Curiosity рассказал о радиации в космосе. Curiosity рассказал о радиации в космосе Причины радиации на Марсе

ESA/ATG medialab

Приборы на борту орбитального зонда миссии «ЭкзоМарс» Trace Gas Orbiter (TGO) помогли ученым выяснить, что космонавты смогут совершить только один полет к Марсу без существенного риска для здоровья. Главную опасность представляет высокий уровень радиации, связанный с галактическими космическими лучами , говорится в статье, опубликованной в журнале Icarus .

Высокий уровень радиации считается одним из главных препятствий на пути пилотируемых экспедиций на Марс. В частности, данные прибора RAD на борту марсохода Curiosity, собранные во время перелета к красной планете, показали , что во время путешествия человек может получить дозу радиации, сопоставимую с предельно допустимой – примерно 0,66 зиверта, 95 процентов которой приходится на галактические космические лучи, и лишь 5 процентов - на излучение Солнца. Аналогичные результаты были получены в 2014 году в ходе наблюдений на лунной орбите при помощи детектора космических лучей CRaTER, установленного на борту зонда LRO. Как показали его замеры, риск онкологических заболеваний у космонавтов после 500-дневного полета к Марсу повысится на 4-5 процентов.

Игорь Митрофанов и его коллеги из Института космических исследований РАН, Института медико-биологических проблем РАН и Института космических исследований и технологий Болгарской академии наук пришли к схожим выводам, анализируя данные, собранные дозиметрическим модулем «Люлин-МО», установленным на борту российско-европейского зонда TGO, в октябре 2016 года. Модуль является частью российского нейтронного детектора FREND , и он, как и датчик RAD на борту Curiosity, был включен большую часть времени, которое зонд провел во время полета к четвертой планете Солнечной системы.

«Во время шестимесячного полета к Марсу и возвращения на Землю экипаж космического корабля получит примерно 60 процентов от дозы радиации, максимально допустимой для всей карьеры космонавта или астронавта, если полет будет осуществляться во время сниженной солнечной активности», - говорится в статье.


Прибор FREND с дозиметрическим модулем Люлин-МО

Как показали собранные данные, уровень радиации в открытом космосе был примерно на 20 процентов выше, чем во время полета Curiosity. Ученые связывают это расхождение с тем, что уровень солнечной активности в этот период был минимальным, что повысило частоту «обстрела» зонда и всех планет космическими лучами из межзвездной среды. Нечто похожее было зафиксировано зондом LRO во время двух последних солнечных минимумов.

В среднем, космонавт, путешествующий примерно год к Марсу, получит примерно 0,7 зиверта ионизирующего излучения (около 73 рентген). Космонавты на борту МКС получают примерно 0,3 зиверта в год, а на Земле годовая доза, которую получает человек, составляет около 2,4 миллизиверта. Как показывают расчеты ученых, одно путешествие к Марсу по самому быстрому маршруту «съест» чуть больше половины от максимальной общей дозы радиации, допустимой для космонавтов за всю карьеру.

Что интересно, уровень радиации на орбите Марса был еще выше, причем уровень облучения очень сильно зависел от того, закрывала ли планета «Экзомарс» от солнечного ветра.

Замеры на самой поверхности планеты пока еще не были проведены европейскими и российскими учеными – Митрофанов и его коллеги планируют осуществить их при помощи дозиметра «Люлин-МЛ», который будет установлен на посадочной платформе для европейского марсохода «Пастер», сейчас в НПО Лавочкина.

Сергей Кузнецов

Риск радиационного облучения на Марсе для людей не так велик, как считалось раньше, новые результаты, полученные марсоходом Curiosity (Кьюриосити), говорят о том, что теперь это не является препятствием для долговременных пилотируемых миссий к Красной Планете.

В результате миссии, которая будет состоять из 180 дней путешествия в один конец (к Красной Планете или обратно к Земле) и 500 дней, проведенных собственно на Марсе, человек получит суммарную дозу облучения, равную 1.01 зиверта, - таков результат измерений, проведенных детектором излучений ровера Radiation Assessment Detector (RAD).

Европейское Космическое Агентство ограничило допустимую дозу облучения, которую получают космонавты за все время своей работы, 1 зивертом – при этом риск возникновения злокачественных опухолей возрастает на 5%.

«Безусловно, это приемлемое число», - заявляет руководитель отдела RAD Дон Хасслер (Don Hassler) из Юго-Западного Научно-Исследовательского Института в Боулдере, и ведущий автор исследования, результаты которого были опубликованы 9 декабря в журнале Science.

Доза облучения, полученного на Марсе, в 1 зиверт, превышает существующие стандарты NASA, которые ограничивают для астронавтов возрастающий риск заболевания раком, тремя процентами. Однако эти границы были установлены для миссий, предназначенных для полетов на околоземной орбите, в ближайшее время они могут быть пересмотрены с учетом более далеких полетов, считает Хасслер.

"NASA работает с Институтом Медицины Национальной Академии Наук, чтобы оценить, какими будут приемлемые границы для дальних космических полетов, таких, как миссия на Марс", - заявляет Хасслер.

Новые результаты представляют собой наиболее полную на данный момент картину радиационного окружения на пути к Марсу и на поверхности Красной Планеты. В них входят данные, которые RAD собрал за 8 месяцев, которые длилось космическое путешествие к Марсу, и в течение первых 300 дней на планете, - с августа 2012 года.

Измерения RAD охватывают два разных типа излучения энергетических частиц – галактических космических лучей, которые ускоряются до невероятных скоростей взрывами отдаленных сверхновых, и солнечных энергетических частиц, которые выбрасываются в космос штормами, которые происходят на Солнце.

Данные RAD показывают, что космонавты, исследующие поверхность Марса, будут получать дозу, равную приблизительно 0.64 миллизиверта каждый день. Во время путешествия к Марсу уровень радиации будет выше приблизительно в три раза - 1.84 миллизиверта каждый день.

Однако, Хасслер подчеркивает, что радиационное окружение Марса динамично, поэтому измерения Curiosity – не окончательные. Например, данные RAD были собраны во время пика 11-летнего цикла солнечной активности, в то время, когда поток галактических космических лучей относительно низкий (так как солнечная плазма обычно рассеивает солнечные лучи).

Измерения, сделанные Curiosity, должны помочь NASA в планировании пилотируемой миссии к Марсу, которую космическое агентство планирует запустить в середине 2030-х. Так же они дают информацию, которая помогает в поисках признаков жизни на Красной Планете в настоящем или прошлом – еще одна из главных задач, поставленных NASA.

Например, Хасслер заявляет, что новые результаты исследований RAD позволяют предположить, что на поверхности Марса найти признаки жизни будет затруднительно. "Эти измерения говорят нам о том, что признаки жизни на планете в прошлом можно найти на глубине около 1 метра", - говорит Хасслер.

Curiosity имеет на борту прибор RAD для определения интенсивности радиоактивного облучения. В ходе своего полета к Марсу Curiosity производил замеры радиационного фона, а сегодня об этих результатах рассказали ученые, которые работают с NASA. Поскольку марсоход летел в капсуле, а датчик радиации располагался внутри, то эти замеры практически соответствуют тому радиационному фону, который будет присутствовать в пилотируемом космическом корабле.


Результат не вдохновляет - эквивалентная доза поглощенного радиационного облучения в 2 раза превосходит дозу МКС. И в четыре - ту, которая считается предельно допустимой для АЭС.

То есть шестимесячный полет к Марсу примерно равносилен 1 году проведенному на околоземной орбите или двум на атомной электростанции. Учитывая, что общая длительность экспедиции должна составить около 500 суток, перспектива открывается не оптимистичная.
Для человека накопленная радиация в 1 Зиверт повышает риск раковых заболеваний на 5%. NASA позволяет своим астронавтам за свою карьеру, набирать не более 3% риска или 0,6 Зиверта. С учетом того, что на МКС ежедневная доза составляет до 1 мЗв, то предельный срок пребывания астронавтов на орбите ограничивается примерно 600 сутками за всю карьеру.
На самом Марсе радиация должна быть примерно в два раза ниже чем в космосе, из-за атмосферы и пылевой взвеси в ней т.е. соответствовать уровню МКС, но точных показателей еще не публиковали. Интересны будут показатели RAD в дни пылевых бурь - узнаем насколько марсианская пыль является хорошим радиационным экраном.

Сейчас рекорд пребывания на околоземной орбите принадлежит 55-летнему Сергею Крикалеву - на его счету 803 суток. Но он набрал их с перерывами - всего он совершил 6 полетов с 1988 по 2005 год.

Прибор RAD состоит из трех кремниевых твердотельных пластин, выступающих в качестве детектора. Дополнительно он имеет кристалл йодида цезия, который используется в качестве сцинтилятора . RAD установлен так, чтобы во время посадки смотреть в зенит и захватывать поле в 65 градусов.

Фактически это радиационный телескоп, который фиксирует ионизирующие излучения и заряженные частицы в широком диапазоне.

Радиация в космосе возникает в основном из двух источников: от Солнца - во время вспышек и коронарных выбросов, и от космических лучей, которые возникают во время взрывов сверхновых или других высокоэнергетических событий в нашей и других галактиках.


На иллюстрации: взаимодействие солнечного «ветра» и магнитосферы Земли.

Космические лучи составляют основную долю радиации в межпланетном путешествии. На них приходится доля излучения в 1,8 мЗв в сутки. Лишь три процента облучения накоплено Curiosity от Солнца. Это связано еще и с тем, что полет проходил в сравнительно спокойное время. Вспышки повышают суммарную дозу, и она приближается к 2 мЗв в сутки.


Пики приходятся на солнечные вспышки.

Нынешние технические средства более эффективны против солнечной радиации, которая имеет невысокую энергию. Например, можно оборудовать защитную капсулу, где космонавты смогут скрываться во время солнечных вспышек. Однако, от межзвездных космических лучей не защитят даже 30 см алюминиевые стены. Свинцовые, вероятно, помогли бы лучше, но это значительно повысит массу корабля, а значит затраты на его выведение и разгон.

Наиболее эффективным средством минимизации облучения должны стать новые типы двигателей, которые существенно сократят время полета до Марса и обратно. NASA сейчас работает над солнечным электрореактивным двигателем и ядерным тепловым. Первый может в теории разогнаться до 20 раз быстрее современных химических двигателей, но разгон будет очень долгим из-за малой тяги. Аппарат с таким двигателем предполагается направить для буксировки астероида , который NASA хочет захватить и перевести на окололунную орбиту для последующего посещения астронавтами.

Наиболее перспективные и обнадеживающие разработки по электрореактивным двигателям ведутся по проекту VASIMR . Но для путешествия к Марсу солнечных панелей будет недостаточно - понадобится реактор.

Ядерный тепловой двигатель развивает удельный импульс примерно втрое выше современных типов ракет. Суть его проста: реактор нагревает рабочий газ (предполагается водород) до высоких температур без использования окислителя, который требуется химическим ракетам. При этом предел температуры нагрева определяется только материалом из которого изготовлен сам двигатель.

Но такая простота вызывает и сложности - тягой очень сложно управлять. NASA пытается решить эту проблему, но не считает разработку ЯРД приоритетной работой.

Применение ядерного реактора еще перспективно тем, что часть энергии можно было бы пустить на генерацию электромагнитного поля, которое бы дополнительно защищало пилотов и от космической радиации, и от излучения собственного реактора. Эта же технология сделала бы рентабельной добычу воды на Луне или астероидах, то есть дополнительно стимулировала коммерческое применение космоса.
Хотя сейчас это не более чем теоретические рассуждения, не исключено, что именно такая схема станет ключом к новому уровню освоения Солнечной системы.

Curiosity исследовал уровень радиации на поверхности Марса и показал, что он примерно соответствует уровню радиации низкой околоземной орбиты, где долгое время провод

Curiosity исследовал уровень радиации на поверхности Марса и показал, что он примерно соответствует уровню радиации низкой околоземной орбиты, где долгое время проводят люди, например, на уровне Международной космической станции.

Визит на Марс, тем не менее, от этого не становится менее опасным, так как лететь придётся достаточно долго, а ведь ещё нужно пробыть некоторое время на Красной планете и вернуться на Землю.

В отличие от нашей планеты, на Марсе нет магнитосферы либо она настолько слаба, что её влиянием на какие-либо объекты можно пренебречь. А ведь именно магнитосфера в первую очередь защищает Землю от значительной части радиации, в основном пропуская лишь нейтральные частицы (фотоны, нейтрино и некоторые другие) и задерживая львиную долю заряженных частиц. Однако у Марса есть атмосфера. И хотя она тонкая и довольно разрежена, всё же она обеспечивает определённую защиту от радиации.

Дон Хасслер, один из операторов Curiosity, заявил о том, что это первое в человеческой истории измерение радиационной обстановки на какой-либо планете помимо Земли. Он добавил, что космонавты могут жить в такой среде. Очень повезло, что Марс имеет пусть даже такую атмосферу. Строго говоря, и на Луне есть атмосфера, однако она там настолько слаба, что её можно не учитывать и приравнивать к газовой составляющей космического пространства. На Марсе не учитывать влияние атмосферы не позволительно, подчеркнул Хасслер.

Метеостанция марсианского ровера многое поведала и о тепловом приливе. Дело в том, что Солнце нагревает атмосферу Марса на той стороне, которая обращена к Солнцу. В результате давление падает и она расширяется. На обратной стороне господствует холод и поэтому атмосфера там сжимается и становится тоньше, опускается.

Так как Марс совершает вращения вокруг своей оси, то выпуклость более тёплого воздуха движется вместе с солнечной стороной с востока на запад. Всё это подтвердил Curiosity, измерив изменения давления газов атмосферы в течение суток. И он также зафиксировал сопряжённость колебания уровня заряженных частиц, являющихся составной частью солнечного и галактического ветров. Понижения проникающей радиацией совпадали с повышением атмосферного давления. То есть, когда атмосфера уплотняется, заряженные частицы в меньшей степени проникают к поверхности Марса. Так что воздух марсианской атмосферы всё-таки в определённой мере выполняет защитную функцию.

Учёные на данный момент ещё не готовы оценить так называемую суточную дозу облучения людей, пребывающих в будущем на Марсе. Но ясно, что она будет намного ниже уровня радиации, зарегистрированным тем же Curiosity во время межпланетного полёта. Как говорят специалисты в сфере космонавтики, вот где главная проблема. Ведь за три года путешествия на Красную планету (туда и обратно) космонавты могут получить примерно в семь раз большую долю радиации, чем те, кто обитает на МКС за тот же срок.

Совокупная доза ионизирующего облучения увеличивает риски развития злокачественных опухолей и других последствий. Дело в том, что те частицы, которые обладают достаточно сильной энергией и буквально врезаются в тело человека, способны превращать атомы нашего тела в ионы и даже выбивать их из своих «законных» мест. Это и есть опасное действие ионизированного излучения. Поэтому космические агентства устанавливают строгие лимиты на пребывание в открытом космосе. Поэтому крайне необходимо знать как уровень радиации в открытом космосе, так и уровень радиации на Марсе.

Curiosity ещё предстоит выяснить, в какой степени Марс беззащитен перед солнечными вспышками, которые и на Землю оказывают серьёзное влияние. Поэтому специалисты НАСА полагают, что первое время на Марсе будут строиться подземные колонии, а на поверхность главным образом выходить будут роботы.

Американские учёные представили первый подробный отчёт о радиации на поверхности Марса. В основу легли данные собранные за первые триста дней миссии детектором оценки радиации (RAD), установленным на марсоходе Curiosity.

Результаты, опубликованные в журнале Science , показывают, что радиоактивное излучение хоть и представляет угрозу здоровью астронавтов, но всё-таки не ставит крест на планах пилотируемых полётов.

Излучение на Марсе гораздо жестче, чем на Земле по двум причинам. Во-первых, там отсутствует глобальное магнитное поле, которое прикрывает землян. Во-вторых, слишком тонкий слой атмосферы обеспечивает небольшую защиту от солнечного излучения, но бесполезен против космических лучей.

В среднем радиоактивное воздействие на поверхности планеты эквивалентно дозе в 0,67 миллизивертов. Это почти в три раза меньше дозы в 1,8 миллизивертов, которую ежесуточно регистрировал RAD во время межпланетного перелёта.

За первые восемь месяцев работы марсохода RAD зафиксировал один мощный всплеск излучения, связанный с вспышкой на Солнце, а также три "провала", вызванных корональными выбросами в межпланетное пространство , которые обеспечили магнитное экранирование от космического излучения.

"Мы продолжаем следить за радиационной обстановкой в разные периоды солнечного цикла и наблюдаем за последствиями крупных солнечных бурь. Эти измерения дают нам важную информацию для планирования будущих экспедиций", — сообщил в пресс-релизе NASA главный исследователь RAD Дон Хасслер (Donald Hassler) из Юго-западного исследовательского института в Боулдере.

Предполагается, что экспедиция к Красной планете продлится 860 суток, из которых 180 уйдёт на перелёт в каждую сторону, и ещё 500 суток земляне проведут на поверхности планеты. Во время пилотируемого полёта дозу облучения можно будет снизить с помощью .

По оценке специалистов суммарная доза облучения, которую космические путешественники получат за всё путешествие, составит около одного зиверта .Такая доза не считается смертельной, но увеличивает риск развития смертельных форм рака как минимум на 5%.

Отметим, что согласно действующим правилам Американского космического агентства NASA риск подобных заболеваний за всю карьеру астронавтов не должен повышаться более чем на 3%. Однако существующие нормы были рассчитаны для работы на низкой околоземной орбите и, конечно же, требуют корректировки для дальних полётов.

Сейчас НАСА совместно с Институтом медицины (IOM) проводят исследования, чтобы разработать нормы и ограничения для экспедиций к другим планетам, в частности, к Марсу.

Новое исследование кроме чисто практического значения для будущих экспедиций проливает свет на . Уровень радиации на поверхности планеты позволяет предположить, что микробные организмы не могли сохраниться в верхних слоях почвы, а признаки существующих или прошлых форм жизни следует искать в скважинах .