Деление целых чисел. Делимое, делитель, частное

Числа в делении располагаются так: на первом месте делимое, на втором делитель, после знака равно частное.

Делимое: делитель = частное.

Обозначим все неизвестные числа буквами

Пусть делимое будет равно а, делитель равен в, а частное с.

По условию, произведение (то есть умножение) делимого, делителя и частного равно 3136. Составим уравнение.

  • а * в * с = 3136.
  • Так как с равно а/в, заменим букву с на дробь а/в.
  • а * в * а/в = 3136.
  • Переменная в сокращается, остается а * а = 3136 или а 2 = 3136.
  • По таблице квадратов найдем значение а, а равно 56.

Делимое равно 56. Получается следующее уравнение: 56: в = с

Выразим известное делимое через неизвестные переменные

Чтобы найти делимое, нужно перемножить делитель и частное, то есть 56 = в * с.

По условию, все участвующие числа натуральные, то есть целые положительные числа. Как мы знаем, 56 равно произведению только двух целых чисел - 7 и 8.

Получается два выражения:

Значит, частное (число после знака равно) может быть равен только или 7, или 8.

Ответ: Частное может быть 7 или 8.

Обозначим делимое через х, а делитель - через у.

Тогда частное от деления двух данных чисел будет равно х/у.

Согласно условию задачи, произведение делимого,делителя и частного равно 3136, следовательно, можем записать следующее соотношение:

х * у * (х/у) = 3136.

Упрощая полученное соотношение, получаем:

По условию задачи, делимое, делитель и частное - натуральные числа, следовательно, значение х = -56 не подходит.

Разложим число 56 на произведение простых сомножителей:

56 = 2 * 28 = 2 * 2 * 14 = 2 * 2 * 2 * 7.

Перечислим все возможные делители числа 56, при которых частное является натуральным числом.

Делитель 1, частное 56;

делитель 2, частное 28;

делитель 4, частное 14;

делитель 8, частное 7;

делитель 7, частное 8;

делитель 14, частное 4;

делитель 28, частное 2.

делитель 56, частное 1.

Ответ: частное может принимать значения 1, 2, 4, 8, 7, 14, 28, 56.

Деление определяется как действие, обратное умножению.

Разделить одно число на другое - значит найти такое третье число, которое, будучи умножено на делитель, даст в произведении делимое:

Основываясь на этом определении, выведем правило деления для рациональных чисел.

Прежде всего укажем раз навсегда, что делитель не может быть нулём. Деление на нуль исключается по той же причине, по которой оно было исключено в арифметике.

Абсолютная величина а равна произведению абсолютных величин и с. Значит, абсолютная величина в равна абсолютной величине а, делённой на абсолютную величину

Определим знак частного с.

Если делимое и делитель имеют одинаковые знаки, то частное - положительное число. Действительно, если а и положительны, то частное о тоже будет положительным числом.

Пример. так как

Если а и отрицательные, то частное с и в этом случае должно быть положительным, так как, умножив на ьего отрицательное число мы должны получить отрицательное число а.

Пример. так как

Если делимое и делитель имеют разные знаки, то частное - отрицательное число. Действительно, если а положительно, а отрицательно, то с должно быть отрицательным, так как, умножив на него отрицательное число мы должны получить положительное число а.

Пример. так как

Если а отрицательно, а положительно, то и в этом случае с должно быть отрицательным числом, так как, умножив на него положительное число мы должны получить отрицательное число а.

Пример. так как

Итак, мы пришли к следующему правилу деления:

Чтобы разделить одно наело на другое, надо абсолютную величину делимого разделить на абсолютную величину делителя и перед частным поставить знак плюс, если делимое и делитель имеют одинаковые знаки, и знак минус,

если делимое и делитель имеют противоположные знаки.

Как мы уже говорили, деление на нуль невозможно, поясним это более подробно. Пусть требуется разделить какое-нибудь не равное нулю число, например -3, на 0.

Если число а есть искомое частное, то, умножив его на делитель, то есть на 0, мы должны получить делимое, то есть - 3. Но произведение равно 0, и делимое - 3 не может получиться. Отсюда мы заключаем, что число

3 на нуль разделить нельзя.

Пусть требуется число 0 разделить на 0. Пусть а - искомое частное; умножив а на делитель 0, получим в произведении 0 при любом значении а:

Таким образом, мы не получили никакого определённого числа: умножив на 0 любое число, мы получим 0. Поэтому деление нуля на нуль также считается невозможным.

Для рациональных чисел остаётся в силе следующее основное свойство частного:

Частное двух чисел не изменится, если делимое и делитель умножить на одно и то же число (не равное нулю).

Поясним это такими примерами.

1. Рассмотрим частное умножим делимое и делитель на - 4; тогда получим новое частное

Итак, в новом частном мы получили то же самое число 2.

2. Рассмотрим частное умножим делимое и делитель на - тогда получим такое частное:

Частное не изменилось, так как получилось то же самое число

Только тем что у целых чисел нужно у частного посчитать знак. Как посчитать знак частного целых чисел? Рассмотрим подробно в теме.

Термины и понятия частного целых чисел.

Чтобы выполнить деление целых чисел нужно вспомнить термины и понятия. В делении есть: делимое, делитель и частное целых чисел.

Делимое – это то целое число, которое делят. Делитель – это целое число, на которое делят. Частное – это результат деления целых чисел.

Можно сказать “Деление целых чисел” или “Частное целых чисел” смысл этих фраз один и тот же, то есть нужно поделить одно целое число на другое и получить ответ.

Деление берет свое начало из умножения. Рассмотрим пример:

У нас есть два множителя 3 и 4. Но допустим нам известно, что есть один множитель 3 и результат умножения множителей их произведение 12. Как найти второй множитель? На помощь приходит деление.

Правило деления целых чисел.

Определение:

Частное двух целых чисел равно частному их модулей, со знаком плюс в результате, если числа одинаковых знаков, и со знаком минус, если они разных знаков.

Важно учитывать знак частного целых чисел. Кратко правила деления целых чисел:

Плюс на плюс дает плюс.
“+ : + = +”

Минус на минус дает плюс.
“– : – =+”

Минус на плюс дает минус.
“– : + = –”

Плюс на минус дает минус.
“+ : – = –”

А теперь рассмотрим подробно каждый пункт правила деления целых чисел.

Деление целых положительных чисел.

Вспомним, что целые положительные числа это тоже самое, что натуральные числа. Мы пользуемся теми же правила, что и при делении натуральных чисел. Знак частного от деления целых положительных чисел всегда плюс . Иными словами, при делении двух целых чисел “плюс на плюс дает плюс ”.

Пример:
Выполните деление 306 на 3.

Решение:
Оба числа имеют знак “+”, поэтому ответ будет со знаком “+”.
306:3=102
Ответ: 102.

Пример:
Разделите делимое 220286 на делитель 589.

Решение:
Делимое 220286 и делитель 589 имеет знак плюс, поэтому частное тоже будет иметь знак плюс.
220286:589=374
Ответ: 374

Деление целых отрицательных чисел.

Правило деления двух отрицательных чисел.

Пусть у нас будут два отрицательных целых числа a и b. Нам нужно найти их модули и выполнить деление.

Результат деления или частное двух отрицательных целых чисел будет со знаком “+” или “минус на минус дает плюс”.

Рассмотрим пример:
Найдите частное -900:(-12).

Решение:
-900:(-12)=|-900|:|-12|=900:12=75
Ответ: -900:(-12)=75

Пример:
Выполните деление одного целого отрицательного числа -504 на второе отрицательное число -14.

Решение:
-504:(-14)=|-504|:|-14|=504:14=34
Записать выражение можно короче:
-504:(-14)=34

Деление целых чисел с разными знаками. Правило и примеры.

При выполнении деления целых чисел с разными знаками , частное будет равно отрицательному числу.

Не важно положительное целое число делим на отрицательное целое число или отрицательное целое число делим на положительное целое число, результат деления всегда будет равен отрицательному числу.

Минус на плюс дает минус.
Плюс на минус дает минус.

Пример:
Найдите частное двух целых чисел с разными знаками -2436:42.

Решение:
-2436:42=-58

Пример:
Вычислите деление 4716:(-524).

Решение:
4716:(-524)=-9

Нуль деленный на целое число. Правило.

При деление нуля на целое число ответ будет равен нулю.

Пример:
Выполните деление 0:558.

Решение:
0:558=0

Пример:
Разделите нуль на целое отрицательное число -4009.

Решение:
0:(-4009)=0

На нуль делить нельзя.

Нельзя 0 разделить на 0.

Проверка частного деления целых чисел.

Как говорилось ранее деление и умножение тесно связаны. Поэтому чтобы проверить результат деления двух целых чисел, нужно выполнить умножение делителя и частного в результате должно получиться делимое.

Проверка результата деления краткая формула:
Делитель ∙ Частное = Делимое

Рассмотрим пример:
Выполните деление и сделайте проверку 1888:(-32).

Решение:
Обращаем внимание на знаки целых чисел. Число 1888 положительное и имеет знак “+”. Число (-32) отрицательное и имеет знак “–”. Поэтому при делении двух целых чисел с разными знаками ответ будет отрицательное число.
1888:(-32)=-59

А теперь выполним проверку найденного ответа:
1888 – делимое,
-32 – делитель,
-59 – частное,

Делитель умножаем на частное.
-32∙(-59)=1888

Функция a n =f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Числа a 1 ; a 2 ; a 3 ; a 4 ;…, образующие последовательность, называются членами числовой последовательности. Так a 1 =f (1); a 2 =f (2); a 3 =f (3); a 4 =f (4);…

Итак, члены последовательности обозначаются буквами с указанием индексов — порядковых номеров их членов: a 1 ; a 2 ; a 3 ; a 4 ;…, следовательно, a 1 — первый член последовательности;

a 2 - второй член последовательности;

a 3 - третий член последовательности;

a 4 - четвертый член последовательности и т.д.

Кратко числовую последовательность записывают так: a n =f (n) или {a n }.

Существуют следующие способы задания числовой последовательности:

1) Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

Пример 1 . Написать последовательность всех неотрицательных чисел, кратных числу 5.

Решение. Так как на 5 делятся все числа, оканчивающиеся на 0 или на 5, то последовательность запишется так:

0; 5; 10; 15; 20; 25; ...

Пример 2. Дана последовательность: 1; 4; 9; 16; 25; 36; ... . Задайте ее словесным способом.

Решение. Замечаем, что 1=1 2 ; 4=2 2 ; 9=3 2 ; 16=4 2 ; 25=5 2 ; 36=6 2 ; … Делаем вывод: дана последовательность, состоящая из квадратов чисел натурального ряда.

2) Аналитический способ. Последовательность задается формулой n-го члена: a n =f (n). По этой формуле можно найти любой член последовательности.

Пример 3. Известно выражение k-го члена числовой последовательности: a k = 3+2·(k+1). Вычислите первые четыре члена этой последовательности.

a 1 =3+2∙(1+1)=3+4=7;

a 2 =3+2∙(2+1)=3+6=9;

a 3 =3+2∙(3+1)=3+8=11;

a 4 =3+2∙(4+1)=3+10=13.

Пример 4. Определите правило составления числовой последовательности по нескольким ее первым членам и выразите более простой формулой общий член последовательности: 1; 3; 5; 7; 9; ... .

Решение. Замечаем, что дана последовательность нечетных чисел. Любое нечетное число можно записать в виде: 2k-1, где k — натуральное число, т.е. k=1; 2; 3; 4; ... . Ответ: a k =2k-1.

3) Рекуррентный способ. Последовательность также задается формулой, но не формулой общего члена, зависящей только от номера члена. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Пример 5. Выписать первые четыре члена последовательности {a n },

если a 1 =7; a n+1 = 5+a n .

a 2 =5+a 1 =5+7=12;

a 3 =5+a 2 =5+12=17;

a 4 =5+a 3 =5+17=22. Ответ: 7; 12; 17; 22; ... .

Пример 6. Выписать первые пять членов последовательности {b n },

если b 1 = -2, b 2 = 3; b n+2 = 2b n +b n+1 .

b 3 = 2∙b 1 + b 2 = 2∙(-2) + 3 = -4+3=-1;

b 4 = 2∙b 2 + b 3 = 2∙3 +(-1) = 6 -1 = 5;

b 5 = 2∙b 3 + b 4 = 2∙(-1) + 5 = -2 +5 = 3. Ответ: -2; 3; -1; 5; 3; ... .

4) Графический способ. Числовая последовательность задается графиком, который представляет собой изолированные точки. Абсциссы этих точек — натуральные числа: n=1; 2; 3; 4; ... . Ординаты — значения членов последовательности: a 1 ; a 2 ; a 3 ; a 4 ;… .

Пример 7. Запишите все пять членов числовой последовательности, заданной графическим способом.

Каждая точки в этой координатной плоскости имеет координаты (n; a n). Выпишем координаты отмеченных точек по возрастанию абсциссы n .

Получаем: (1 ; -3), (2 ; 1), (3 ; 4), (4 ; 6), (5 ; 7).

Следовательно, a 1 = -3; a 2 =1; a 3 =4; a 4 =6; a 5 =7.

Ответ: -3; 1; 4; 6; 7.

Рассмотренная числовая последовательность в качестве функции (в примере 7) задана на множестве первых пяти натуральных чисел (n=1; 2; 3; 4; 5), поэтому, является конечной числовой последовательностью (состоит из пяти членов).

Если числовая последовательность в качестве функции будет задана на всем множестве натуральных чисел, то такая последовательность будет бесконечной числовой последовательностью.

Числовую последовательность называют возрастающей , если ее члены возрастают (a n+1 >a n) и убывающей, если ее члены убывают (a n+1

Возрастающая или убывающая числовые последовательности называются монотонными .

Очень большие и очень малые числа принято записывать в стандартном виде: a ∙10 n , где 1≤а<10 и n (натуральное или целое) – есть порядок числа, записанного в стандартном виде.

Например, 345,7=3,457∙10 2 ; 123456=1,23456∙10 5 ; 0,000345=3,45∙10 -4 .

Примеры.

Записать в стандартном виде число: 1) 40503; 2) 0,0023; 3) 876,1; 4) 0,0000067.

Решение.

1) 40503=4,0503·10 4 ;

2) 0,0023=2,3∙10 -3 ;

3) 876,1=8,761∙10 2 ;

4) 0,0000067=6,7∙10 -6 .

Еще примеры на стандартный вид числа.

5) Число молекул газа в 1 см 3 при 0°С и давлении 760 мм.рс.ст равно

27 000 000 000 000 000 000.

Решение.

27 000 000 000 000 000 000=2,7∙10 19 .

6) 1 парсек (единица длины в астрономии) равен 30 800 000 000 000 км. Записать это число в стандартном виде.

Решение.

1 парсек =30 800 000 000 000=3,08∙10 13 км.

В тему:

Киловатт-час — это внесистемная единица энергии или работы, применяется в электротехнике, обозначается кВт·ч.

1 кВт·ч=3,6∙10 6 Дж (Джоулей).

Часто требуется найти сумму квадратов (x 1 2 +x 2 2) или сумму кубов (x 1 3 +x 2 3) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Помочь в этом может теорема Виета:

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Выразим через p и q :

1) сумму квадратов корней уравнения x 2 +px+q=0;

2) сумму кубов корней уравнения x 2 +px+q=0.

Решение.

1) Выражение x 1 2 +x 2 2 получится, если взвести в квадрат обе части равенства x 1 +x 2 =-p;

(x 1 +x 2) 2 =(-p) 2 ; раскрываем скобки: x 1 2 +2x 1 x 2 + x 2 2 =p 2 ; выражаем искомую сумму: x 1 2 +x 2 2 =p 2 -2x 1 x 2 =p 2 -2q. Мы получили полезное равенство: x 1 2 +x 2 2 =p 2 -2q.

2) Выражение x 1 3 +x 2 3 представим по формуле суммы кубов в виде:

(x 1 3 +x 2 3)=(x 1 +x 2)(x 1 2 -x 1 x 2 +x 2 2)=-p·(p 2 -2q-q)=-p·(p 2 -3q).

Еще одно полезное равенство: x 1 3 +x 2 3 =-p·(p 2 -3q).

Примеры.

3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x 1 2 +x 2 2 .

Решение.

x 1 +x 2 =-p=3, а произведение x 1 ∙x 2 =q= в примере 1 ) равенство:

x 1 2 +x 2 2 =p 2 -2q. У нас -p =x 1 +x 2 =3 → p 2 =3 2 =9; q= x 1 x 2 =-4. Тогда x 1 2 +x 2 2 =9-2·(-4)=9+8=17.

Ответ: x 1 2 +x 2 2 =17.

4) x 2 -2x-4=0. Вычислить: x 1 3 +x 2 3 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x 1 +x 2 =-p=2, а произведение x 1 ∙x 2 =q= -4. Применим полученное нами (в примере 2 ) равенство: x 1 3 +x 2 3 =-p·(p 2 -3q)= 2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Ответ: x 1 3 +x 2 3 =32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x 2 -5x-7=0. Не решая, вычислить: x 1 2 +x 2 2 .

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5 ; произведение корней равно -3,5 .

Решаем так же, как пример 3) , используя равенство: x 1 2 +x 2 2 =p 2 -2q.

x 1 2 +x 2 2 =p 2 -2q= 2,5 2 -2∙(-3,5)=6,25+7=13,25.

Ответ: x 1 2 +x 2 2 =13,25.

6) x 2 -5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p , а произведение корней через q , получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x 1 2 +x 2 2 =p 2 -2q.

В нашем примере x 1 +x 2 =-p=5; x 1 ∙x 2 =q= -2. Подставляем эти значения в полученную формулу:

7) x 2 -13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас x 1 +x 2 =-p=13; x 1 ∙x 2 =q=36 . Подставляем эти значения в выведенную формулу:

Совет : всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13 , а произведение корней 36 . Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!