Действие жидкости и газа на погруженное в них тело — Гипермаркет знаний. Урок: Действие жидкости и газа на погруженное тело

В ходе этого урока путем экспериментов и рассуждений мы убедимся в том, что на погруженные в жидкость или газ тела действует сила, направленная вверх, и научимся вычислять ее значение.

Тема: Давление твердых тел, жидкостей и газов

Урок: Действие жидкости и газа на погруженное тело

Всем известны детские стихи Агнии Барто

Наша Таня громко плачет,

Уронила в речку мячик.

Тише, Танечка, не плачь!

Не утонет в речке мяч!

Почему мяч не тонет? Выясним это с помощью эксперимента. Опустим мячик для настольного тенниса в воду и отпустим его. Он тут же всплывет на поверхность. Значит, со стороны воды на мячик действует некая сила направленная вверх. Но если опустить в воду металлический шар, он останется лежать на дне. Получается, что эта сила действует не на все тела?

Рис. 1. Почему теннисный мячик поднимается на поверхность жидкости, а стальной шарик идет ко дну?

Выскажем гипотезу: на тело, погруженное в жидкость, со стороны жидкости действует некая сила, направленная вертикально вверх. На все ли тела действует данная сила?

Чтобы выяснить это, обратимся к эксперименту. Укрепим на штативе пружину, а к пружине подвесим груз. Пружина растянется под действием веса груза. Положение нижнего конца пружины отметим с помощью стрелки-указателя на стойке штатива (Рис 2а).

Рис. 2. Действие жидкости на тело уменьшает растяжение пружины

Если теперь погрузить подвешенное на пружине тело в воду, то можно заметить, что растяжение пружины уменьшилось (Рис 2б). Это означает, что со стороны жидкости на груз действует выталкивающая сила. Этот опыт подтвердил высказанную гипотезу. Эта гипотеза справедлива также и для тел, погруженных в газ.

Итак, на все тела, погруженные в жидкость или газ, действует выталкивающая сила со стороны жидкости или газа.

Рассчитаем величину выталкивающей силы и проанализируем, от чего она зависит. Для этого представим себе, что в жидкость погружено тело в форме прямоугольного параллелепипеда и рассмотрим силы, действующие со стороны жидкости на грани этого тела.

Рис. 3. Силы, действующие на грани погруженного в жидкость тела

Силы, действующие на боковые грани (F 1 и F 2 на рисунке 3) будут уравновешивать друг друга, так как они равны по величине. Эти силы они лишь сжимают погруженное в жидкость тело. В отличие от этого, величины сил, действующих на верхнюю грань (F 3) и на нижнюю грань (F 4) будут различны. Это объясняется тем, что давление жидкости на меньшей глубине h 1 будет меньше, чем давление на большей глубине h 2 .

Равнодействующая сил F 4 и F 3 , направленных в противоположные стороны, равна разнице их численных значений и направлена в сторону большей силы, то есть вертикально вверх. Она и представляет собой выталкивающую силу , ранее обнаруженную нами экспериментально.

Теперь докажем, что величина выталкивающей силы равна весу вытесненной телом жидкости. Для этого вспомним, что величина силы давления равна произведению давления на площадь, на которую это давление оказывается

Давление жидкости на глубине h можно найти, если знать плотность жидкости ρ и ускорение свободного падения g

Тогда выталкивающая сила равна

В последней формуле каждое слагаемое содержит одинаковые множители, которые можно вынести за скобки. Тогда в скобках останется разность глубин погружения верхней и нижней граней тела. А это не что иное, как высота самого тела h .

Кроме того, произведение площади нижней грани тела на его высоту представляет собой объем тела

Тогда для выталкивающей силы получаем такое выражение:

Наконец, произведение плотности жидкости на объем тела (а он равен объему вытесненной телом жидкости) - это масса вытесненной жидкости. А произведение массы жидкости на ускорение свободного падения равно силе тяжести, действующей на вытесненную жидкость, а значит, и весу жидкости (поскольку жидкость неподвижна)

Такой же результат получится, если вместо жидкости рассмотреть газ.

Сформулируем полученный нами результат.

На тело, погруженное в жидкость или газ, действует сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненной этим телом.

Сформулированный выше закон был впервые получен древнегреческим ученым Архимедом и носит название закона Архимеда . Выталкивающую силу часто называют силой Архимеда или архимедовой силой.

Рис. 4. Архимед (287 до н.э. - 212 до н.э.)

Легенда гласит, что царь Сиракуз по имени Гиерон поручил Архимеду выяснить, из чистого ли золота сделана корона, которую он заказал ювелиру. Царь подозревал, что ювелир заменил часть золота равной по массе частью серебра.

Рис. 5. Выталкивающая сила, действующая на корону, оказалась больше, чем действующая на слиток золота, так как объем короны был больше, чем объем слитка из-за меньшей плотности серебра по сравнению с плотностью золота

Архимед взвесил корону и равный ей по массе слиток золота в воздухе. А затем провел то же самое взвешивание, погрузив и корону, и слиток в воду. Выталкивающая сила, действующая на корону и на слиток, оказалась разной. Так ювелир был уличен в измене.

На все тела, погруженные в жидкость, действует со стороны жидкости выталкивающая сила. Величина этой выталкивающей силы численно равна весу вытесненной жидкости. Подобная сила действует и на тела, погруженные в газ.

  1. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  2. Перышкин А.В. Сборник задач по физике, 7 - 9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  3. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 - 9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  1. Единая коллекция цифровых образовательных ресурсов ().

Домашнее задание

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7 - 9 классов №605 - 609, 621, 632, 635.

>>Действие жидкости и газа на погруженное в них тело

Если погрузить в воду мячик, наполненный воздухом, и отпустить, то мы увидим, как он тут же всплывет. То же самое произойдет и с щепкой, пробкой и многими другими телами. Какая сила заставляет их всплывать?

Когда тело погружают в воду, на него со всех сторон начинают действовать силы давления воды (рис. 130, а). В каждой точке тела эти силы направлены перпендикулярно его поверхности. Если бы все эти силы были одинаковы, то тело испытывало бы лишь всестороннее сжатие. Но на разных глубинах гидростатическое давление различно: оно возрастает с увеличением глубины. Поэтому силы давления, приложенные к нижним участкам тела, оказываются больше сил давления, действующих на тело сверху. Преобладающие силы давления действуют в направлении снизу вверх. Это и заставляет тело всплывать.

Отослано читателями из интернет-сайтов

Электронные издания онлайн, сборник конспектов уроков по всем классам, рефераты с физики 7 класса, книги и учебники согласно каленадарного планирования физики 7 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

§ 1 Действие жидкости и газа на погружённое в них тело

Рассмотрим, что происходит с телом, погруженным в жидкость или газ. Поставим небольшой опыт. Измерим вес металлического цилиндра в воздухе и в воде. Для этого подвесим цилиндр к динамометру. При этом пружина динамометра растягивается до тех пор, пока вес цилиндра и сила упругости пружины не уравновесятся. Отметим, где находится указатель динамометра. Теперь опустим цилиндр в стакан с водой так, чтобы цилиндр полностью погрузился в воду. Мы увидим, что пружина немного сжимается, указатель динамометра будет находиться выше, чем отмеченное значение веса в воздухе.

Итак, вес тела в воде меньше, чем его вес воздухе. Как объяснить этот опыт?

Известно, что в жидкостях и газах существует давление. По закону Паскаля жидкости и газы оказывают давление во всех направлениях, и это давление зависит только от плотности жидкости и высоты столба жидкости.

Рассмотрим силы, действующие на погруженный в воду цилиндр. На боковые стороны цилиндра действуют равные силы, под действием которых тело сжимается. А силы, действующие на верхнюю и нижнюю грани, не будут равны, так как грани находятся на разной глубине. На верхнюю грань с силой F1 давит столб воды высотой h1 , и эта сила направлена вниз. На нижнюю грань с силой F2 действует столб воды высотой h2 , направленная вверх. Так как нижняя грань находится глубже, то модуль силы F2 больше модуля силы F1 , поэтому тело выталкивается из жидкости с силой, равной разности этих сил: Fвыт = F2 - F1

Чему равна выталкивающая сила?

площади верхней и нижней граней равны: S1 = S2 = S.

Давление жидкости определим по формуле p = gρh, где ρ - плотность жидкости. Получим:

F2 = p2 S2 = gρh2 · S;

F1 = p1 S1 = gρh1 · S;

Fвыт = F2 - F1 = gρh2 · S - gρh1 · S = gρS · (h2 - h1) = gρS · h, гдеh - высотацилиндра.

Произведение площади основания на высоту есть объем цилиндра: S · h= V .

ТогдаFвыт = g · ρжидкости · Vтела

§ 2 Закон Архимеда

Объем погруженного тела равен объему вытесненной жидкости. Тогда произведение плотности жидкости на объем равно массе жидкости m = ρ · V, а произведение массы жидкости на коэффициент тяжести есть вес жидкости: P = m · g.

Следовательно, Fвыт = gm = Pжид: выталкивающая сила равна весу жидкости в объеме погруженного в нее тела.

Проверим это утверждение экспериментально. Для проведения опыта возьмем ведерко, называемое ведерком Архимеда, металлический цилиндр, отливной сосуд, стакан и динамометр. В ведерко Архимеда нальем воду, подвесим к динамометру, к ведерку подвесим цилиндр (рис. а). Динамометр покажет вес цилиндра вместе с ведерком. Опустим цилиндр в отливной сосуд, наполненный водой до уровня отливной трубки. При этом часть воды из отливного сосуда выльется в стакан. В воде на цилиндр действует выталкивающая сила, поэтому вес цилиндра уменьшается и пружина динамометра сжимается (рис. б).

Выльем в ведерко Архимеда вытесненную воду. Мы увидим, что указатель цилиндра вернется в прежнее положение (рис. в, г). Опыт доказывает, что выталкивающая сила равна весу вытесненной жидкости.

Силу, выталкивающую тело из жидкости или газа, называют архимедовой силой в честь древнегреческого ученого Архимеда, который впервые указал на ее существование и рассчитал ее значение.

Архимедова сила (обозначается буквой FА) действует на тело, погруженное в жидкость или газ, и направлена вертикально вверх, то есть противоположно силе тяжести

Выясним, от чего зависит величина архимедовой силы. Возьмем два динамометра, одинаковые по объему цилиндры из разных металлов - алюминиевый и стальной, одинаковые по массе цилиндры из алюминия и стали, два стакана: в первый стакан нальем чистую воду, во второй - соленую воду.

Первый опыт (рис. 1.): измерим вес стального цилиндра в чистой воде и в растворе соли, заметим, что во втором случае вес тела окажется меньше, то есть тело сильнее выталкивается из жидкости с большей плотностью.

Второй опыт (рис. 2.): измерим вес одинаковых по массе цилиндров из алюминия и стали в чистой воде. Масса цилиндров одинакова, но плотность стали больше плотности алюминия, значит, его объем меньше. При погружении в воду в весе больше теряет цилиндр большего объема.

Третий опыт (рис. 3.): взвесим алюминиевый и стальной цилиндры равного объема сначала в воздухе, затем в воде, увидим, что при погружении оба цилиндра теряют в весе одинаково.

Результаты этих опытов еще раз убеждают нас в том, что:

Объем жидкости, вытесненной погруженным телом, равен объему этого тела

Vвыт. жидкости= Vтела

Архимедова сила, выталкивающая тело из жидкости, равна весу вытесненной жидкости в объеме этого тела: FА = Pжидкости

Вес тела, погруженного в жидкость, уменьшается на столько, сколько весит вытесненная им жидкость (или газ): Pтела в жидкости = mg - Pвыт. жидкости

Архимедова сила зависит только от плотности жидкости и объема погруженного тела (объема погруженной части тела): FА = gρжидVтелаи не зависит от плотности и формы погруженного тела.

Известно, что закон Паскаля применим и к газам. Поэтому на тело, погруженное в газ, также действует выталкивающая сила. Именно под действием выталкивающей силы воздушный шар поднимается вверх.

§ 3 Краткие итоги по теме урока

На тело, погруженное в жидкость или газ, действует выталкивающая сила, которая называется архимедовой силой в честь древнегреческого ученого Архимеда.

Архимедова сила равна весу вытесненной жидкости в объеме этого тела: FА = Pжид.

Архимедова сила действует на погруженное в жидкость или газ тело, направлена противоположно силе тяжести (вертикально вверх) и определяется по формуле

FА =gρжидкостиVтела

Архимедова сила зависит только от плотности жидкости и объема погруженного тела (объема погруженной части тела).

Вес тела, погруженного в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ): Pтела в жидкости = mg - Pжидкости

Список использованной литературы:

  1. Волков В.А. Поурочные разработки по физике: 7 класс. – 3-е изд. – М.: ВАКО, 2009. – 368 с.
  2. Волков В.А. Тесты по физике: 7-9 классы. – М.: ВАКО, 2009. – 224 с. – (Мастерская учителя физики).
  3. Кирик Л.А. Физика -7. Разноуровневые самостоятельные и контрольные работы. М.: Илекса, 2008. – 192 с.
  4. Контрольно-измерительные материалы. Физика: 7 класс / Сост. Зорин Н.И. – М.: ВАКО, 2012. – 80 с.
  5. Марон А.Е., Марон Е.А. Физика. 7 Дидактические материалы. – М.: Дрофа, 2010. – 128 с.
  6. Перышкин А.В. Физика. 7 класс - М.: Дрофа, 2011.
  7. Тихомирова С.А. Физика в пословицах и поговорках, стихах и прозе, сказках и анекдотах. Пособие для учителя. – М.: Новая школа, 2002. – 144 с.
  8. Я иду на урок физики: 7 класс. Часть III: Книга для учителя. – М.: Издательство «Первое сентября», 2002. – 272 с.

Использованные изображения:

Тема: «Действие жидкости и газа на погруженное в них тело»

Цель: Формирование знаний у учащихся о Архимедовой силы.

Задачи :

1.Обучающая : формировать понятие об архимедовой силе, учить выводу правила для вычисления архимедовой силы.

2.Развивающая : развивать научность мышления, умение анализировать, сравнивать, выделять главное, применять знания при решении задач.

3.Воспитывающая : формировать научное мировоззрение у учащихся путём изучения закономерностей протекания физических процессов, необходимых для успешного усвоения последующих тем курса физики, воспитание самостоятельности, добросовестного отношения к учебному труду.

Вид урока : комбинорованный.

Прогнозируемый результат: знать в полном объёме теоретический материал по данной теме, уметь классифицировать полученные знания в единую сиситему, осознанно применять полученные знания на практике.

Оборудование : интерактивная доска, компьютеры, набор для изучения архимедовой силы, динамометры, бланки с алгоритмом действий при выполнении экспериментальной работы.

План урока.

I . Организационный момент.-2мин

II . Повторение пройденного материала (мини тест).-5мин

III . Изучение нового материала.

1.Презентация новой темы

2.Задание практического характера (экспериментальная работа).-15мин

МИНУТКА ОТДЫХА

3. Теоретическое доказательство существования выталкивающейсилы - 10 мин.

4.Закрепление знаний.

IV .Домашнее задание.-1мин

V .Подведение итогов урока.-4мин

Ход урока.

I .Организационный момент.

II .Повторение пройденного материала.

Мини тест.

На интерактивной доске задания мини теста по теме «Закон Паскаля. Давление жидкости»

Задание: выполнить тест (СЛАЙД 1).

1 ВАРИАНТ

2 ВАРИАНТ

1. От чего зависит давление жидкости?

А.от плотности и высоты столба жидкости

Б. от формы сосуда

В. от плотности жидкости

2. Продолжите фразу:

«Давление, производимое на жидкость или газ, передаётся ими во всех направлениях….»

А. в зависимости от направления

Б. без изменения

В. в зависимости от глубины жидкости.

3С глубиной давление жидкости….

А. не изменяется

Б. уменьшается

В. увеличивается

4. Формула силы тяжести

1. Между молекулами жидкости существуют силы

А. взаимного притяжения

Б. взаимного отталкивания

В. взаимного притяжения и отталкивания

2. Единица измерения давления.

3..Давление, производимое на жидкость или газ,передается по всем направлениям без изменения.

А.Закон всемирного тяготения.

Б.Закон Торричелли.

В.Закон Паскаля.

4. Формула давлеия жидкости

Проверка теста с самостоятельным выставлением оценки. На интерактивной доске ответы к тесту (СЛАЙД 2)

Код правильных ответов

1 Вариант: 2 Вариант:

Учитель: Поднимите руки, кто выполнил тест без единой ошибки?

Кто выполнил тест с одной ошибкой?

Кто выполнил тест, сделав 4 ошибки?

III . Изучение нового материала.

Учитель: Мы с вами говорили о давлении жидкости, о передаче давления в жидкостях и газах. Сегодня мы продолжим разговор о дейстии жидкости и газов.

Фронтальная экспериментальная работа. (СЛАЙД 3)

У вас на столах есть динамометр, тело (металлический цилиндр), стакан с водой. Определите вес тела в воздухе и жидкости. Сравните полученные данные.

Какой вывод можно сделать по результатам эксперимента?

Вес тела в воде меньше, чем в водухе.

Вот по этой причине мы можем в воде свободно поднять те предметы. которые с трудом поднимаем в воздухе. Так какое же дейтвие оказывает жидкость на погруженное в неё тело? Именно это мы и попытаемся выяснить на уроке, тема которого звучит так «Действие жидкости и газа на погруженное в них тело». (СЛАЙД 4).

А какие же цели мы можем поставить перед собой на этом уроке?

Как направлена эта сила?

От чего она зависит?

ОПЫТ: С теннисным шариком.

Шарик погружен в воду. Что с ним произойдёт если отпустить шарик? Следовательно со стороны воды на шарик действовала какая-то сила? Как мы можем назвать её? (Выталкивающая сила)

Каково её направление? (вверх)

В тетрадь записать: выталкивающая сила всегда направлена вверх (против какой силы?) против силы тяжести. (СЛАЙД 5)

Попробуем выяснить от чего зависит выталкивающая сила?( СЛАЙД 6)

Экспериментальная работа.

Перед вами на столах находятся приборы и листы с алгоритмом действий при выполнении работы. Вам необходимо по этому алгоритму выполнить работу и сделать вывод.

    Выясните, зависти ли выталкивающая сила от объёма тела.

Указание.

    Определите вес тел в воздухе.

    Измерьте выталкивающую силупогрузив в воду сначало тело большего объёма, а затем - тело меньшего объёма.

    Выясните, зависти ли выталкивающая сила от плотности жидкости, в которую погружают тело.

Указание.

    Погрузите одно и то же тело сначала в воду, а затем – в раствор соли и измерьте выталкивающую силу в обоих случаях.

    Ответьте на вопрос: «В каком случае выталкивающая сила оказалась больше?»

    Сделайте вывод: «Зависит ли выталкивающая сила от объёма тела».

3. Выясните, зависти ли выталкивающая сила от рода вещества, погружаенного в жидкость тела.

Указание.

    Определите вес тела в воздухе.

    Измерьте выталкивающую силу, погрузив в воду сначало тело большей плотности, а затем - тело меньшей плотности.

    Сравните выталкивающие силы, действующие на тела и сделайте вывод: «Зависит ли выталкивающая сила от плотности тела».

Опрос по экспериментальной работе. Выводы по каждому заданию

и общий. Вывод на экран (СЛАЙД 6) Записать в тетрадях.

ВЫТАЛКИВАЮЩАЯ СИЛА

Не зависит от

Зависит от

ПЛОТНОСТИ ТЕЛА

1.ОБЪЕМА ТЕЛА

2.ПЛОТНОСТИ ЖИДКОСТИ

Учитель: Мы с вами достаточно хорошо и плодотворно потрудились, следовательно нам нужен небольшой отдых.

3.ФИЗКУЛЬТМИНУТКА. (СЛАЙД 7)

    Теоретическое доказательство существования выталкивающейсилы

Учитель: Экспериментально мы доказали существование вталкивающей силы и даже выяснили от чего она зависти. Теперь выведем формулу для расчёта выталкивающей силы. (СЛАЙД 8)

На экране рисунок тела, погруженного в воду.

Учитель: Чтобы было легче рассуждать выберем тело в виде паррлалилепипеда с основаниями, параллельными поверхности жидкости.

Рассмотрим силы, действующие на грани тела. На боковые грани тела, погрженного в жидкость действуют равные силы. Почему эти силы равные и уравновешивают друг друга?

На нипжнюю и верхнюю грани тоже действуют силы, но они не равны между собой, т.к. высота столба жидкости, действующая на нижнюю и верхнюю

грани разные

НА ДОСКЕ: р 1 =F 1 /S р 2 =F 2 /S = F 1 = р 1 S F 2 = р 2 S
р 1 = ρgh 1 р 2 = ρgh 2

F выт = F 2 – F 1 = р 2 S - р 1 S = Sρgh 2 - Sρgh 1 = ρgV 2 - ρgV 1 = ρgV, где V- объём параллилепипеда, а ρ – плотность жидкости

Т.е. F выт = ρ ж gV

ρ ж g =m = F выт = mV = Р ж , где Р ж – вес жидкости в объёме погруженного тела.

(СЛАЙД 9) Выталкивающая сила равна весу жидкости в объёме погруженного в неё тела. – в тетрадь

Действие жидкости на погруженное в жидкость тело подробно исследовал древнегреческий учный Архимед. В его честь исследованную нами силу назвали архимедовой силой (F а ). (СЛАЙД 10 о Архимеде).

Жидкости на тело давят,
Вверх его все поднимают,
При этом силу создают,
Что Архимедовой зовут!
Ее считать умеем мы:
Надо знать лишь вес воды,
Что то тело вытесняет -
Все закон нам объясняет.
Открыл его великий грек.
Ему имя - Архимед!

Повторим от каких величин она зависит.

Учитель: На тело находящееся в газе тоже действует выталкивающая (архимедова сила), которая равна весу газа в объёме этого тела, и которая тоже завист от плотности газа и объёма тела.

Может кто- то может привести примеры проявления силы Аархимеда в жизни (мыльные пузыри, воздушные шары) (СЛАЙД 11 – записать в тетрадь) Сила, выталкивающая тело из жидкости или газа, направлена противоположно силе тяжести, приложенной к этому телу и равна весу жидкости или газа, взятого в объёме этого тела.

Ребята, давайте вернёмся к целям, которые мы поставили пред собой вначале урока.

Выяснить какая сила действует со стороны жидкости на погруженное в неё тело?

Как направлена эта сила?

От чего она зависит?

Скажите мы достигли поставленных перед собой целей?

ОСТАЛОСЬ ТОЛЬКО ПРИМЕНИТЬ ЗНАНИЯ НА ПРАКТИКЕ.

Вопросы со СЛАЙДА 12:

    В какой воде легче плавать - в морской или речной? Почему?

    Сжимая плавательный пузырь, рыба может подниматься или опускаться в воде. Как это можно объяснить?

    Алюминиевый и медный бруски имеют одинаковые массы. Какой из них легче поднять в воде?

Ребята, наш урок подходит к концу.

Если вы поняли тему и у вас не осталось вопросов, то поднимите точку, если осталось что – то непонятно – знак вопроса.

Учитель: Запишите домашнее задание (СЛАЙД 13 ) §48 вопросы.

Желающие могут сделать небольшое сообщение и презентацию о Архимеде; о плавании судов и воздухоплавании.

ОЦЕНКИ с коментарием

469. Почему металлический корабль плавает в воде, а металлический гвоздь тонет?
Вес воды, вытесняемой подводной частью судна, равна весу судна в воздухе или силе тяжести, действующей на судно.

470. Как изменяется положение ватерлинии судна при его загрузке?
Ватерлиния приблизится к воде поскольку вес судна увеличился.

471. Как изменится осадка судна при переходе из реки в море?
Ватерлиния поднимется над поверхностью воды поскольку плотность морской воды выше, чем пресной.

472. В склянку налили ртуть, воду и керосин. Как расположатся в склянке эти жидкости?
По мере уменьшения плотностей: ртуть-вода-керосин.

473. В банку с ртутью уронили железную шайбу. Потонет шайба или будет плавать на ртути?
Не потонет, т.к. плотность железа меньше плотности ртути.

474. На рисунке 64 изображен деревянный брусок, плавающий в двух разных жидкостях. В каком случае жидкость имеет большую плотность? Одинакова ли сила тяжести, действующая на брусок? В каком случае архимедова сила больше?

Плотность жидкости б) больше, поскольку сила Архимеда, действующая на тело больше.

475. Поплавок со свинцовым грузилом внизу опускают сначала в воду, потом в масло. В обоих случаях поплавок плавает. В какую жидкость он погружается глубже?
В масло поплавок погрузится глубже, поскольку его плотность меньше плотности воды.

476. Изобразите силы, действующие на тело, когда оно плавает на поверхности жидкости (рис. 65).


477. Какие силы действуют на тело, когда оно всплывает на поверхность жидкости (рис. 66)? Покажите их стрелками в масштабе.

478. Изобразите стрелками силы, действующие на тело, когда оно тонет (рис. 67).

479. На одну сторону коромысла весов подвесили свинцовый свиток, на другую – кусок стекла равной массы. Сохранится ли равновесие, если и свинец и стекло целиком опустить в воду? Если нет, то какое плечо перетянет?
Равновесие не сохранится. Плечо с телом меньшего объема, т.е. со свинцом перетянет, т.к. сила Архимеда действующая на него будет меньше.

480. К коромыслу весов с двух сторон подвесили два одинаковых латунных грузика по 2 г и опустили один грузик в воду, а другой – в спирт. Какой грузик перетянет?
Грузик опущенный в жидкость с меньшей плотностью (т.е. спирт) перетянет.

481. На электронные весы поставили рядом банку с водой и деревянный брусок. Изменится ли показание весов, если брусок поместить в банку с водой, где он будет плавать?
Показания весов уменьшатся, т.к. на брусок будет действовать сила Архимеда.

482. Благодаря какому физическому закону рыбы могут, сжимая плавательный пузырь, подниматься и опускаться в воде?
Благодаря закону Архимеда.

483. На груди и спине водолаза помещают тяжелые свинцовые пластинки, подошвы башмаков также делают свинцовыми. Для чего это делается?
Чтобы вес водолаза был больше силы Архимеда действующей на него.

484. Пустая, плотно закрытая металлическая банка, почти целиком погружаясь в воду, в холодной воде плавает, а если воду нагреть, то она тонет. Чем объясняется это интересное явление?
Плотность нагретой воды уменьшается, следовательно и уменьшается сила Архимеда, действующая на банку.

485. Мраморный шар объемом 20 см3 уронили в реку. В какой силой он выталкивается из воды?

486. С какой силой выталкивается керосином кусок стекла объемом 10 см3 ?

487. Каков объем погруженного тела, если оно выталкивается водой с силой в 50 Н?

488. Какой объем воды вытесняет корабль, если на него действует выталкивающая сила 200 000 кН?

489. С какой силой человек будет выталкиваться из морской воды, если в пресной воде на него действует выталкивающая сила, равная 686 Н?

490. Определите вес в пресной воде 1 см3 меди.

491. Каков вес железа объемом 1 см3 в чистой воде?

492. Определите, сколько весит в воде стеклянный кубик объемом 1 см3 .

493. Пустой металлический шар весом 3 Н (в воздухе) и объемом 1200 см3 удерживают под водой. Останется ли шар под водой, если его отпустить? Какой величины требуется сила, чтобы удержать его под водой?

494. Кусок гранита объемом 5,5 дм3 и массой 15 кг целиком погружен в пруд. Какую силу необходимо приложить, чтобы держать его в воде?

495. Глыба мрамора объемом 1 м3 лежит на дне реки. Какую силу необходимо приложить, чтобы приподнять ее в воде? Каков ее вес в воздухе?

496. Каков вес в речной воде мраморной плиты, вес которой в воздухе 260 Н?

497. Какое натяжение испытывает трос при подъеме со дна озера гранитной плиты объемом 2 м3 ?

498. Колодезное железное ведро массой 1,56 кг и объемом 12 л опускают в колодец. Какую силу нужно приложить, чтобы поднять полное ведро в воде? Над водой? Трение не учитывать.


499. Какова плотность предмета, если его вес в воздухе 100 Н, а в пресной воде 60 Н?

500. Стеклянная пробка весит в воздухе 0,5 Н, в воде 0,32 Н, в спирте 0,35 Н. Какова плотность стекла? Какова плотность спирта?

501. Вес мраморной фигурки в воздухе 0,686 Н, а в пресной воде 0,372 Н. Определите плотность фигурки.

502. Гирька массой 100 г в пресной воде весит 0,588 Н, а в неизвестной жидкости 0,666 Н. Какова плотность неизвестной жидкости? Что это за жидкость?

503. Найдите плотность спирта, если кусок стекла весит в спирте 0,25 Н, в воздухе 0,36 Н, в воде 0,22 Н.

504. Стеклянная пластинка при погружении в чистую воду стала легче на 49 мН, а при погружении в керосин – на 39 мН. Какова плотность керосина?

505. Плот площадью 600 м2 после загрузки осел на 30 см. Найдите массу груза, помещенного на плот.

506. На паром длиной 5 м и шириной в 4 м заехал грузовик, в результате чего паром погрузился в воду на 5 см. Какова масса грузовика?

507. Найдите массу воды, вытесненной кораблем водоизмещением 50 000 т.
Масса воды равна водоизмещению, т.е. 50 000 т.

508. Прямоугольный паром длиной 10 м и шириной 4 м при загрузке осел на 75 см. Найдите массу груза.

509. Масса танка-амфибии около 2 т. Каков должен быть объем погруженной в воду части танка, чтобы танк мог плавать в воде?

510. Брусок из пробкового дерева, плотность которого 25 г/ см3 , плавает в пресной воде. Какая часть бруска погружена в воду?

511. По реке плывет бревно. Какая его часть погружена в воду, если плотность дерева 0,5 г/см3 ?

512. Что больше: подводная или надводная часть льдины, если плотность льда 0,9 г/ см3 ?

513. Глубина лужицы 2 см. Будет ли плавать в этой воде сосновый кубик, сторона которого равна 7 см? Будет ли плавать в этой лужице дощечка, массой равная кубику, толщиной 2 см?

514. Какую массу груза удержит в речной воде пробковый спасательный круг массой 12 кг?

515. Почему ребенок массой 30 кг свободно держится на воде в надувных нарукавниках, объем которых всего лишь 1,5 дм3 ?

516. Круглая железная дробинка массой 11,7 г соединена с пенопластовым кубиком массой 1,2 г. Всю систему полностью погрузили в воду. Общий вес в воде 6,4 ·10-2 Н. Какова плотность пенопласта?

517. Кусок воска весит в воздухе 882 мН. Воском облепили шарик и погрузили в воду. Вес всей системы в воде 98 мН. Определите плотность воска, если вес шарика в воде 196 мН.

518. К куску парафиновой свечи массой 4,9 г привязали шайбу, которая весит в воде 98 нМ. Общий вес плотностью погруженной в воду системы 78,4 мН. Найдите плотность парафина.

519. С какой выталкивающей силой действует воздух на тело объемом в 1 м3 при 0°С и нормальном атмосферном давлении?

523. В 1933 г. был построен дирижабль В-3, имеющий объем 6800 м3 . Какова подъемная сила этого дирижабля, если его наполняли водородом?

524. Один из первых конструкторов управляемого аэростата Сантос Дюмон построил шал объемом в 113 м3 и массой со всем оборудованием 27,5 кг. Шар был наполнен водородом. Мог ли на таком шаре подняться Сантос Дюмон, если его масса была равна 52 кг?

525. Может ли наполненный водородом воздушный шар объемом 1500 м3 поднять трех пассажиров массой по 60 кг каждый, если оболочка шара и гондола вместе имеют массу 250 кг?

526. В 1931 г. профессор Пикар на специально построенном аэростате поднялся на высоту 16 км. На этой высоте барометр показал давление 76 мм. рт. ст. Гондола аэростата, где помещался Пикар, была сделана из дюралюминия и плотно закрыта. Давление внутри гондолы все время оставалось равным 1 атмосфере (1 атм=760 мм.рт.ст.=1013 гПа.) Вычислите давление на 1 см2 стенки гондолы изнутри и снаружи.