Рассмотрим их подробнее. Они существенно облегчают выполнение операций над числами. Также приведем для каждого правила пример деления числа на число.

Данные правила-признаки довольно широко используются математиками.

Признак делимости на 2

Наиболее простой для запоминания признак. Число, которое оканчивается на четную цифру (2, 4, 6, 8) или 0, всегда делится на два нацело. Довольно просто для запоминания и использования. Так, число 236 оканчивается на четную цифру, а значит, делится на два нацело.

Проверим: 236:2 = 118. Действительно, 236 делится на 2 без остатка.

Данное правило наиболее известно не только взрослым, но и детям.

Признак делимости на 3

Как правильно выполнить деление чисел на 3? Запомнить следующее правило.

Число делится на 3 нацело в том случае, если сумма его цифр кратна трем. Для примера возьмем число 381. Сумма всех цифр будет составлять 12. Данное трем, а значит делится на 3 без остатка.

Также проверим данный пример. 381: 3 = 127, значит все верно.

Признак делимости чисел на 5

Тут также все просто. Разделить на 5 без остатка можно лишь те числа, которые оканчиваются на 5 либо же на 0. Для примера возьмем такие числа, как 705 или же 800. Первое заканчивается на 5, второе - на ноль, следовательно они оба делятся на 5. Это одно из простейших правил, которое позволяет быстро осуществлять деление на однозначное число 5.

Проверим данный признак на таких примерах: 405:5 = 81; 600:5 = 120. Как видите, признак действует.

Делимость на 6

Если вы хотите узнать, делится ли число на 6, то вам сначала нужно выяснить, делится ли оно на 2, а затем - на 3. Если да, то число можно без остатка разделить на 6. К примеру, число 216 делится и на 2, так как заканчивается на четную цифру, и на 3, так как сумма цифр равна 9.

Проверим: 216:6 = 36. Пример показывает, что данный признак действует.

Делимость на 9

Поговорим также и о том, как осуществить деление чисел на 9. На данное число делятся те сумма цифр которых кратна 9. Аналогично правилу деления на 3. Например, число 918. Сложим все цифры и получим 18 - число, кратное 9. Значит, оно делится на 9 без остатка.

Решим данный пример для проверки: 918:9 = 102.

Делимость на 10

Последний признак, который стоит знать. На 10 делятся только те числа, которые оканчиваются на 0. Данную закономерность довольно просто и легко запомнить. Так, 500:10 = 50.

Вот и все основные признаки. Запомнив их, вы сможете облегчить себе жизнь. Конечно, есть и другие числа, для которых существуют признаки делимости, но мы с вами выделили лишь основные из них.

Таблица деления

В математике существует не только таблица умножения, но и таблица деления. Выучив ее, можно с легкостью выполнять операции. По сути, таблица деления представляет собой таблицу умножения наоборот. Составить ее самостоятельно не представляет труда. Для этого следует переписать каждую строку из таблицы умножения таким образом:

1. Ставим произведение числа на первое место.

2. Ставим знак деления и записываем второй множитель из таблицы.

3. После знака равенства записываем первый множитель.

Например, возьмем следующую строку из таблицы умножения: 2*3= 6. Теперь перепишим ее согласно алгоритму и получим: 6 ÷ 3 = 2.

Довольно часто детей просят самостоятельно составить таблицу, таким образом развивая их память и внимание.

Если же у вас нет времени на ее написание, то можете воспользоваться представленной в статье.

Виды деления

Поговорим немного о видах деления.

Начнем с того, что можно выделить деление целых чисел и дробных. При этом в первом случае можно говорить об операциях с целыми числами и десятичными дробями, а во втором - только о дробных числах. При этом дробным может являться как делимое или делитель, так и оба одновременно. связано с тем, что операции над дробями отличаются от операций с целыми числами.

Исходя из чисел, которые участвуют в операции, можно выделить два вида деления: на однозначные числа и на многозначные. Наиболее простым считается деление на однозначное число. Здесь вам не нужно будет проводить громоздкие вычисления. К тому же хорошо может помочь таблица деления. Делить же на другие - двух-, трехзначные числа - тяжелее.

Рассмотрим примеры для данных видов деления:

14:7 = 2 (деление на однозначное число).

240:12 = 20 (деление на двузначное число).

45387: 123 = 369 (деление на трехзначное число).

Последним можно выделить деление, в котором участвуют положительные и отрицательные числа. При работе с последними следует знать правила, по которым происходит присвоение результату положительного или отрицательного значения.

При делении чисел с разными знаками (делимое - число положительное, делитель - отрицательное, или наоборот) мы получаем отрицательное число. При делении чисел с одним знаком (и делимое, и делитель - положительные или же наоборот) - получаем число положительное.

Рассмотрим для наглядности следующие примеры:

Деление дробей

Итак, мы с вами разобрали основные правила, привели пример деления числа на число, теперь поговорим о том, как правильно выполнять эти же операции с дробями.

Несмотря на то что деление дробей поначалу кажется довольно тяжелым делом, в действительности работать с ними не так уж и трудно. Деление дроби выполняется практически так же, как и умножение, но с одним отличием.

Для того чтобы разделить дробь, следует сначала умножить числитель делимого на знаменатель делителя и зафиксировать полученный результат в виде числителя частного. Затем умножить знаменатель делимого на числитель делителя и записать результат как знаменатель частного.

Можно сделать и проще. Переписать дробь делителя, поменяв местами числитель со знаменателем, а затем перемножить полученные числа.

Например, разделим две дроби: 4/5:3/9. Для начала перевернем делитель, получим 9/3. Теперь перемножим дроби: 4/5 * 9/3 = 36/15.

Как видите, все довольно легко и не сложнее, чем деление на однозначное число. Примеры на решаются просто, если не забывать данное правило.

Выводы

Деление - одна из математических операций, которые каждый ребенок изучает еще в начальной школе. Есть определенные правила, которые следует знать, приемы, облегчающие выполнение данной операции. Деление бывает с остатком и без, бывает деление отрицательных и дробных чисел.

Запомнить особенности данной математической операции довольно легко. Мы с вами разобрали наиболее важные моменты, рассмотрели не один пример деления числа на число, даже поговорили о том, как работать с дробными числами.

Если вы хотите улучшить свое знание математики, советуем вам запомнить эти несложные правила. Кроме того, можем посоветовать вам развивать память и навыки счета в уме, выполняя математические диктанты или просто пытаясь высчитать устно частное двух случайных чисел. Поверьте, эти навыки никогда не будут лишними.

Деление (математика)

Деле́ние (операция деления) - одно из четырёх простейших арифметических действий, обратное умножению . Деление - это такая операция, в результате которой получается число (частное), которое при умножении на делитель даёт делимое. Существует несколько символов , используемых для обозначения оператора деления.

Рассмотрим, например, такой вопрос:

Сколько раз 3 содержится в 14?

Повторяя операцию вычитания 3 из 14, мы находим, что 3 «входит» в 14 четыре раза, и ещё «остаётся» число 2.

В этом случае число 14 называется делимым , число 3 - делителем , число 4 - (неполным) частным и число 2 - остатком (от деления) .

Результат деления также называют отношением .

Деление натуральных чисел

Обычно на остаток накладываются следующие ограничения (чтобы он был корректно, то есть однозначно, определён):

, ,

где - делимое, - делитель, - частное и - остаток.

Деление целых чисел

Деление произвольных целых чисел несущественно отличается от деления натуральных чисел - достаточно поделить их модули и учесть правило знаков.

Однако деление целых чисел с остатком определяется неоднозначно. В одном случае, (так же как и без остатка) рассматривают сначала модули и в результате остаток приобретает тот же знак, что делитель или делимое (например, с остатком (-1)); в другом случае понятие остатка напрямую обобщается и ограничения заимствуются из натуральных чисел:

.

Деление рациональных чисел

Отличие же заключается в том, что при делении многочленов основной упор делается на степени делимого и делителя, а не на коэффициенты. Поэтому обычно считается, что частное и делитель (а следовательно и остаток) определены с точностью до постоянного множителя.

Деление на ноль

По правилам стандартной арифметики деление на число 0 запрещено.

Другое дело - деление на бесконечно малую функцию или последовательность. Деление конечных функций на бесконечно малые приводит к появлению бесконечно больших, а отношение двух бесконечно малых называется неопределённостью 0/0, которую можно преобразовать (см. раскрытие неопределённостей) с тем, чтобы получить определённый результат.

Как следует из определения операции деления, результатом операции 0:0 может считаться любое действительное число, таким образом, значение операции 0:0 неопределенно и задача деления нуля на нуль имеет бесчисленное множество решений. . Это не соответствует стандартному определению бинарной операции , согласно которому результатом операции с двумя числами может быть только единственное значение.

Операции деления ненулевого числа на ноль не соответствует никакое действительное число.

Результат этой операции считается бесконечно большим и равным бесконечности :
, где
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным a или приближается к нему, то частное неограниченно увеличивается(по модулю).

Поскольку бесконечность не является действительным числом, то такая операция выходит за пределы алгебры действительных чисел, если бинарная операция в ней определяется как . .

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Деление (математика)" в других словарях:

    Деление c остатком (деление по модулю, нахождение остатка от деления, остаток от деления) арифметическая операция, результатом которой является два целых числа: неполное частное и остаток от деления целого числа на другое целое число.… … Википедия

    Операция деления по модулю в различных языках программирования Язык Оператор Знак результата Делимое Ada mod Частное rem Делимое ASP Mod Не определено C (ISO 1990) % Не определено C (ISO 1999) … Википедия

    В Викисловаре есть статья «деление» Деление: Деление (биология) бесполый способ размножения живых организмов. Деление клетки Деление (математика) математическая операция. Деление с остатком … Википедия

    Функция y = 1/x. Когда x стремится к нулю справа, y стремится к бесконечности. Когда x стремится к нулю слева, y стремится к минус бесконечности … Википедия

    - (начало) «Математика в девяти книгах» (кит. трад. 九章算術 … Википедия

    I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия

    Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия

Данный урок посвящен изучению темы «Название компонентов и результата деления». Мы сможем узнать, как называются числа при делении. Также мы поговорим о том, как правильно читать деление и какие названия имеют компоненты и результат деления.

Посмотрите на данное выражение.

В этом выражении использован знак деления. Давайте его прочитаем.

21: 7 = 3 (21 разделить на 7, получим 3).

При делении, как и при другом математическом действии, каждое число имеет свое название.

Число, которое делят, называется делимое.

Число, на которое делят, называется делителем.

Результат деления называется частное. (Рис. 1)

Рис. 1. Названия чисел при делении

Давайте прочитаем это же выражение с использованием новых терминов.

21: 7 = 3 (делимое - 21, делитель - 7, частное равно 3).

Это же равенство можно записать по-другому. Частное 21 и 7 равно 3.

Давайте найдем частное, используя рисунки.

Выясним, сколько раз по 3 находится в числе 9.

Давайте число 9 для удобства представим в виде рисунка. (Рис. 2)

Рис. 2. Число 9

Сколько раз по 3 клубнички содержится в числе 9. Разделим клубнички по 3. (Рис. 3).

Рис. 3. Разделим клубнички по 3

Мы видим, что в числе 9 по 3 содержится 3 раза. Запишем это в виде выражения.

Прочитайте наше равенство.

9 разделить на 3, получится 3; делимое - 9, делитель - 3, частное - 3; частное 9 и 3 равно 3.

Давайте узнаем, сколько раз по 4 содержится в числе 8. Для того чтобы было удобнее, мы представим число 8 в виде рисунка. (Рис. 4).

Рис. 4. Число 8

Сколько раз по 4 содержится в числе 8?

Разделим число 8 на группы по 4. (Рис. 5)

Рис. 5. Разделим число 8 на группы по 4

Запишем с помощью выражения то, что мы выполнили.

Прочитаем наше равенство.

Делимое - 8, делитель - 4, частное - 2; частное 8 и 4 равно 2.

Давайте потренируемся записывать равенство, используя новые термины.

Частное 10 и 2 равно 5 .

Мы помним, что частное - это результат деления. Поэтому равенство запишем так:

Делимое - 12, делитель - 2, частное равно 6 .

Делимое, делитель и частное - это компоненты деления. Поэтому равенство будет выглядеть так:

Теперь попробуйте записать самостоятельно равенства:

Частное 15 и 3 равно 5 .

Делимое - 20, делитель - 5, частное - 4.

Правильный ответ:

На этом уроке мы узнали, как называются компоненты деления и результат деления. Так же мы научились считать равенства разными способами.

Список литературы

  1. Александрова Э.И. Математика. 2 класс. - М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. - М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. - М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Irina-se.com ().

Домашнее задание

Составьте выражения и найдите их результаты:

а) делимое - 24, делитель - 6 б) делимое - 10, делитель - 2 в) делимое - 18, делитель - 6.

Решите выражения:

а) 14: 7 б) 28: 4 в) 30: 6

Дополните равенства пропущенными числами:

а) 16: * = 4 б) 21: 3 = * в) 25: * = 5

Только тем что у целых чисел нужно у частного посчитать знак. Как посчитать знак частного целых чисел? Рассмотрим подробно в теме.

Термины и понятия частного целых чисел.

Чтобы выполнить деление целых чисел нужно вспомнить термины и понятия. В делении есть: делимое, делитель и частное целых чисел.

Делимое – это то целое число, которое делят. Делитель – это целое число, на которое делят. Частное – это результат деления целых чисел.

Можно сказать “Деление целых чисел” или “Частное целых чисел” смысл этих фраз один и тот же, то есть нужно поделить одно целое число на другое и получить ответ.

Деление берет свое начало из умножения. Рассмотрим пример:

У нас есть два множителя 3 и 4. Но допустим нам известно, что есть один множитель 3 и результат умножения множителей их произведение 12. Как найти второй множитель? На помощь приходит деление.

Правило деления целых чисел.

Определение:

Частное двух целых чисел равно частному их модулей, со знаком плюс в результате, если числа одинаковых знаков, и со знаком минус, если они разных знаков.

Важно учитывать знак частного целых чисел. Кратко правила деления целых чисел:

Плюс на плюс дает плюс.
“+ : + = +”

Минус на минус дает плюс.
“– : – =+”

Минус на плюс дает минус.
“– : + = –”

Плюс на минус дает минус.
“+ : – = –”

А теперь рассмотрим подробно каждый пункт правила деления целых чисел.

Деление целых положительных чисел.

Вспомним, что целые положительные числа это тоже самое, что натуральные числа. Мы пользуемся теми же правила, что и при делении натуральных чисел. Знак частного от деления целых положительных чисел всегда плюс . Иными словами, при делении двух целых чисел “плюс на плюс дает плюс ”.

Пример:
Выполните деление 306 на 3.

Решение:
Оба числа имеют знак “+”, поэтому ответ будет со знаком “+”.
306:3=102
Ответ: 102.

Пример:
Разделите делимое 220286 на делитель 589.

Решение:
Делимое 220286 и делитель 589 имеет знак плюс, поэтому частное тоже будет иметь знак плюс.
220286:589=374
Ответ: 374

Деление целых отрицательных чисел.

Правило деления двух отрицательных чисел.

Пусть у нас будут два отрицательных целых числа a и b. Нам нужно найти их модули и выполнить деление.

Результат деления или частное двух отрицательных целых чисел будет со знаком “+” или “минус на минус дает плюс”.

Рассмотрим пример:
Найдите частное -900:(-12).

Решение:
-900:(-12)=|-900|:|-12|=900:12=75
Ответ: -900:(-12)=75

Пример:
Выполните деление одного целого отрицательного числа -504 на второе отрицательное число -14.

Решение:
-504:(-14)=|-504|:|-14|=504:14=34
Записать выражение можно короче:
-504:(-14)=34

Деление целых чисел с разными знаками. Правило и примеры.

При выполнении деления целых чисел с разными знаками , частное будет равно отрицательному числу.

Не важно положительное целое число делим на отрицательное целое число или отрицательное целое число делим на положительное целое число, результат деления всегда будет равен отрицательному числу.

Минус на плюс дает минус.
Плюс на минус дает минус.

Пример:
Найдите частное двух целых чисел с разными знаками -2436:42.

Решение:
-2436:42=-58

Пример:
Вычислите деление 4716:(-524).

Решение:
4716:(-524)=-9

Нуль деленный на целое число. Правило.

При деление нуля на целое число ответ будет равен нулю.

Пример:
Выполните деление 0:558.

Решение:
0:558=0

Пример:
Разделите нуль на целое отрицательное число -4009.

Решение:
0:(-4009)=0

На нуль делить нельзя.

Нельзя 0 разделить на 0.

Проверка частного деления целых чисел.

Как говорилось ранее деление и умножение тесно связаны. Поэтому чтобы проверить результат деления двух целых чисел, нужно выполнить умножение делителя и частного в результате должно получиться делимое.

Проверка результата деления краткая формула:
Делитель ∙ Частное = Делимое

Рассмотрим пример:
Выполните деление и сделайте проверку 1888:(-32).

Решение:
Обращаем внимание на знаки целых чисел. Число 1888 положительное и имеет знак “+”. Число (-32) отрицательное и имеет знак “–”. Поэтому при делении двух целых чисел с разными знаками ответ будет отрицательное число.
1888:(-32)=-59

А теперь выполним проверку найденного ответа:
1888 – делимое,
-32 – делитель,
-59 – частное,

Делитель умножаем на частное.
-32∙(-59)=1888

Определить, сколько раз нужно взять слагаемым меньшее число 2, чтобы получить большее число 6, значит определить, сколько раз число 2 содержится в 6, или сколько раз число 6 содержит 2.

Число 2 содержится в 6 три раза, ибо, чтобы получить 6, нужно взять сумму трех равных слагаемых:

Найти, сколько раз число 2 содержится в 6, значит разделить 6 на 2.

Определение . Деление есть такое действие, в котором по двум данным числам определяют, сколько раз одно число содержится в другом.

Данные числа в делении называются делимым и делителем , искомое называется частным .

Делимое есть то число, которое содержит другое.

Делитель есть то число, которое содержится в другом.

Частное показывает, сколько раз делитель содержится в делимом.

В данном примере делимое есть 6, делитель 2, частное 3.

Разделить 6 на 2 значит также разбить 6 на 2 равных слагаемых и отыскать их величину. Число 6 представится при помощи двух равных слагаемых в виде:

Каждое из равных слагаемых называется частью делимого.

Посредством деления целых чисел также узнается, как велико каждое слагаемое, если делимое разобьется на столько равных слагаемых, сколько в делителе единиц.

В этом случае делимое есть то число, которое делится или разбивается на равные части. Делитель показывает, на сколько равных частей делится делимое. Частное показывает, сколько приходится на каждую часть .

Способы деления

Имея два числа 12 и 4, мы можем разделить 12 на 4 различными способами.

    С помощью сложения мы можем определить, сколько раз нужно взять 4 слагаемым для того, чтобы получить в сумме 12. Так, взяв 4 слагаемым 3 раза, находим в сумме:

    следовательно, 4 содержится в 12 три раза.

    С помощью вычитания определяем, сколько раз можно из большего числа 12 вычесть меньшее 4. При этом мы вычитаем делитель до тех пор, пока это возможно. Так, вычитая последовательно из 12 по 4, имеем:

    12 - 4 = 8
    8 - 4 = 4
    4 - 4 = 0

    Отсюда находим, что можно вычесть 4 из 12 ровно три раза.

    Деление есть сокращенное вычитание равных вычитаемых.

    Наконец, посредством умножения , мы можем определить, на какое число нужно помножить 4, чтобы получить 12. Умножая последовательно 4 на 1, 2, 3, находим, что для того, чтобы получить 12, нужно 4 помножить на 3.

Различные случаи при делении

При делении целых чисел бывают два случая:

    Разделяя 12 на 4, мы находим в частном 3. Делитель 4 содержится ровно 3 раза в делимом 12. Вычитая последовательно из 12 по 4, мы могли вычесть число 4 ровно три раза и не получили никакого остатка. В этом случае говорят, что деление совершилось нацело или без остатка . Умножив частное 3 на делитель 4, получаем делимое 12.

    Разделяя 26 на 8, мы при последовательном вычитании получаем:

26 - 8 = 18
18 - 8 = 10
10 - 8 = 2

Остаток всегда меньше делителя . В этом случае говорят, что деление не совершается нацело или деление совершается с остатком .

Разделяя 26 на 8, мы могли вычесть делитель 8 три раза, и у нас получился остаток 2. Число 3 мы будем называть целым частным. Целое частное есть не полное частное, ибо оно не выражает вполне, сколько раз меньшее число содержится в большем. Число 8 не содержится в 26 ровно 3 раза. В этом случае говорят: число 8 содержится в 26 три раза и еще получается остаток. Умножив делитель 8 на целое частное 3, мы не получим делимого 26, а число 24 - меньшее делимого. Чтобы получить делимое, нужно к этому произведению прибавить еще остаток 2.

Целое частное иногда называют просто частным.

Итак, при делении мы имеем два случая:

    Деление нацело или без остатка. Когда делитель содержится в делимом ровное число раз, тогда деление совершается нацело или без остатка. Частное выражает, сколько раз делитель содержится в делимом. Делимое равно делителю, умноженному на частное. В этом случае деление есть действие в котором по данному произведению и одному из производителей находится другой производитель.

    Если дается произведение и множимое, отыскивают множитель, то есть число равных слагаемых; если дается произведение и множитель, отыскивают множимое, то есть величину равных слагаемых.

    Деление с остатком. Когда делитель не содержится в делимом ровное число раз, тогда деление не совершается нацело, или деление совершается с остатком. Остаток всегда меньше делителя и делимое равно произведению делителя на целое частное, сложенное с остатком.

При делении целых чисел делимое всегда уменьшается во столько раз, сколько в делителе единиц, поэтому деление есть действие, обратное умножению .

Знак деления

В нашем примере деление изображается письменно:

Знак деления прешел к нам от древних математиков.

Основные приемы при делении

Делить значит последовательно вычитать делитель из делимого, пока это возможно. Этот способ деления можно считать общим. Прием этот, однако, приводит к длинным вычислениям, если делимое очень велико, поэтому существуют различные сокращенные приемы деления.

Чтобы определить частное в том случае, когда оно выражается одной цифрой, прибегают к таблице умножения.

Чтобы разделить 27 на 3 мы пишем

Для частного выбираем такое число, чтобы, умножив делитель на частное, получить делимое. Чтобы найти цифру частного, мы пробуем умножать делитель на разные числа или, как обыкновенно говорят, задаемся разными числами, и сравниваем произвдение делителя на частное с делимым.

Разделяя 27 на 3 и перебирая в уме все произведения 3 на разные числа, содержащиеся в таблице умножения, находим, что произведение 3 × 9 составляет 27 и потому пишем в частном 9. Вычитая произведение делителя на частное из делимого, получаем в остатке нуль.

Само вычисление выражают письменно:

Деление совершилось нацело.

Иногда делитель не содержится в делимом ровное число раз; так, разделяя 27 на 4, мы не находим в таблице целого числа, которое, будучи помножено на 4, дало бы 27; тогда деление не совершается нацело.

Отыскивая целое частно, мы имеем при этом три случая:

Правило определения частного:

    Если при делении остаток более или равен делителю, цифра частного мала и ее нужно увеличить.

    Если произведение делителя на частное больше делимого, цифра частно велика и ее нужно уменьшить.

    Если остаток меньше делителя, цифра частного верна.

Это правило показывает, что при делении нужно для частного выбирать такое число, чтобы остаток был меньше делителя. Задаваться так, значит задаваться наибольшим целым числом.

В данном примере 27 не делится нацело на 4, а получается остаток 3; число 6 есть целое частное и

27 = 4 × 6 + 3 = 24 + 3

Делимое 27 равно произведению делителя 4 на целое частное 6, сложенному с остатком 3.

Деление многозначного числа на однозначное

Частное от деления многозначного числа на однозначное иногда выражается числом, состоящим также из нескольких цифр. В этом случае деление распадается на несколько отдельных действий.

Разделим 702 на 3. Частное содержит три цифры. Оно больше 100 и меньше 1000, ибо делимое больше 300 (3 × 100) и меньше 3000 (3 × 1000). Включая три цифры, частное содержит сотни, десятки и единицы. В данном случае разбиваем деление на три отдельных действия, то есть отыскиваем последовательно сотни, потом десятки и, наконец, единицы частного. Самое действие начинаем с сотен.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, деление изобразится письменно:

словесно:

    Отделяем 7 - одну цифру делимого; 3 в 7 содержится 2 раза, - пишем в частном 2; умножая на нее делителя 3 и вычитая произведение 6 из 7, получаем первый остаток 1.

    Сносим 3 - следующую цифру делимого; 3 в 13 содержится 4 раза, 3-жды 4 составляет 12; вычитая 12 из 13, получаем в остатке 1.

    Сносим 2 следующую цифру делимого; 3 в 12 содержится 4 раза, пишем в частном 4; 3-жды 4 составляет 12. Вычитая 12, получаем в остатке нуль и в частном 244.

Пример . Разделить 2417 на 3. Ход вычисления выразится письменно:

словесно:

    Отделив одну цифру 2, мы видим, что 3 в 2 не содержится целое число раз, поэтому нужно отделить две цифры; 3 в 24 содержится 8 раз, - пишем 8 в частном. Умножив 8 на делителя 3 и вычитая произведение 24, получаем в остатке нуль.

    Сносим следующую цифру 1; 3 в 1 не содержится, - пишем в частном нуль.

    Сносим следующую цифру 7; 3 в 17 содержится 5 раз, - пишем в частном 5; 3-жды 5 составляет 15; вычитая 15 из 17, получим в остатке 2 и целое частное 805.

Деление многозначного числа на многозначное

При делении многозначного числа на многозначное поступаем точно так же, как поступали при делении многозначного числа на однозначное.

Разделяя число 37207 на 47, мы прежде всего определяем, из скольких цифр состоит частное. Частное меньше 1000 и больше 100, ибо 37207 меньше 47000 (47 × 1000) и больше 4700 (47 × 100), следовательно, частное состоит из сотен, десятков и единиц. Начиная с сотен, мы определяем каждую цифру частного отдельно:

Итак, после деления имеем в целом частном 791 и в остатке 30.

Если не писать каждый раз лишних нулей и принимать в соображение только те цифры делимого, которые имеют влияние на частное, ход вычисления изобразится письменно:

словесно:

    Отделяем в делимом от левой руки к правой столько цифр, чтобы делитель мог содержаться в отделенной части делимого. В данном случае отделяем 3 цифры, 47 содержится в 372 семь раз; умножаем делитель 47 на 7, цифру частного, и, вычитая произведение 47 × 7 = 329 из 372, получаем в остатке 43.

    К остатку 43 сносим 0, следующую цифру делимого; 47 содержится в 430 девять раз, пишем в частном 9. Умножая 47 на 9 и вычитая произведение 423 из 430, получаем остаток 7.

    Сносим к остатку следующую цифру частного 7; 47 содержится в 77 один раз. Пишем единицу в частном.

Умножая ею делитель и вычитая 47 из 77, получаем в остатке 30 и в целом частно 791.

Пример . Разделить 671064 на 335. Деление изобразится письменно:

словесно:

    Отделяем 671 в делимом; 335 содержится в 671 два раза, пишем в частном 2. Умножая 335 на 2 и вычитая произведение 670, получим в остатке 1.

    Сносим 0, следующую цифру делимого; 335 не содержится в 10, - пишем для второй цифры частного 0.

    Сносим 6, следующую цифру делимого; 335 не содержится в 106, - пишем для третьей цифры частного 0.

    Сносим следующую цифру делимого 4; 335 содержится в 1064 три раза, - пишем в частном 3. Умножая делитель на 3 и вычитая произведение, получим в остатке 59 и в целом частном 2003.

Из предложенных примеров выводим следующее правило:

    Чтобы разделить многозначное число на однозначное или многозначное, нужно отделить в делимом от левой руки к правой столько цифр, сколько их находится в делителе. Если делитель не содержится, отделяют в делимом одной цифрой больше. Разделив отделенное число на делитель, получают первую цифру частного, умножают ей делитель и полученное произведение вычитают из отделенной части делимого.

    К остатку сносят следующую цифру делимого и снова задаются.

    Если при этом получается число меньше делителя, пишут в частном нуль, сносят следующую цифру и снова задаются.

    Получив новую цифру частного, поступают с нею так же, как и с первой цифрой.

    Деление продолжают до тех пор, пока не снесут всех цифр делимого и не получат таким образом всех цифр частного.

Всякий раз, когда приходится делить, нужно задаваться в частном такою цифрой, чтобы остаток был меньше делителя. Чтобы легче найти такую цифру частного, при делении многозначного числа на многозначное обращают внимание на одну или две старшие цифры делителя и задаются только ими в соответствующей части делимого. При этом в делимом и в делителе отделяют от правой руки к левой одинаковое число цифр. Так, определяя, сколько раз содержится 6373 в 27302, мы задаемся четырьмя, ибо 6 в 27 содержится 4 раза.

Полученная при этом цифра частного будет или равна или больше действительной. В последнем случае ее нужно уменьшить.

Иногда при делении не подписывают произведение цифры частного на делитель, а, подразумевая его в уме, подписывают один остаток. Сокращая таким образом деление, изображают его письменно:

словесно:

    8 в 43 содержится 5 раз; 5-ю 8 - сорок. Вычитая 40 из 43, получаем в остатке 3.

    Сносим 2; 8 в 32 содержится 4 раза; 4-жды 8 составляет 32. Вычитая 32, получим в остатке нуль.

    Сносим 8; 8 в 8-ми содержится 1 раз, 1-жды 8 составляет 8. Вычитая 8, получаем в остатке нуль и в частном 541.

Деление на 10, 100, 1000 и т. д.

Разделяя число на 10, мы десятки делимого обращаем в единицы, сотни в десятки, тысячи в сотни, вообще понижаем на единицу все порядки делимого. Этого мы достигаем, отделяя запятою цифру единиц. Число до запятой будет выражать частное, а после запятой - остаток.

Разделяя на 100, мы понижаем все порядки делимого на две единицы, для чего отделяем запятою от правой руки к левой две цифры и т. д. Отсюда правило:

Чтобы разделить какое-нибудь число на единицу с нулями, нужно от правой руки к левой отделить столько цифр, сколько нулей в делителе; тогда число до запятой выражает целое частное, а после запятой - остаток.

Пример . Разделяя 30207 на 100. Отделяя справа 2 цифры, находим 302,07. Целое частное будет 302, а остаток 7.

Деление на число, оканчивающееся нулями

Разделяя число 27057 на 400 и поступая при этом по общему правилу

мы замечаем, что две последние цифры делимого не оказывают никакого влияния на частное. Они являются в остатке без всякой перемены. Откуда правило:

Если делитель оканчивается нулями, отделяют в делимом запятою от правой руки к левой столько цифр, сколько зачеркнуто нулей в делителе, и делят часть делимого до запятой на значащие цифры делителя. Отделенные цифры делимого приписывают к остатку.

В данном примере деление представится в виде

Если делимое и делитель оканчиваются нулями, их зачеркивают поровну в делимом, делителе и производят деление; зачеркнутые нули делимого приписывают к остатку.

Чтобы разделить 27300 на 4100, делим 273 на 41:

Частное будет 6, а остаток 2700.

Число цифр частного. При делении отделяют в делимом от левой руки к правой столько цифр, сколько их находится во делителе, или одною больше. Каждой оставшейся цифре делимого соответствует особая цифра частного, следовательно, число цифр частного будет равно или разности числа цифр делимого и делителя или на единицу больше этой разности .

Зависимость между данными и искомыми деления

При делении целых чисел мы имеем два случая: а) деление нацело, или без остатка , и б) деление с остатком .

Каждому из этих случаев соответствует особая зависимость между данными и искомыми деления.

Деление нацело или без остатка

При делении нацело

    Частное равно делимому, разделенному на делитель .

    Разделяя 42 на 7, имеем в частном 6; следовательно,

    42 ÷ 7 = 6, или 6 = 42 ÷ 7

    Делимое равно делителю, умноженному на частное .

    Так как делитель и частное - два множителя, произведение которых равно делимому, то делитель равен делимому, разделенному на частное .

Деление с остатком

При делении с остатком

    Делимое равно произведению делителя на целое частное, сложенное с остатком .

    При делении 47 на 6, имеем в целом частном 7, в остатке 5.

    Делимое 47 = 6 × 7 + 5.

    Делимое без остатка делится нацело на делитель и на целое частное .

Разность делимого без остатка равна произведению делителя на целое частное, то есть эта разность при делении на делитель дает целое частное, при делении на целое частное дает делитель.