Что включает в себя ядро. Что такое ядро — это в биологии: свойства и функции

Биология клеток живых организмов изучает прокариотов, не имеющих ядра (nucleus, core). Для каких организмов характерно наличие ядра? Нуклеус - это центральный органоид .

Вконтакте

Важно! Основной функцией клеточного ядра является хранение и передача наследственной информации.

Структура

Что такое ядро? Из каких частей состоит ядро? Нижеперечисленные компоненты входят в состав нуклеуса:

  • Ядерная оболочка;
  • Нуклеоплазма;
  • Кариоматрикс;
  • Хроматин;
  • Нуклеолы.

Ядерная оболочка

Кариолемма состоит из двух прослоек - наружной и внутренней, разделенных перинуклеарной полостью. Внешняя мембрана сообщается с шероховатыми эндоплазматическими канальцами. Ко внутренней оболочке прикрепляются фибриллярные протеины основы ядерного вещества. Между мембранами находится перинуклеарная полость, сформированная взаимным отталкиванием ионизированных органических молекул с аналогичными зарядами.

Кариолемма пронизана системой отверстий - пор, образованных белковыми молекулами. Через них рибосомы- структуры, в которых происходит синтез протеинов, а также оповестительные РНК проникают в цитоплазматическую сеть.

Межмембранные поры являются канальцами, заполненными . Их стенки сформированы специфическими белками - нуклеопоринами. Диаметр отверстия позволяет цитоплазме и содержимому ядра обмениваться мелкими молекулами. Нуклеиновые кислоты, а также высокомолекулярные белки не способны самостоятельно перетекать из одной части клетки в другую. Для этого существуют специальные транспортные протеины, активизация которых протекает с энергетическими затратами.

Высокомолекулярные соединения перемещаются через поры при помощи кариоферинов. Те, что транспортируют вещества из цитоплазмы в ядро, называются импортинами. Передвижение в обратном направлении осуществляют экспортины. В какой части ядра находится молекула РНК? Она путешествует по всей клетке.

Важно! Высокомолекулярные вещества не могут самостоятельно проникать через поры из ядра в и обратно.

Нуклеоплазма

Представлена кариоплазмой - гелеобразной массой, находящейся внутри двухслойной оболочки. В отличие от цитоплазмы, где ph >7, внутри ядра среда кислая. Основными веществами, которые входят в состав нуклеоплазмы являются нуклеотиды, белки, катионы, РНК, H2O.

Кариоматрикс

Какие компоненты входят в основу ядра? Она сформирована фибриллярными белками трехмерной структуры - ламинами. Играет роль скелета, препятствуя деформации органоида при механических воздействиях.

Хроматин

Это главное вещество , представленное совокупностью хромосом, часть из которых находится в активированном состоянии. Остальные упакованы в уплотненные глыбки. Их раскрытие происходит во время деления. В какой части ядра находится молекула, известная нам, как ДНК? состоят из генов, представляющих собой части молекулы ДНК. В них закреплена информация, передающая новым генерациям клеток наследственные признаки. Следовательно, в этой части ядра находится молекула ДНК.

В биологии выделяют следующие типы хроматина:

  • Эухроматин. Представляется нитевидными, деспирализированными, неокрашиваемыми образованиями. Существует в покоящемся ядре в период интерфазы между циклами деления клетки.
  • Гетерохроматин. Не активизированные спирализованные, легко окрашивающиеся участки хромосом.

Нуклеолы

Ядрышко - наиболее уплотненная структура из входящих в состав нуклеуса. Оно обладает, преимущественно округлыми формами, однако, имеются сегментированные, как у лейкоцитов. Ядро клетки некоторых организмов нуклеол не имеют. В других нуклеусах их может быть несколько. Вещество ядрышек представлено гранулами, являющимися субъединицами рибосом, а также фибриллами, представляющими собой молекулы РНК.

Ядрышко: строение и функции

Нуклеолы представлены нижеперечисленными структурными типами:

  • Ретикулярный. Типичный для большинства клеток. Отличается высокой концентрацией уплотненных фибрилл и гранул.
  • Компактный. Характеризуется множественностью фибриллярных скоплений. Встречается в делящихся клетках.
  • Кольцеобразный. Характерен для лимфоцитов и соединительнотканных целл.
  • Остаточный. Преобладает в клетках, где процесс деления не происходит.
  • Обособленный. Все составляющие нуклеолы разделены, пластические действия невозможны.

Функции

Какую функцию выполняет ядро? Нуклеусу характерны следующие обязанности:

  • Передача наследственных признаков;
  • Размножение;
  • Запрограммированная гибель.

Хранение генетической информации

Генетические коды хранятся в хромосомах. Они отличаются формой и размерами. Особи разного вида имеют неодинаковое количество хромосом. Комплекс признаков, характерный для хранилищ наследственной информации данного вида называют кариотипом.

Важно! Кариотип - это комплекс признаков, характерный для хромосомного состава организмов данного вида.

Различают гаплоидную, диплоидную, полиплоидную совокупность хромосом.

Клетки тела человека содержат 23 разновидности хромосом. В яйцеклетке и спермии содержится гаплоидный, то есть, одинарный их набор. При оплодотворении хранилища обоих клеток объединяются, образуя двойной - диплоидный комплект. Клеткам культурных растений присущ триплоидный или тетраплоидный кариотип.

Хранение генетической информации

Передача наследственных признаков

Какие процессы жизнедеятельности происходят в ядре? Генная кодировка передается в процессе считывания информации, результатом которой является образование матричной (информационной) РНК. Экспортины выводят рибонуклеиновую кислоту через нуклеарные поры в цитоплазму. Рибосомы используют генетические коды для синтеза необходимых организму белков.

Важно! Синтез белков происходит в цитоплазматических рибосомах на основании закодированной генетической информации, доставленной информационной РНК.

Размножение

Прокариоты размножаются просто. Бактерии обладают единственной молекулой ДНК. В процессе деления она копирует саму себя, прикрепляясь ко клеточной оболочке. Мембрана врастает между двумя соединениями и образуются два новых организма.

У эукариотов различают амитоз, митоз и мейоз:

  • Амитоз. Деление ядра происходит без дробления клетки. Образуются двухъядерные целлы. При следующем делении возможно возникновение полинуклеарных образований. Для каких организмов характерно такое размножение? Ему подвержены стареющие, нежизнеспособные, а также опухолевые клетки. В некоторых ситуациях амитотическое деление с образованием нормальных клеток происходит в роговице, печени, хрящевых текстурах, а также тканях некоторых растений.
  • Митоз. В этом случае деление ядра начинается его разрушением. Образуется веретено дробления, при помощи которого парные хромосомы разводятся по разным концам клетки. Происходит репликация носителей наследственности, после чего формируются два ядра. После этого веретено деления демонтируется, формируется ядерная оболочка, которая разделяет одну клетку на две.
  • Мейоз. Сложный процесс, при котором деление ядра происходит без удвоения разошедшихся хромосом. Характерен для образования половых клеток - гамет, имеющих гаплоидный набор носителей наследственности.

Запрограммированная гибель

Генетическая информация предусматривает продолжительность жизни клетки, и по истечении отведенного времени запускает процесс апоптоза (греч. - листопад). Хроматин конденсируется, ядерная мембрана разрушается. Целла распадается на фрагменты, ограничивающиеся плазматической оболочкой. Апоптотические тельца, минуя стадию воспаления, поглощаются макрофагами, либо соседними клетками.

Для наглядности строение ядра и функции, выполняемые его частями представлены таблицей

Элемент ядра Особенности строения Выполняемые функции
Оболочка Двухслойная мембрана Разграничение содержимого нуклеуса и цитоплазмы
Поры Отверстия в оболочке Экспорт - импорт РНК
Нуклеоплазма Гелеобразная консистенция Среда для биохимических превращений
Кариоматрикс Фибриллярные белки Поддержка структуры, защита от деформирования
Хроматин Эухроматин, гетерохроматин Хранение генетической информации
Нуклеола Фибриллы и гранулы Выработка рибосом

Внешний вид

Форма определяется конфигурацией мембраны. Отмечают нижеперечисленные виды ядер:

  • Круглая. Наиболее часто встречаемая. Например, большую часть лимфоцита занимает нуклеус.
  • Вытянутая. Подковообразное nucleus находят у несозревшего нейтрофила.
  • Сегментированная. В оболочке формируются перегородки. Образуются привязанные друг к другу сегменты, такие как у зрелого нейтрофила.
  • Разветвленная. Обнаруживается в ядрах клеток членистоногих.

Количество ядер

В зависимости от выполняемых функций, целлы могут обладать одним или несколькими ядрами либо не иметь их вообще. Различают следующие виды клеток:

  • Безъядерные. Форменные компоненты крови высших животных - эритроциты, тромбоциты являются переносчиками важных веществ. Чтобы освободить место для гемоглобина или фибриногена костный мозг вырабатывает эти элементы безъядерными. Они не способны делиться и по прохождении запрограммированного времени отмирают.
  • Одноядерные. Таково большинство клеток живых организмов.
  • Бинуклеарные. Печёночные гепатоциты выполняют двойную функцию - детоксикационную и производственную. Синтезируется гем, необходимый для выработки гемоглобина. Для этих целей необходимы два ядра.
  • Многоядерные. Миоциты мышц выполняют колоссальный объем работы, для ее выполнения необходимы дополнительные ядра. По этой же причине полинуклеарностью отличаются клетки покрытосеменных растений.

Хромосомные патологии

Многие болезни являются следствием нарушения связаны с нарушениями хромосомного состава. Наиболее известны нижеперечисленные симптомокомплексы:

  • Дауна. Вызван наличием лишней двадцать первой хромосомой (трисомия).
  • Эдвардса. Присутствует лишняя восемнадцатая хромосома.
  • Патау. Трисомия 13.
  • Тернера. Не достает хромосомы Х.
  • Клайнфелтера. Характеризуется лишними X либо Y-хромосомами.

Недуги, вызванные разладом в функционировании составных частей ядра не всегда связаны с хромосомными аномалиями. Мутации, которые влияют на отдельные белки ядра вызывают следующие заболевания:

  • Ламинопатия. Проявляется преждевременным старением.
  • Аутоиммунные заболевания. Красная волчанка - диффузное поражение соединительнотканных текстур, рассеянный склероз - разрушение миелиновых оболочек нервов.

Важно! Хромосомные аномалии приводят к тяжелым заболеваниям.

Строение ядра

Биология в картинках: Строение и функции ядра

Вывод

Клеточное ядро отличается сложным строением и выполняет жизненно важные функции.Оно является хранилищем и передатчиком наследственной информации, руководит синтезом белков и процессами деления клеток. Хромосомные аномалии являются причинами тяжелых заболеваний.

Генетическая информация эукариотической клетки хранится в особой двумембранной органелле - ядре. В нём находится более 90 % ДНК.

Строение

Понятие, что такое ядро в биологии и какие функции оно выполняет, укрепилось в научной среде только в начале XIX века. Однако впервые ядро в клетках лосося наблюдал натуралист Антони ван Левенгук ещё в 1670-х годах. Термин предложил ботаник Роберт Броун в 1831 году.

Ядро - наиболее крупный органоид клетки (до 6 мкм), который состоит из трёх частей:

  • двойной мембраны;
  • нуклеоплазмы;
  • ядрышка.

Рис. 1. Внутреннее строение ядра.

Ядро отделяется от цитоплазмы двойной мембраной, имеющей поры, через которые осуществляется избирательный транспорт веществ в цитоплазму и обратно. Пространство между двумя оболочками называется перинуклеарным. Внутренняя оболочка выстелена изнутри ядерным матриксом, который играет роль цитоскелета и обеспечивает структурную поддержку ядра. Матрикс содержит ядерную ламину, отвечающую за формирование хроматина.

Под мембранной оболочкой находится вязкая жидкость, которая называется нуклеоплазмой или кариоплазмой.
Она содержит:

  • хроматин, состоящий из белка, ДНК и РНК;
  • отдельные нуклеотиды;
  • нуклеиновые кислоты;
  • белки;
  • воду;
  • ионы.

В соответствии с плотностью скручивания хроматин может быть двух видов:

ТОП-3 статьи которые читают вместе с этой

  • эухроматин - деконденсированный (разрыхлённый) хроматин в неделящемся ядре;
  • гетерохроматин - конденсированный (плотно скрученный) хроматин в делящемся ядре.

Часть хроматина всегда находится в скрученном состоянии, часть - в свободном.

Рис. 2. Хроматин.

Обычно гетерохроматин называют хромосомой. Хромосомы хорошо видны в микроскоп при митотическом делении клетки. Совокупность признаков хромосом (размер, форма, количество) называется кариотипом. В кариотип входят аутосомы и гоносомы. Аутосомы несут информацию о признаках живого организма. Гоносомы определяют пол.

Внешняя оболочка переходит в эндоплазматическую сеть или ретикулум (ЭПР), образуя складки. На поверхности мембраны ЭПР находятся рибосомы, отвечающие за биосинтез белка.

Ядрышко представляет собой плотную структуру без мембраны. По сути это уплотнённый участок нуклеоплазмы с хроматином. Состоит из рибонуклеопротеидов (РНП). Здесь происходит синтез рибосомной РНК, хроматина и нуклеоплазмы. Ядро может содержать несколько мелких ядрышек. Впервые ядрышко было открыто в 1774 году, но его функции стали известны лишь к середине ХХ века.

Рис. 3. Ядрышко.

Эритроциты млекопитающих и клетки ситовидных трубок растений не содержат ядра. Клетки поперечнополосатых мышц содержат несколько небольших ядер.

Функции

Основными функциями ядра являются:

  • контроль всех процессов жизнедеятельности клетки, в том числе синтез белков;
  • синтез некоторых белков, рибосом, нуклеиновых кислот;
  • хранение генетического материала;
  • передача ДНК следующим поколениям при делении.

Клетка без ядра погибает. Однако клетки с пересаженным ядром восстанавливают жизнеспособность, получая генетическую информацию клетки-донора. . Всего получено оценок: 189.

Ядро Linux содержит более 13 миллионов строк кода и является одним из самых крупных проектов с открытым исходным кодом в мире. Так что такое ядро Linux и для чего оно используется?

Ядро - это самый низкий уровень программного обеспечения, которое взаимодействует с аппаратными средствами компьютера. Оно отвечает за взаимодействие всех приложений, работающих в пространстве пользователя вплоть до физического оборудования. Также позволяет процессам, известным как сервисы получать информацию друг от друга с помощью системы IPC.

Виды и версии ядра

Что такое ядро Linux вы уже знаете, но какие вообще бывают виды ядер? Есть различные способы и архитектурные соображения при создании ядер с нуля. Большинство ядер могут быть одного из трех типов: монолитное ядро, микроядро, и гибрид. Ядро Linux представляет собой монолитное ядро, в то время как ядра Windows и OS X гибридные. Давайте сделаем обзор этих трех видов ядер.

Микроядро

Микроядра реализуют подход, в котором они управляют только тем, чем должны: процессором, памятью и IPC. Практически все остальное в компьютере рассматривается как аксессуары и обрабатывается в режиме пользователя. Микроядра имеют преимущество в переносимости, они могут использоваться на другом оборудовании, и даже другой операционной системе, до тех пор, пока ОС пытается получить доступ к аппаратному обеспечению совместимым образом.

Микроядра также имеют очень маленький размер и более безопасны, поскольку большинство процессов выполняются в режиме пользователя с минимальными привилегиями.

Плюсы

  • Портативность
  • Небольшой размер
  • Низкое потребление памяти
  • Безопасность

Минусы

  • Аппаратные средства доступны через драйверы
  • Аппаратные средства работают медленнее потому что драйверы работают в пользовательском режиме
  • Процессы должны ждать свою очередь чтобы получить информацию
  • Процессы не могут получить доступ к другим процессам не ожидая

Монолитное ядро

Монолитные ядра противоположны микроядрам, потому что они охватывают не только процессор, память и IPC, но и включают в себя такие вещи, как драйверы устройств, управление файловой системой, систему ввода-вывода. Монолитные ядра дают лучший доступ к оборудованию и реализуют лучшую многозадачность, потому что если программе нужно получить информацию из памяти или другого процесса, ей не придется ждать в очереди. Но это и может вызвать некоторые проблемы, потому что много вещей выполняются в режиме суперпользователя. И это может принести вред системе при неправильном поведении.

Плюсы:

  • Более прямой доступ к аппаратным средствам
  • Проще обмен данными между процессами
  • Процессы реагируют быстрее

Минусы :

  • Большой размер
  • Занимает много оперативной памяти
  • Менее безопасно

Гибридное ядро

Гибридные ядра могут выбирать с чем нужно работать в пользовательском режиме, а что в пространстве ядра. Часто драйвера устройств и файловых систем находятся в пользовательском пространстве, а IPC и системные вызовы в пространстве ядра. Это решение берет все лучшее из обоих предыдущих, но требует больше работы от производителей оборудования. Поскольку вся ответственность за драйвера теперь лежит на них.

Плюсы

  • Возможность выбора того что будет работать в пространстве ядра и пользователя
  • Меньше по размеру чем монолитное ядро
  • Более гибкое

Минусы

  • Может работать медленнее
  • Драйверы устройств выпускаются производителями

Где хранятся файлы ядра?

Где находится ядро Linux? Файлы ядра Ubuntu или любого другого Linux-дистрибутива находятся в папке /boot и называются vmlinuz-версия. Название vmlinuz походит с эпохи Unix. В шестидесятых годах ядра привыкли называть просто Unix, в 90-х годах Linux ядра тоже назывались - Linux.

Когда для облегчения многозадачности была разработана виртуальная память, перед именем файла появились буквы vm, чтобы показать что ядро поддерживает эту технологию. Некоторое время ядро называлось vmlinux, но потом образ перестал помещаться в память начальной загрузки, и был сжат. После этого последняя буква x была изменена на z, чтобы показать что использовалось сжатие zlib. Не всегда используется именно это сжатие, иногда можно встретить LZMA или BZIP2, поэтому некоторые ядра называют просто zImage.

Нумерация версии состоит из трех цифр, номер версии ядра Linux, номер вашей версии и патчи или исправления.

В паке /boot можно найти не только ядро Linux, такие файлы, как initrd.img и system.map. Initrd используется в качестве небольшого виртуального диска, который извлекает и выполняет фактический файл ядра. Файл System.map используется для управления памятью, пока еще ядро не загрузилось, а конфигурационные файлы могут указывать какие модули ядра включены в образ ядра при сборке.

Архитектура ядра Linux

Так как ядро Linux имеет монолитную структуру, оно занимает больше и намного сложнее других типов ядер. Эта конструктивная особенность привлекла много споров в первые дни Linux и до сих пор несет некоторые конструктивные недостатки присущие монолитным ядрам.

Но чтобы обойти эти недостатки разработчики ядра Linux сделали одну вещь - модули ядра, которые могут быть загружены во время выполнения. Это значит что вы можете добавлять и удалять компоненты ядра на лету. Все может выйти за рамки добавления функциональных возможностей аппаратных средств, вы можете запускать процессы сервера, подключать виртуализацию, а также полностью заменить ядро без перезагрузки.

Представьте себе возможность установить пакет обновлений Windows без необходимости постоянных перезагрузок.

Модули ядра

Что, если бы Windows уже имела все нужные драйвера по умолчанию, а вы лишь могли включить те, которые вам нужны? Именно такой принцип реализуют модули ядра Linux. Модули ядра также известные как загружаемые модули (LKM), имеют важное значение для поддержки функционирования ядра со всеми аппаратными средствами, не расходуя всю оперативную память.

Модуль расширяет функциональные возможности базового ядра для устройств, файловых систем, системных вызовов. Загружаемые модули имеют расширение.ko и обычно хранятся в каталоге /lib/modules/. Благодаря модульной природе вы можете очень просто настроить ядро путем установки и загрузки модулей. Автоматическую загрузку или выгрузку модулей можно настроить в конфигурационных файлах или выгружать и загружать на лету, с помощью специальных команд.

Сторонние, проприетарные модули с закрытым исходным кодом доступны в некоторых дистрибутивах, таких как Ubuntu, но они не поставляются по умолчанию, и их нужно устанавливать вручную. Например, разработчики видеодрайвера NVIDIA не предоставляют исходный код, но вместо этого они собрали собственные модули в формате.ko. Хотя эти модули и кажутся свободными, они несвободны. Поэтому они и не включены во многие дистрибутивы по умолчанию. Разработчики считают что не нужно загрязнять ядро несвободным программным обеспечением.

Теперь вы ближе к ответу на вопрос что такое ядро Linux. Ядро не магия. Оно очень необходимо для работы любого компьютера. Ядро Linux отличается от OS X и Windows, поскольку оно включает в себя все драйверы и делает много вещей поддерживаемых из коробки. Теперь вы знаете немного больше о том, как работает ваше программное обеспечение и какие файлы для этого используются.

Ядро I Ядро́

клеточное, обязательная, наряду с цитоплазмой, составная часть клетки у простейших, многоклеточных животных и растений, содержащая Хромосомы и продукты их деятельности. По наличию или отсутствию в клетках Я. все организмы делят на эукариот (См. Эукариоты) и прокариот (См. Прокариоты). У последних нет оформленного Я. (отсутствует его оболочка), хотя дезоксирибонуклеиновая кислота (ДНК) имеется. В Я. хранится основная часть наследственной информации клетки; содержащиеся в хромосомах гены играют главную роль в передаче наследственных признаков в ряду клеток и организмов. Я. находится в постоянном и тесном взаимодействии с цитоплазмой; в нём синтезируются молекулы-посредники, переносящие генетическую информацию к центрам белкового синтеза в цитоплазме. Т. о., Я. управляет синтезами всех белков и через них - всеми физиологическими процессами в клетке. Поэтому получаемые экспериментально безъядерные клетки и фрагменты клеток всегда погибают; при пересадке Я. в такие клетки их жизнеспособность восстанавливается. Я. впервые наблюдал чешский учёный Я. Пуркине (1825) в яйцеклетке курицы; в растительных клетках Я. описал английский учёный Р. Броун (1831-33), в животных клетках - немецкий учёный Т. Шванн (1838-39).

Обычно Я. в клетке одно, находится близ её центра, имеет вид сферического или эллипсоидного пузырька (фигуры 1-3, 5, 6 ). Реже Я. бывает неправильной (фигура 4 ) или сложной формы (например, Я. лейкоцитов, Макронуклеус ы инфузорий). Нередки двух- и многоядерные клетки, обычно образующиеся путём деления Я. без деления цитоплазмы или путём слияния нескольких одноядерных клеток (т. н. симпласты, например поперечнополосатые мышечные волокна). Размеры Я. варьируют от Ядро 1 мкм (у некоторых простейших) до Ядро 1 мм (некоторые яйцеклетки).

Я. отделено от цитоплазмы ядерной оболочкой (ЯО), состоящей из 2 параллельных липопротеидных мембран толщиной 7-8 нм , между которыми находится узкое перинуклеарное пространство. ЯО пронизана порами диаметром 60-100 нм , на краях которых наружная мембрана ЯО переходит во внутреннюю. Частота пор различна в разных клетках: от единиц до 100-200 на 1 мкм 2 поверхности Я. По краю поры располагается кольцо плотного материала - так называемый аннулус. В просвете поры часто имеется центральная гранула диаметром 15-20 нм , соединённая с аннулусом радиальными фибриллами. Вместе с порой эти структуры составляют поровый комплекс, который, по-видимому, регулирует прохождение макромолекул через ЯО (например, вход в Я. белковых молекул, выход из Я. рибонуклеопротеидных частиц и т. п.). Наружная мембрана ЯО местами переходит в мембраны эндоплазматической сети (См. Эндоплазматическая сеть); она обычно несёт белоксинтезирующие частицы - Рибосомы . Внутренняя мембрана ЯО иногда образует впячивания в глубь Я. Содержимое Я. представлено ядерным соком (кариолимфой, кариоплазмой) и погруженными в него оформленными элементами - хроматином, ядрышками и др. Хроматин - это более или менее разрыхлённый в неделящемся Я. материал хромосом, комплекс ДНК с белками - так называемый дезоксирибо-нуклеопротеид (ДНП). Он выявляется с помощью цветной реакции Фёльгена на ДНК (фигуры 1 и 8 ). При делении Я. (см. Митоз) весь хроматин конденсируется в хромосомы; по окончании митоза большая часть участков хромосом опять разрыхляется; эти участки (так называемый эухроматин) содержат в основном уникальные (неповторяющиеся) гены. Другие участки хромосом остаются плотными (так называемый гетерохроматин); в них располагаются главным образом повторяющиеся последовательности ДНК. В неделящемся Я. большая часть эухроматина представлена рыхлой сетью фибрилл ДНП толщиной 10 - 30 нм , гетерохроматин - плотными глыбками (хромоцентрами), в которых те же фибриллы плотно упакованы. Часть эухроматина также может переходить в компактное состояние; такой эухроматин считается неактивным в отношении синтеза РНК. Хромоцентры обычно граничат с ЯО или ядрышком. Есть данные о том, что фибриллы ДНП закреплены на внутренней мембране ЯО.

В неделящемся Я. происходит синтез (Репликация) ДНК, изучаемый путём регистрации включенных в Я. меченных радиоактивными изотопами предшественников ДНК (обычно тимидина). Показано, что по длине хроматиновых фибрилл имеется множество участков (так называемых репликонов), каждый со своей точкой начала синтеза ДНК, от которой репликация распространяется в обе стороны. Вследствие репликации ДНК удваиваются и сами хромосомы.

В хроматине Я. происходит считывание закодированной в ДНК генетической информации путём синтеза на ДНК молекул матричной, или информационной, РНК (см. Транскрипция ), а также молекул других типов РНК, участвующих в белковом синтезе. Специальные участки хромосом (и соответственно хроматина) содержат повторяющиеся гены, которые кодируют молекулы рибосомной РНК; в этих местах Я. формируются богатые рибонуклеопротеидами (РНП) ядрышки , основная функция которых - синтез РНК, входящей в состав рибосом. Наряду с компонентами ядрышка в Я. есть и другие виды частиц РНК. К ним относятся перихроматиновые фибриллы толщиной 3-5 нм и перихроматиновые гранулы (ПГ) диаметром 40-50 нм , расположенные на границах зон рыхлого и компактного хроматина. И те и другие, вероятно, содержат матричную РНК в соединении с белками, а ПГ отвечают её неактивной форме; наблюдался выход ПГ из Я. в цитоплазму через поры ЯО. Имеются также интерхроматиновые гранулы (20-25 нм ), а иногда и толстые (40-60 нм ) нити РНП, скрученные в клубки. В ядрах амёб имеются нити РНП, скрученные в спирали (30-35 нм х 300 нм ); спирали могут выходить в цитоплазму и, вероятно, содержат матричную РНК. Наряду с ДНК- и РНК-содержащими структурами некоторые Я. содержат чисто белковые включения в виде сфер (например, в Я. растущих яйцеклеток многих животных, в Я. ряда простейших), пучков фибрилл или кристаллоидов (например, в ядрах многих тканевых клеток животных и растений, макронуклеусах ряда инфузорий). В Я. обнаружены также фосфолипиды, липопротепды, ферменты (ДНК-полимераза, РНК-полимераза, комплекс ферментов оболочки Я., в том числе аденозинтрифосфатаза, и др.).

В природе встречаются различные специальные типы Я.: гигантские Я. растущих. яйцеклеток, особенно рыб и земноводных; Я., содержащие гигантские политенные хромосомы (см. Политения), например в клетках слюнных желёз двукрылых насекомых; компактные, лишённые ядрышек Я. сперматозоидов и Микронуклеус ы инфузорий, сплошь заполненные хроматином и не синтезирующие РНК; Я., в которых хромосомы постоянно конденсированы, хотя ядрышки образуются (у некоторых простейших, в ряде клеток насекомых); Я., в которых произошло дву- или многократное увеличение числа наборов хромосом (Полиплоидия ; фигуры 7, 9 ).

Основной способ деления Я. - митоз, характеризующийся удвоением и конденсацией хромосом, разрушением ЯО (исключение - многие простейшие и грибы) и правильным расхождением сестринских хромосом в дочерние клетки. Однако Я. некоторых специализированных клеток, особенно полиплоидные, могут делиться простой перешнуровкой (см. Амитоз). Высокополиплоидные Я. могут делиться не только на 2, но и на много частей, а также почковаться (фигура 7 ). При этом может происходить разделение целых хромосомных наборов (т. н. сегрегация геномов).

Лит.: Руководство по цитологии, т. 1, М. -Л., 1965; Райков И. Б., Кариология простейших, Л., 1967; Робертис Э., Новинский В., Саэс Ф.,. Биология клетки, пер. с англ., М., 1973; Ченцов Ю. С., Поляков В. Ю., Ультраструктура клеточного ядра, М., 1974; The nucleus, ed. A. J. Dalton, F, Haguenau, N. Y. - L., 1968; The cell nucleus, ed. Н. Busch, v. 1-3, N. Y. - L., 1974.

И. Б. Райков.

Схема ультраструктуры ядра клетки печени: зоны компактного (кх) и рыхлого (рх) хроматина; ядрышко (як) с внутри-ядрышковым хроматином (вх), перихро-матиновые фибриллы (стрелки), перихроматнновые (пг) и интерхроматиновые (иг) гранулы; рибонуклеопротеидная нить, свёрнутая в клубок (к); оболочка ядра (яо) с порами (п).

II Ядро́ (матем.)

функция К (х , у ), задающая интегральное преобразование

которое переводит функцию f (y ) в функцию φ (х ). Теория таких преобразований связана с теорией линейных интегральных уравнений (См. Интегральные уравнения).

III Ядро́ (воен.)

шаровидный сплошной снаряд ударного действия в гладкоствольной артиллерии. С середины 14 в. Я. были каменные, с 15 в. железные, затем чугунные (для орудий большого калибра) и свинцовые (для орудий малого калибра). С 16 в. применялись зажигательные «калёные» Я. В 17 в. получили распространение снаряжавшиеся порохом полые разрывные Я. - снаряды (гранаты). Во 2-й половине 19 в. в связи с заменой гладкоствольных орудий нарезными вышли из употребления.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Антонимы :

Смотреть что такое "Ядро" в других словарях:

    Атомное ядро положительно заряженная массивная центральная часть атома, состоящая из протонов и нейтронов (нуклонов). дочернее ядро ядро, образующееся в результате распада материнского ядра. материнское ядро атомное ядро, испытывающее… … Термины атомной энергетики

    Сущ., с., употр. сравн. часто Морфология: (нет) чего? ядра, чему? ядру, (вижу) что? ядро, чем? ядром, о чём? о ядре; мн. что? ядра, (нет) чего? ядер, чему? ядрам, (вижу) что? ядра, чем? ядрами, о чём? о ядрах 1. Ядром называют внутреннюю,… … Толковый словарь Дмитриева

    ЯДРО, ядра, мн. ядра, ядер, ядрам, ср. 1. Внутренняя часть плода в твердой оболочке. Ядро ореха. 2. только ед. Внутренняя, средняя, центральная часть чего нибудь (спец.). Ядро древесины. Ядро земли (геол.). Ядро семяпочки (бот.). Ядро кометы… … Толковый словарь Ушакова

    Ср. ядрышко, ядрище, недро, самая середка, внутри вещи, нутро ее или серединная глубь; сосредоточенная суть, сущность, основанье; твердое, крепкое, или самое главное, важное, сущное; | круглое тело, шар. Из сих двух значений выводятся прочие: Сын … Толковый словарь Даля

    - (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… … Биологический энциклопедический словарь

    ядро - ЯДРО1, а, мн ядра, ядер, ядрам. Внутренняя часть плода, заключенная в твердую оболочку. Ядро грецкого ореха внешне очень похоже на головной мозг млекопитающего. ЯДРО2, а, мн ядра, ядер,ср Внутренняя центральная часть предмета (состоящего из… … Толковый словарь русских существительных

    См … Словарь синонимов

    А; мн. ядра, ядер, ядрам; ср. 1. Внутренняя часть плода (обычно ореха), заключённая в твёрдую оболочку. * А орешки не простые: Всё скорлупки золотые, Ядра чистый изумруд (Пушкин). Не разгрызть ореха, не съесть и ядра (Посл.). 2. Внутренняя,… … Энциклопедический словарь

ЯДРО , необходимая составная часть клеток животных и растений. Несколько спорным является вопрос о наличии ядра у бактерий и низших водорослей, однако и здесь, судя по новейшим данным, приходится признать его существование в виде диффузно распределенного в плазме вещества. Чаще всего клетка имеет одно Я., но встречаются двуядерные и многоядерные клетки. Форма Я. весьма разнообразна; как правило она соответствует форме клетки, однако наряду с наиболее распространенной округло-овальной формой встречаются Я. весьма причудливой формы, напр. многолопастные Я. лейкоцитов, кольцевидные Я. и т. д. Точно так же варьирует и положение ядра в клетке: как правило оно располагается в центре или ближе к базису, иногда однако оно занимает и другое положение. От протоплазмы ядро отделяется тонкой, но отчетливо заметной ядерной оболочкой. Нарушение целости этой оболочки приводит кслиянию вещества Я. спро-топлазмой, что в свою очередь дает иногда картину растворения клеточной плазмы.-В вопросе о строении Я. следует различать то строение Я., к-рое удается обнаружить на фиксированных и подвергнутых гистологической обработке препаратах, и прижизненное строение Я. Гистологически в Я. различают белковое жидкое вещество-ядерный сок, в к-рый погружены более твердые элементы-нежная, слабо окрашивающаяся сеть тончайших нитей, т. н. ли-ниновая, или ахроматиновая сеть, а также глыб-ки и зернышки весьма различной формы и величины, очень различающиеся в отдельных Я. Зернышки эти, интенсивно воспринимающие гист. краски, обозначаются морфологическим понятием хроматина. В зависимости от способности окрашиваться кислыми или основными красками различают бази- и оксихроматин. Кроме указанных выше образований в ядре находится четко отграниченное и также интенсивно окрашивающееся тело-ядрышко. Количество и величина ядрышек значительно колеблются. Вопрос о физ.-хим. структуре живого Я. не может считаться в наст, время окончательно разрешенным. По мнению одних Я. является оптически пустым, лишенным какой-либо структуры скоплением находящихся в коллоидальном состоянии белковых тел, по мнению других при наблюдении in vivo в Я. удается обнаружить очень нежную волокнистую структуру (П. И. Живаго). В хим. отношении Я. представляет собой сложную смесь белковых ве- 70» ществ, среди к-рых преобладают богатые фосфором нуклеопротеиды. Очень существенные изменения претерпевает Я. в процессе деления, которое всегда предшествует делению клетки; особенно велики эти изменения в процессе кариокинеза (см.), когда хроматиновое вещество Я. принимает форму особых, четко отграниченных участков-хромосом. Физиологическое значение Я. очень ясно иллюстрируется опытами мерогонии, т. е. разрезания клетки на части с созданием ядерных и безъядерных фрагментов. При этом жизнеспособными оказываются только участки, снабженные фрагментом Я. На Я. лежит повидимому общая регулировка ферментативных процессов в клетке, а также участие в регенераторных процессах. Это иллюстрируется напр. данными Клебса, показавшего у растений миграцию Я. в сторону поврежденного и регенерирующего участка клетки. Присутствующие в ядре хромосомы считаются носителями наследственного материала. У простейших различают генеративное (микронуклеус) и соматическое (макронуклеус) Я. Повсеместное распространение ядерного вещества указывает на его высокое значение ДЛЯ 6ИОЛ. Процессов.С. Залкпнд.