Что входит в группу абиотических. Абиотические, биотические и антропогенные факторы среды

Воздействие факторов среды на живые организмы в отдельности и сообщества в целом многогранно. При оценке влияния того или иного фактора среды важным оказывается характеристика интенсивности его действия на живую материю: в благоприятных условиях говорят об оптимальном, а при избытке или недостатке - ограничивающем факторе.

Температура. Большинство видов приспособлено к довольно узкому диапазону температур. Некоторые организмы, особенно в стадии покоя, способны существовать при очень низких температурах. Например, споры микроорганизмов выдерживают охлаждение до -200 °С. Отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре от +80 до -88 °С. Диапазон колебаний температуры в воде значительно меньше, чем на суше, соответственно и пределы устойчивости к колебаниям температуры у водных организмов уже, чем у наземных. Однако и для водных и для наземных обитателей оптимальной является температура в пределах от +15 до +30 °С.

Различают организмы с непостоянной температурой тела - пой- килотермные (от греч. poikilos - различный, переменчивый и therme - тепло) и организмы с постоянной температурой тела - гомойотерм- ные (от греч. homoios - подобный и therme - тепло). Температура тела пойкилотермных организмов зависит от температуры окружающей среды. Ее повышение вызывает у них интенсификацию жизненных процессов и, в известных пределах, ускорение развития.

В природе температура непостоянна. Организмы, которые обычно подвергаются воздействию сезонных колебаний температур, что наблюдается в умеренных зонах, хуже переносят постоянную температуру. Резкие колебания температуры - сильные морозы или зной - также неблагоприятны для организмов. Существует много приспособлений для борьбы с охлаждением или перегревом. С наступлением зимы растения и пойкилотермные животные впадают в состояние зимнего покоя. Интенсивность обмена веществ резко снижается, в тканях запасается много жиров и углеводов. Количество воды в клетках уменьшается, накапливаются сахара и глицерин, препятствующие замерзанию. В жаркое время года включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение воды через устьица, что приводит к снижению температуры листьев. У животных в этих условиях также усиливается испарение воды через дыхательную систему и кожные покровы. Кроме того, пойкилотермные животные избегают перегрева путем приспособительного поведения: выбирают места обитания с наиболее благоприятным микроклиматом, в жаркое время дня скрываются в норах или под камнями, проявляют активность в определенное время суток и т.п.

Таким образом, температура окружающей среды представляет собой важный и зачастую ограничивающий жизненные проявления фактор.

Гораздо меньше зависят от температурных условий среды животные гомойотермные - птицы и млекопитающие. Ароморфные изменения строения позволили этим двум классам сохранять активность при очень резких перепадах температур и освоить практически все места обитания.

Угнетающее действие низких температур на организмы усиливается сильными ветрами.

Свет. Свет в форме солнечной радиации обеспечивает все жизненные процессы на Земле (рис. 25.4). Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина дня, или фотопериод). Ультрафиолетовые лучи с длиной волны более 0,3 мкм составляют примерно 40% лучистой энергии, достигающей земной поверхности. В небольших дозах они необходимы животным и человеку. Под их воздействием в организме образуется витамин D. Насекомые зрительно различают ультрафиолетовые лучи и пользуются этим для ориентации на местности в облачную погоду. Наибольшее влияние на организм оказывает видимый свет с длиной волны 0,4-0,75 мкм. Энергия видимого света составляет около 45% общего количества лучистой энергии, падающей на Землю. Видимый свет менее всего ослабляется при прохождении через плотные облака и воду. Поэтому фотосинтез может идти и при пасмурной погоде, и под слоем воды определенной толщины. Но все же на синтез биомассы расходуется лишь от 0,1 до 1% приходящей солнечной энергии.

Рис. 25.4.

В зависимости от условий обитания растения адаптируются к тени - теневыносливые растения или, напротив, к яркому солнцу - светолюбивые растения. К последней группе относятся хлебные злаки.

Чрезвычайно важную роль в регуляции активности живых организмов и их развития играет продолжительность воздействия света - фотопериод. В умеренных зонах, выше и ниже экватора, цикл развития растений и животных приурочен к сезонам года и подготовка к изменению температурных условий осуществляется на основе сигнала длины дня, которая, в отличие от других сезонных факторов, в определенное время года в данном месте всегда одинакова. Фотопериод представляет собой как бы пусковой механизм, последовательно включающий физиологические процессы, приводящие к росту, цветению растений весной, плодоношению летом и сбрасыванию ими листьев осенью, а также к линьке и накоплению жира, миграции и размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.

Кроме сезонных изменений смена дня и ночи определяет суточный ритм активности как целых организмов, так и физиологических процессов. Способность организмов ощущать время, наличие у них «биологических часов» - важное приспособление, обеспечивающее выживание особи в данных условиях среды.

Инфракрасное излучение составляет 45% общего количества лучистой энергии, падающей на Землю. Инфракрасные лучи повышают температуру тканей растений и животных, хорошо поглощаются объектами неживой природы, в том числе водой.

Для продуктивности растений, т.е. образования органического вещества, наиболее важен такой показатель, как суммарное прямое солнечное излучение, получаемое за длительные промежутки времени (месяцы, год).

Влажность. Вода - необходимый компонент клетки, поэтому количество ее в тех или иных местах обитания служит ограничивающим фактором для растений и животных и определяет характер флоры и фауны в данной местности. Избыток воды в почве приводит к развитию болотной растительности. В зависимости от влажности почвы (и годового количества осадков) видовой состав растительных сообществ меняется. При годовом количестве осадков 250 мм и менее развивается пустынный ландшафт. Неравномерное распределение осадков по временам года также представляет важный ограничивающий фактор для организмов. В этом случае растениям и животным приходится переносить длительные засухи. В короткий же период высокой влажности почвы происходит накопление первичной продукции для сообщества в целом. Им определяется размер годового запаса пищи для животных и сапрофагов (от греч. sapros - гнилой и phagos - пожиратель) - организмов, разлагающих органические остатки.

В природе, как правило, существуют суточные колебания влажности воздуха, которые наряду со светом и температурой регулируют активность организмов. Влажность как экологический фактор важна тем, что изменяет эффект температуры. Температура оказывает более выраженное влияние на организм, если влажность очень высока или низка. Точно так же роль влажности повышается, если температура близка к пределам выносливости данного вида. Виды растений и животных, обитающие в зонах с недостаточной степенью увлажнения, в процессе естественного отбора эффективно приспособились к неблагоприятным условиям засушливости. У таких растений мощно развита корневая система, повышено осмотическое давление клеточного сока, способствующее удержанию воды в тканях, утолщена кутикула листа, сильно уменьшена или превращена в колючки листовая пластинка. У некоторых растений (саксаула) листья утрачиваются, а фотосинтез осуществляется зелеными стеблями. При отсутствии воды рост пустынных растений прекращается, в то время как влаголюбивые растения в таких условиях увядают и гибнут. Кактусы способны запасать большое количество воды в тканях и экономно ее расходовать. Аналогичное приспособление обнаружено у африканских пустынных молочаев, что служит примером параллельной эволюции неродственных групп в сходных условиях среды.

У пустынных животных также есть целый ряд физиологических адаптаций, позволяющих переносить недостаток воды. Мелкие животные - грызуны, пресмыкающиеся, членистоногие - извлекают воду из пищи. Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (горб у верблюда). В жаркое время года многие животные (грызуны, черепахи) впадают в спячку, продолжающуюся несколько месяцев.

Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содержащиеся в горных породах; кроме того, оно поступает из космоса.

Интенсивность ионизирующего излучения в окружающей среде значительно повысилась в результате использования человеком атомной энергии. Испытания атомного оружия, атомные электростанции, получение топлива для них и захоронение отходов, медицинские исследования и другие виды мирного использования атомной энергии создают локальные «горячие пятна» и образуют отходы, нередко попадающие в окружающую среду в процессе транспортировки или хранения.

Из трех видов ионизирующего излучения, имеющих важное экологическое значение, два представляют собой корпускулярное излучение (альфа- и бета-частицы), а третье - электромагнитное (гамма-излучение и близкое ему рентгеновское излучение).

Корпускулярное излучение состоит из потока атомных или субатомных частиц, которые передают свою энергию всему, с чем они сталкиваются. Альфа-излучение - это ядра гелия, они имеют огромные по сравнению с другими частицами, размеры. Длина их пробега в воздухе составляет всего несколько сантиметров. Бета-излучение - это быстрые электроны. Их размеры гораздо меньше, длина пробега в воздухе равна нескольким метрам, а в тканях животного или растительного организма - нескольким сантиметрам. Что касается ионизирующего электромагнитного излучения, то оно сходно со световым, только длина волны у него гораздо короче. Оно проходит в воздухе большие расстояния и легко проникает в вещество, высвобождая свою энергию на протяжении длинного следа. Гамма-излучение, например, легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути. Биологи нередко называют радиационные вещества, испускающие альфа- и бета-излучение, «внутренними излучателями», так как они обладают наибольшим эффектом, будучи поглощенными, заглоченными или оказавшись каким-то иным способом внутри организма. Радиоактивные вещества, испускающие преимущественно гамма-излучение, относят к «внешним излучателям», так как это проникающее излучение может оказывать действие, когда его источник находится вне организма.

Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, содержащимися в воде и почве, образуют так называемое фоновое излучение, к которому адаптированы ныне существующие животные и растения. В разных частях биосферы естественный фон различается в 3-4 раза. Наименьшая его интенсивность наблюдается около поверхности моря, а наибольшая на больших высотах в горах, образованных гранитными породами. Интенсивность космического излучения возрастает с увеличением высоты местности над уровнем моря, а гранитные скалы содержат больше встречающихся в природе радионуклидов, чем осадочные породы.

В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее губительное действие, причем человек отличается особой чувствительностью.

Большие дозы, получаемые организмом за короткое время (минуты или часы), называют острыми дозами в противоположность хроническим дозам, которые организм мог бы выдержать на протяжении всего своего жизненного цикла. Воздействие низких хронических доз измерить сложнее, так как они могут вызывать отдаленные генетические и соматические последствия. Любое повышение уровня излучения в среде над фоновым или даже высокий естественный фон может повысить частоту вредных мутаций.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра. У высших животных не обнаружено такой простой или прямой зависимости между чувствительностью и строением клеток; для них более важное значение имеет чувствительность отдельных систем органов. Так, млекопитающие очень чувствительны даже к низким дозам вследствие легкой повреждаемости облучением быстро делящейся кроветворной ткани - костного мозга. Чувствителен и пищеварительный тракт, а повреждения неделящихся нервных клеток наблюдаются только при высоких уровнях облучения.

Попадая в окружающую среду, радионуклиды рассеиваются и разбавляются, но они могут различными способами накапливаться в живых организмах при движении по пищевой цепи. Радиоактивные вещества могут также накапливаться в воде, почве, осадках или в воздухе, если скорость их поступления превышает скорость естественного радиоактивного распада.

Загрязняющие вещества. Условия жизни человека и устойчивость природных биогеоценозов в течение последних десятилетий быстро ухудшаются вследствие загрязнения окружающей среды веществами, образующимися в результате его производственной деятельности. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе.

К первой группе относятся сернистый ангидрид (медеплавильное производство), диоксид углерода (тепловые электростанции), оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения (главным образом нитраты и фосфаты).

Во вторую группу входят искусственные вещества, обладающие специальными свойствами, удовлетворяющими потребности человека: пестициды (от лат. pestis - зараза, разрушение и cido - убивать), используемые для борьбы с животными - вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды (от лат. insecta - насекомые и cido - убивать) - средства для борьбы с вредными насекомыми и гербициды (от лат. herba - трава, растение и cido - убивать) - средства для борьбы с сорняками.

Все они обладают определенной токсичностью (ядовитостью) для человека. Одновременно они служат антропогенными абиотическими факторами среды, оказывающими значимое влияние на видовой состав биогеоценозов. Это влияние выражается в изменении свойств почвы (закисление, переход в растворимое состояние токсичных элементов, нарушение структуры, обеднение ее видового состава); изменении свойств воды (повышенная минерализация, повышение содержания нитратов и фосфатов, закисление, насыщение поверхностно-активными веществами); изменении соотношения элементов в почве и воде, что приводит к ухудшению условий развития растений и животных.

Подобные изменения служат факторами отбора, в результате действия которых формируются новые растительные и животные сообщества с обедненным видовым составом.

Изменения факторов среды по силе действия на организмы могут быть: 1) регулярно-периодическими, например в связи со временем суток, сезоном года или ритмом приливов и отливов в океане; 2) нерегулярными, например изменения погодных условий в разные годы, катастрофы (бури, ливни, обвалы и т.д.); 3) направленными: при похолодании или потеплении климата, зарастании водоемов и т.д. Популяции организмов, обитающие в какой-то определенной среде, приспосабливаются к этому непостоянству путем естественного отбора. У них вырабатываются те или иные морфологические и физиологические особенности, позволяющие существовать именно в этих и ни в каких других условиях среды. Для каждого влияющего на организм фактора существует благоприятная сила воздействия, называемая зоной оптимума экологического фактора или просто его оптимума. Для организмов данного вида отклонение от оптимальной интенсивности действия фактора (уменьшение или увеличение) угнетает жизнедеятельность. Границы, за пределами которых наступает гибель организма, называют верхним и нижним пределами выносливости (рис. 25.5).


Рис. 25.5. Интенсивность действия факторов среды

Опорные точки

  • Большинство видов организмов приспособлено к жизни в узком диапазоне температур; оптимальные значения температуры составляют от +15 до +30 °С.
  • Свет в форме солнечной радиации обеспечивает все процессы жизнедеятельности на Земле.
  • Космическое и ионизирующее излучения, испускаемые природными радиоактивными веществами, образуют «фоновое» излучение, к которому ныне существующие растения и животные адаптированы.
  • Загрязняющие вещества, обладая токсическим действием на живые организмы, обедняют видовой состав биоценозов.

Вопросы и задания для повторения

  • 1. Что такое абиотические факторы среды?
  • 2. Какие приспособления существуют у растений и животных к изменениям температуры окружающей среды?
  • 3. Укажите, какая часть спектра видимого излучения Солнца наиболее активно поглощается хлорофиллом зеленых растений?
  • 4. Расскажите о приспособлениях живых организмов к недостатку воды.
  • 5. Охарактеризуйте влияние различных видов ионизирующего излучения на животный и растительный организмы.
  • 6. Каково влияние загрязняющих веществ на состояние биогеоценозов?

Введение

Каждый день вы, спеша по делам, ходите по улице, ежась от холода или обливаясь потом от жары. А после рабочего дня идете в магазин, покупаете продукты питания. Выйдя из магазина, спешно останавливаете проезжающую маршрутку и бессильно опускаетесь на ближайшее свободное место. Для многих это знакомый образ жизни, не так ли? А вы никогда не задумывались о том, как протекает жизнь с точки зрения экологии? Существование человека, растений и животных возможно лишь благодаря их взаимодействию. Не обходится оно и без влияния неживой природы. У каждого из этих типов воздействия есть свое обозначение. Итак, существует всего три вида влияния на окружающую среду. Это антропогенные, биотические и абиотические факторы. Давайте рассмотрим каждый из них и его воздействие на природу.

1. Антропогенные факторы - влияние на природу всех форм деятельности человека

Когда упоминается этот термин, в голову не приходит ни одной положительной мысли. Даже когда люди делают что-нибудь хорошее для животных и растений, то происходит это из-за последствий ранее сделанного плохого (к примеру, браконьерства).

Антропогенные факторы (примеры):

  • Высушивание болот.
  • Удобрение полей пестицидами.
  • Браконьерство.
  • Промышленные отходы (фото).

Вывод

Как видите, в основном человек наносит окружающей среде только вред. И из-за увеличения хозяйственного и промышленного производства даже природоохранные меры, учреждаемые редкими добровольцами (создание заповедников, экологические митинги), уже перестают помогать.

2. Биотические факторы - влияние живой природы на разнообразные организмы

Проще говоря, это взаимодействие растений и животных между собой. Оно может быть как положительным, так и отрицательным. Существует несколько видов такого взаимодействия:

1. Конкуренция - такие взаимосвязи между особями одного или разных видов, при которых использование определенного ресурса одним из них уменьшает его доступность для других. В общем, при конкуренции животные или растения борются между собой за свой кусок хлеба

2. Мутуализм - такая взаимосвязь, при которой каждый из видов получает определенную пользу. Проще говоря, когда растения и/или животные гармонично дополняют друг друга.

3. Комменсализм - такая форма симбиоза между организмами разных видов, при которой один из них использует жилище или организм хозяина как место поселения и может питаться остатками пищи или продуктами его жизнедеятельности. При этом он не приносит хозяину ни вреда, ни пользы. В общем, маленькое незаметное дополнение.

Биотические факторы (примеры):

Сосуществование рыб и коралловых полипов, жгутиковых простейших и насекомых, деревьев и птиц (например, дятлов), скворцов-майн и носорогов.

Вывод

Несмотря на то, что биотические факторы могут приносить вред животным, растениям и человеку, от них есть и очень большая польза.

3. Абиотические факторы - воздействие неживой природы на разнообразные организмы

Да, и неживая природа тоже играет немаловажную роль в жизненных процессах животных, растений и человека. Пожалуй, самым главным абиотическим фактором является погода.

Абиотические факторы: примеры

Абиотические факторы - это температура, влажность, освещенность, соленость воды и почвы, а также воздушная среда и ее газовый состав.

Вывод

Абиотические факторы могут наносить вред животным, растениям и человеку, но все-таки в основном они приносят им пользу

Итог

Единственный фактор, не приносящий никому пользы - это антропогенный. Да, человеку он тоже не приносит ничего хорошего, хотя тот уверен, что изменяет природу для своего блага, и не задумывается, во что превратится для него и его потомков это "благо" через десяток лет. Человеком уже полностью уничтожены многие виды животных и растений, которые имели свое место в мировой экосистеме. Биосфера Земли похожа на фильм, в котором нет второстепенных ролей, все они являются главными. А вот теперь представьте, что некоторые из них убрали. Что получится в фильме? Вот так и в природе: если исчезнет самая малая песчинка, рухнет великое здание Жизни.

Абиотические факторы среды

Характеристика абиотических факторов среды

Условия жизни (условия существования) – это совокупность необходимых для организма элементов, с которыми он находится в неразрывной связи и без которых существовать не может.

Приспособления организма к среде носят название адаптации. Способность к адаптациям – одно их основных свойств жизни вообще, обеспечивающее возможность ее существования, выживания и размножения. Адаптация проявляется на разных уровнях – от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем. Адаптации возникают и изменяются в ходе эволюции вида.

Отдельные свойства или элементы среды, воздействующие на организмы, называются экологическими факторами. Факторы среды разнообразны. Они имеют разную природу и специфику действия. Экологические факторы подразделяются на две большие группы: абиотические и биотические.

Абиотические факторы – это комплекс условий неорганической среды, влияющих на живые организмы прямо или косвенно: температура, свет, радиоактивное излучение, давление, влажность воздуха, солевой состав воды и т.д.

Биотические факторы – это все формы воздействия живых организмов друг на друга. Каждый организм постоянно испытывает на себе прямое или косвенное влияние других, вступая в связь с представителями своего и других видов.

В отдельных случаях антропогенные факторы выделяют в самостоятельную группу наряду с биотическими и абиотическими факторами, подчеркивая чрезвычайное действие антропогенного фактора.

Антропогенные факторы – это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни. Значение антропогенного воздействия на весь живой мир Земли продолжает стремительно возрастать.

Изменения факторов среды во времени могут быть:

    регулярно-постоянными, меняющими силу воздействия в связи со временем суток, сезоном года или ритмом приливов и отливов в океане;

    нерегулярными, без четкой периодичности, например, изменение погодных условий в разные годы, бури, ливни, сели и т.д.;

    направленными на протяжении определенных или длительных отрезков времени, например, похолодание или потепление климата, зарастание водоема и т.д.

Экологические факторы среды могут оказывать на живые организмы различные воздействия:

    как раздражители, вызывая приспособительные изменения физиологических и биохимических функций;

    как ограничители, обуславливающие невозможность существования в данных условиях;

    как модификаторы, вызывающие анатомические и морфологические изменения организмов;

    как сигналы, свидетельствующие об изменении других факторов.

Несмотря на большое разнообразие экологических факторов, в характере их взаимодействия с организмами и в ответных реакциях живых существ можно выделить ряд общих закономерностей.

Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, – оптимум, а дающая наихудший эффект – пессимум, т.е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений в различных температурных режимах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, потому здесь лучше говорить о зоне оптимума. Весь интервал температур (от минимальной до максимальной), при которых еще возможен рост, называют диапазоном устойчивости (выносливости), или толерантности. Точка, ограничивающая его (т.е. минимальная и максимальная) пригодные для жизни температуры – это предел устойчивости. Между зоной оптимума и пределом устойчивости по мере приближения к последнему растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения, в рамках диапазона устойчивости

Зависимость действия экологического фактора от его интенсивности (по В.А. Радкевичу, 1977)

По мере удаления вверх и вниз но шкале не только усиливается стресс, а в конечном итоге, по достижении пределов устойчивости организма, происходит его гибель. Подобные эксперименты можно проводить и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного типа.

Наземно-воздушная среда жизни, ее характеристика и формы адаптации к ней

Жизнь на суше потребовала таких приспособлений, которые оказались возможными только у высокоорганизованных живых организмов. Наземно-воздушная среда более сложная для жизни, она отличается высоким содержанием кислорода, малым количеством водяных паров, низкой плотностью и т.д. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Организмы воздушной среды должны иметь собственную опорную систему, поддерживающую тело: растения – разнообразные механические ткани, животные – твердый или гидростатический скелет. Кроме этого, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры.

Малая плотность воздуха обеспечивает низкую сопротивляемость передвижения. Поэтому многие наземные животные приобрели способность к полету. К активному полету приспособилось 75% всех наземных, преимущественно насекомые и птицы.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным потокам воздушных масс возможен пассивный полет организмов. В связи с этим у многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона.

Наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме оно равно 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Низкое давление может ограничивать распространенность видов в горах. Для позвоночных животных верхняя граница жизни – около 60 мм. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно такие же пределы продвижения в горах имеют высшие растения. Несколько более выносливы членистоногие, которые могут встречаться на ледниках, выше границы растительности.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов очень важны ее химические свойства. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1%, кислород – 21,0%, аргон – 0,9%, углекислый газ – 0,003% от объема).

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первичноводными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойтермия животных. Кислород из-за постоянного его высокого содержания в воздухе не является лимитирующим фактором жизни в наземной среде.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Повышенное насыщение воздуха СО? возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко. Низкое содержание С0 2 тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа. Этим пользуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды является инертным газом, но отдельные микроорганизмы (клубеньковые бактерии, азотбактерии, сине-зеленые водоросли и др.) обладают способностью связывать его и вовлекать в биологический круговорот веществ.

Дефицит влаги – одна из существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны – от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Также значительна суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспеченность наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости фунтовых вод и т.д.

Это привело к развитию у наземных организмов адаптации к различным режимам водообеспечения.

Температурный режим. Следующей отличительной чертой воздушно-наземной среды являются значительные температурные колебания. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитания проходит их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными организмами.

Условия жизни в наземно-воздушной среде осложняются, кроме того, существованием погодных изменений. Погода – непрерывно меняющиеся состояния атмосферы у заемной поверхности, до высоты примерно в 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура, влажность воздуха, облачность, осадки, сила и направление ветра и т.д. Многолетний режим погоды характеризует климат местности. В понятие «Климат» входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонение от него и их повторяемость. Климат определяется географическими условиями района. Основные климатические факторы – температура и влажность – измеряются количеством осадков и насыщенностью воздуха водяными парами.

Для большинства наземных организмов, особенно мелких, не столько важен климат района, сколько условия их непосредственного обитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т.д.) так изменяют в конкретном участке режим температур, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие модификации климата, складывающиеся в приземном слое воздуха, называются микроклиматом. В каждой зоне микроклимат очень разнообразен. Можно выделить микроклиматы очень небольших участков.

Световой режим наземно-воздушной среды также обладает некоторыми особенностями. Интенсивность и количество света здесь наиболее велики и практически не лимитируют жизнь зеленых растений, как в воде или почве. На суше возможно существование чрезвычайно светолюбивых видов. Для подавляющего большинства наземных животных с дневной и даже ночной активностью зрение представляет собой один из основных способов ориентации. У наземных животных зрение имеет важное значение для поисков добычи, многие виды обладают даже цветным зрением. В связи с этим у жертв возникают такие приспособительные особенности, как защитная реакция, маскирующая и предупреждающая окраска, мимикрия и т.д. У водных обитателей такие адаптации развиты значительно меньше. Возникновение ярко окрашенных цветков высших растений также связано с особенностями аппарата опылителей и в конечном счете – со световым режимом среды.

Рельеф местности и свойства грунта – также условия жизни наземных организмов и, в первую очередь, растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяются «эдафическими факторами среды» (от греческого «эдафос» – «почва»).

По отношению к разным свойствам почв можно выделить целый ряд экологических групп растений. Так, по реакции на кислотность почвы различают:

    ацидофильные виды – растут на кислых почвах с рН не менее 6,7 (растения сфагновых болот);

    нейтрофильные – склонны расти на почвах с рН 6,7–7,0 (большинство культурных растений);

    базифильные – растут при рН более 7,0 (мордовник, лесная ветренница);

    индиферентные – могут произрастать на почвах с разным значением рН (ландыш).

Отличаются растения и по отношению к влажности почвы. Определенные виды приурочены к разным субстратам, например, петрофиты растут на каменистых почвах, пасмофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных: например, копытных, страусов, дроф, живущих на открытых пространствах, твердом грунте, для усиления отталкивания при беге. У ящериц, обитающих в сыпучих песках, пальцы окаймлены бахромой из роговых чешуек, увеличивающих опоры. Для наземных обитателей, роющих норы, плотный грунт неблагоприятен. Характер почвы в определенных случаях влияет на распределение наземных животных, роющих норы или зарывающихся в грунт, или откладывающих яйца в почву и т.д.

Понятие о «Ноосфере» – сфере разума и научных принципов использования биосферы

Эволюция органического мира на нашей планете прошла несколько этапов. Первый характеризовался возникновением биологического круговорота веществ и биосферы. Второй этап сопровождался формированием многоклеточных организмов, и вследствие этого – усложнением структуры жизни. Третий этап связан с появлением человека. Первые два этапа часто называют биогенезом (от греч. bios – «жизнь» и genesis – «происхождение»). Появление человеческого общества и дальнейшее его развитие обусловили влияние деятельности человека на состояние биосферы. Новое состояние биосферы, когда разумная деятельность человека становится главным фактором в ее развитии, называют ноосферой (от греч. noos – «разум» и sphaira – «шар»). Понятие ноосферы было введено в употребление Э. Леруа и П. Тейяром де Шарденом (1927). В 40-е годы В.И. Вернадский развил и углубил учение о ноосфере. По Вернадскому, ноосфера – высший тип целостности, управляемый за счет тесной взаимосвязи законов природы, мышления и социально-экономических законов общества.

В общих чертах превращение биосферы в ноосферу можно представить следующим образом.

Вначале человек брал у биосферы средства к существованию и отдавал ей то, что в биосфере могли использовать другие организмы. Поэтому деятельность людей на этом этапе незначительно отличалась от деятельности организмов.

По мере развития человеческое общество все более разрушительно воздействовало на биосферу. В современных условиях человек уже осознает, что он должен считаться с ее законами развития и возможностями. При переходе биосферы в ноосферу перед человечеством возникает огромная по масштабам и значению задача – научиться сознательно регулировать взаимоотношения общества и природы.

Демографический взрыв

В последние 150 лет население Земли росло и продолжает расти феноменальными, взрывообразными темпами.

С древнейших исторических эпох до начала прошлого века численность мирового народонаселения составляла около сотни миллионов человек, то медленно возрастая, то снижаясь из-за эпидемий и волн голода, и только около 1830 года достигла 2 млрд. человек. Однако в XYIIT-XIX вв. ситуация заметно изменилась. Население перешло от состояния медленного роста, перемежающегося спадами, к эпохе взрывообразного увеличения. Примерно в 1930 году, всего через 100 лет после двухмиллиардного уровня, его численность превысила 2 млрд. человек. Спустя уже 30 лет (1960), достигла 3 млрд.; и всего лишь через 15 лет (1975) – 4 млрд. Затем, еще через 12 лет (1987), народонаселение Земли превысило пятимиллиардную отметку, и такой рост продолжается, составляя примерно 90 млн. человек в год. Однако в течение двух последних десятилетий процентные темпы прироста начали снижаться. Несмотря на это, при нынешней огромной численности населения, его абсолютная численность будет расти быстрее, чем раньше.

Таким образом, даже при современной тенденции снижения темпов прироста, население планеты превысит шестимиллиардную отметку к 2000 году, и если не произойдет никаких резких перемен, такой характер увеличения популяции, скорее всего, сохранится и в XXI веке. К его концу численность населения достигнет 10 млрд. человек.

Каковы же причины демографического взрыва? Известно, что у всех видов есть продуктивный потенциал, который приведет к популяционному взрыву, если высокий процент потомства доживет до половой зрелости и размножится.

Рост природных популяций сдерживается сопротивлением среды, т.е. факторами, приводящими к гибели значительной доли молоди до наступления репродуктивного возраста. Примерно до XIX века так обстояло дело и с человеческой популяцией. Еще в конце XVIII века не было ничего необычного в том, что родители заводили по 7–10 детей, из которых только 1–3 доживали до половой зрелости. Эпидемии заболеваний типа оспы, ветрянки, дизентерии, дифтерии, скарлатины, кори, коклюша уносили множество детских жизней. Иными словами, рождаемость была высокой, но из-за высокой смертности в детском возрасте население если и росло, то медленно.

Быстрый рост народонаселения начался из-за снижения детской смертности при сохранении прежнего уровня рождаемости.

Сравнивая темпы прироста населения в разных странах, численность населения обычно делят на группы (по 1000 человек) и рассчитывают среднее число рождений и смертей на 1000 человек в год. Эти показатели называют общими коэффициентами рождаемости (ОКР) и смертности (ОКС). Вычитая ОКС из ОКР, получают естественный прирост (или убыль). Темпы прироста (или убыли) можно выразить в процентах, если результат поделить еще на 10, т.е. получают изменения на каждые 100 человек.

Современные статистические данные говорят, что темпы прироста населения в некоторых высокоразвитых странах бывают даже отрицательными, тогда как у наций со средним и низким доходом они всегда довольно высокие. В целом же уровень рождаемости сохраняется в мире в пределах 40–50%, и естественно, что при снижении детской смертности происходит быстрый рост народонаселения.

Страны мира обычно делятся на три основные экономические категории:

    высокоразвитые, промышленные, или страны с высоким национальным доходом: США, Канада, Япония, Австрия, государства Западной Европы и Скандинавии;

    умеренно развитые, или страны со средним национальным доходом: большинство государств Латинской Америки (Мексика, Центральная и Южная Америка), Северной и Западной Африки, Юго-Восточной Азии;

    слаборазвитые, или страны с низким национальным доходом: большинство стран Восточной и Центральной Африки и Индия. КНР до сих пор относят к этой категории, но, возможно, скоро перенесут во вторую. Эти страны известны также, как страны Третьего мира.

Социалистические страны, за исключением Китая, обычно рассматриваются как отдельная категория, как ряд других государств вроде Саудовской Аравии, где большинство граждан бедны, но социальный доход высок благодаря экспорту нефти.

Богатство внутри каждой страны распределено неравномерно. От 10 до 15% людей в высокоразвитых странах относится к разряду бедных, а 10% населения развивающихся стран считается богатым. Большинство людей в странах Третьего мира и немалая их доля в умеренно развитых странах безнадежно бедны. Они лишены полноценных пищи, жилья и бытовых удобств. Их главный экономический интерес – простое ежедневное выживание. Во всем мире, по меньшей мере, 1 млрд. человек (т.е. каждый пятый) входит в эту категорию.

Тем не менее, именно в слаборазвитых странах население растет быстрее всего. Если нынешняя скорость его увеличения сохранится, то оно удвоится через 25–35 лет. Численность населения высокоразвитых стран приближается к постоянному уровню, хотя картина здесь осложняется иммиграциями.

Ключевым фактором, определяющим диспропорции в темпах прироста населения, является суммарный коэффициент рождаемости (СКР), т.е. среднее число детей, которых рождает каждая женщина в течение жизни. При современном состоянии здравоохранения большинство их доживаю! до половой зрелости и, в свою очередь, обзаводятся детьми. Если предположить, что все дети выживают, то СКР, равный 2,0, обеспечит неизменную численность населения: два ребенка заменят отца и мать, когда те умрут. СКР ниже 2,0 приведет к снижению численности населения, потому что родительское поколение будет замещено не полностью, а СКР выше 2,0 обусловит рост населения. СКР в высокоразвитых странах равен 1,9, т.е. несколько ниже уровня простого воспроизводства. Однако население до сих пор растет, потому что более высокая рождаемость в прошлом привела к тому, что нынешнее поколение достаточно многочисленно, и в настоящее время, несмотря на низкий СКР, число новорожденных здесь превышает число умерших. Но уже можно прогнозировать стабилизацию и снижение численности населения, т.е. нынешнее, многочисленное поколение родителей стареет, умирает и не полностью замещается детьми. СКР в менее развитых странах составляет 4,8. Это более чем вдвое превышает простую воспроизводящую рождаемость и приводит к удвоению численности населения в каждом поколении.

Особо следует остановиться на вопросе о численности населения в последующие годы в России.

С 1992 года Россия, единственная из всех развитых государств, вступила в тяжелую полосу депопуляции – снижения численности населения, особенно в центральной части страны, где преобладает государствообразующий русский этнос. Сегодня смертность превышает рождаемость в 1,7 раза. Каждое последующее поколение населения (в 1992 г. нас было 150 миллионов человек) меньше предыдущего (в 1996 г. – уже 147,5 миллиона). Такого страшного феномена нет больше ни в одной (даже в самой нищей и неразвитой) стране мира. Специалисты уже прозвали его как «демографический крест России», или «русский крест». Депопуляция – не только результат беспрецедентного в истории России падения рождаемости, но и следствие резкого увеличения числа умирающих. Только для нашей страны ученые-демохрафы были вынуждены ввести в обиход новое понятие – сверхсмертность. Средняя продолжительность жизни упала до 58 лет. Сегодня мы на 135-м месте в мире по ожидаемой продолжительностью жизни мужчины и женщины. Нигде количество новорожденных так не удручает, как в России, потому что нигде не рождается меньше, чем умирает. Нынешнюю структуру смертности в мирный период не знала ни одна страна за всю историю человечества: ежегодно 672 тысячи человек (треть всех умерших) уходят из жизни в трудоспособном возрасте, из них 550 тысяч (80%) – мужчины. К 2010 году Россия может стать «страной вдов». По данным ООН, если нынешняя тенденция сохранится, население России в ближайшие 50 лет уменьшится на 20–30 миллионов человек. В этом заложены две причины: развал системы здравоохранения и отпуск цен.

К двум вышеназванным самым главным болевым точкам необходимо добавить еще, как минимум, две: нездоровый образ жизни (молодежь выбирает не «пепси», а алкоголь, наркотики, сигареты) и рост социально значимых инфекционных заболеваний (туберкулез, гепатит, СПИД, сифилис). В школах около 80% детей хронически больны, 30% призывников не пригодны к военной службе. Шокирует то, что нация теряет интеллект: у 31,5% подростков наблюдаются психические расстройства, у 33% – умственная отсталость и психопатия. Лишь 10% подростков можно отнести к практически здоровым, Если ничего не изменится, то только 54% нынешних 16-летних ребят доживут до пенсионного возраста. Мы на краю пропасти: состояние здоровья населения перешло критическую черту, за которой – вырождение нации.

К абиотическим факторам среды относят факторы неживой природы: свет, температура, влажность, геомагнитное поле Земли, гравитация, состав водной, воздушной, почвенной среды.

Свет. Излучение Солнца выполняет по отношению к живой природе двоякую функцию. Во-первых, это источник тепла, от количества которого зависит активность жизни на данной территории; во-вторых, свет служит сигналом, определяющим активность процессов жизнедеятельности, а также ориентиром при передвижении в пространстве.

Для животных и растительных организмов большое значение имеют длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия (длина светового периода суток, или фотопериод). Видимый, или белый свет, составляют около 45 % общего количества лучистой энергии, падающей на Землю. Ультрафиолетовые лучи составляют около 10 % всей лучистой энергии. Невидимые для человека, они воспринимаются органами зрения насекомых и служат им для ориентации на местности в пасмурную погоду. Лучи ультрафиолетовой части спектра необходимы и для нормальной жизнедеятельности человека. Под их воздействием в организме образуется витамин D.

Наибольшее значение для организмов имеет видимый свет с длиной волны от 0,4 до 0,75 мкм. Энергия видимого света используется для процессов фотосинтеза в клетках растений. При этом листьями особенно сильно поглощаются оранжево-красные (0,66-0,68 мкм) и сине-фиолетовые (0,4-0,5 мкм) лучи. На биосинтез расходуется от 0,1 до 1 % приходящей солнечной энергии,
иногда коэффициент полезного действия фотосинтезирующей растительности достигает нескольких процентов.

Разнообразие световых условий, при которых живут растения, очень велико. В разных местообитаниях неодинаковы интенсивность солнечной радиации, ее спектральный состав, продолжительность освещения и т. д. У растений интенсивность фотосинтеза возрастает с увеличением освещенности до известного предела, называемого уровнем светового насыщения или экологического оптимума. Дальнейшее усиление светового потока не сопровождается увеличением фотосинтеза, а затем приводит к его угнетению.

По отношению к свету различают три группы растений: светолюбивые, тенелюбивые и теневыносливые.

Светолюбивые обитают на открытых местах в условиях полного солнечного освещения (степные и луговые травы, культурные растения открытого грунта и многие другие). Но и у светолюбивых растений увеличение освещенности сверх оптимальной подавляет фотосинтез.

Тенелюбивые растения имеют экологический оптимум в области слабой освещенности и не выносят сильного света. Это виды, обитающие в нижних, затененных ярусах растительных сообществ - ельников, дубрав и т. п. Теневыносливые растения хорошо растут при полной освещенности, но адаптируются и к слабому свету.

Инфракрасное излучение составляет примерно 45 % от общего количества солнечной энергии, притекающей к Земле. Инфракрасные лучи поглощаются тканями растений и животных, объектами неживой природы, в том числе водой. Любая поверхность, имеющая температуру выше нуля, испускает длинноволновые инфракрасные (тепловые) лучи. Поэтому растения и животные получают тепловую энергию не только от Солнца, но и от предметов окружающей среды.

Из вышеизложенного следует, что свет является одним из важнейших абиотических факторов .

Температура. От температуры окружающей среды зависит температура тела большинства организмов и, следовательно, скорость всех химических реакций, составляющих обмен веществ. Нормальное строение и функционирование белков, от которых зависит само существование жизни, возможно в пределах от 0 до 50 °С. Между тем температурные границы, в пределах которых обнаруживается жизнь, гораздо шире. В ледяных пустынях Антарктики температура может опускаться до - 88 °С, а в безводных пустынях достигать 58 °С в тени. Некоторые виды бактерий и водорослей обитают в горячих источниках при температурах 80-88 °С. Таким образом, диапазон колебаний температур на разных территориях Земли, где встречается жизнь, достигает 176 °С. Даже в одном местообитании разница между минимальной температурой зимой и максимальной летом может составлять более 80 °С. В некоторых местностях велики и суточные колебания температуры: так, в пустыне Сахара на протяжении суток температура может изменяться на 50 °С. Но ни одно живое существо в мире не способно в активном состоянии переносить весь диапазон температур. Поэтому распространение любого вида животных и растений ограничено тем местообитанием, к температуре которого он приспособлен .

Влажность. Вода - необходимый компонент клетки, поэтому ее количество в том или, ином местообитании определяет характер растительности и животного мира в данной местности. В некоторой зависимости от количества воды в окружающей среде находится и содержание ее в теле растений и животных и их устойчивость к высыханию.

У растений пустынь, сухих степей вода составляет 30-65 % от общей массы, в лесостепных дубравах эта величина возрастает до 70-85 %, в ельниках достигает 90 %.

Тело животных, как правило, не менее чем на 50 % состоит из воды. У амбарного долгоносика, питающегося очень сухим кормом - зерном, воды в теле еще меньше - 46 %. Гусеницы, поедающие сочные листья, содержат 85-90 % воды. В целом у животных, обитающих на суше, меньше воды в организме, чем у водных. Так, тело домашнего скота содержит 59 % влаги, тело человека - 64 %, утки кряквы - 70 %. У рыб содержание воды в организме достигает 75 %, а у медуз - более чем 99%.

Водный баланс местности зависит от количества осадков, выпадающих в течение года, и величины, характеризующей ее испарение. Если количество испаряемой воды превышает годовую сумму осадков, такие области носят название сухих, засушливых или аридных.

Области, достаточно обеспеченные влагой, называют гумидными (влажными). Избыток воды в почве приводит к развитию болот, населяемых видами растений, не способных регулировать свой водный режим. К ним относятся водоросли, грибы, лишайники, некоторые мхи, элодея, водяные лютики, валлиснерия, тростник и многие другие. У таких растений низкое осмотическое давление клеточного сока и, следовательно, незначительная водоудерживающая
способность, высокий уровень испарения через широко открытые устьица. Корневая система у цветковых болотных растений плохо развита или совсем отсутствует.

Ограничена способность к регуляции водного баланса у травянистых растений темнохвойных лесов. При уменьшении влажности почвы меняется видовой состав растительных сообществ. Широколиственные леса сменяются мелколиственными, которые переходят в лесостепь. При дальнейшем уменьшении количества осадков (и повышении сухости почвы) высокие травы уступают место низкотравью. При годовом количестве осадков 250 мм и ниже возникают пустыни. При неравномерном распределении осадков по временам года растениям и животным приходится переносить длительные засухи.

Растения выработали ряд приспособлений к периодическому недостатку влаги. Это - резкое сокращение вегетационного периода (до 4-6 недель) и длительный период покоя, который растения переживают в виде семян, луковиц, клубней и т. д. (тюльпаны, гусиный лук, мак и др.). Такие растения называются эфемерами и эфемероидами. Другие, не прекращающие роста в сухой период, имеют сильно развитую корневую систему, по массе намного превосходящую надземную часть.

Уменьшение испарения достигается уменьшением листовой пластинки, ее опушением, сокращением числа устьиц, преобразованием листа в колючки, развитием водонепроницаемого воскового налета. Некоторые виды, например саксаулы, теряют листву, и фотосинтез осуществляют зеленые ветви. Многие растения способны запасать воду в тканях стебля или корня (кактус, африканские пустынные молочаи, степная таволга).

Выживанию в условиях сухого периода способствуют и высокое осмотическое давление клеточного сока, препятствующее испарению, и способность терять большое количество воды (до 80 %) без потери жизнеспособности. Пустынные животные имеют особый тип обмена веществ, при котором вода образуется в организме при поедании сухого корма (грызуны). Источником воды служит и жир, накапливающийся у некоторых животных в больших количествах (верблюды, курдючные овцы). Копытные способны в поисках воды пробегать огромные расстояния. Многие мелкие животные на период засухи впадают в анабиоз.

Соленость. Для живых организмов большое значение имеет качественный и количественный состав минеральных солей в окружающей среде. Воздух содержит мало солей, и они не оказывают существенного влияния на живые организмы. В воде соли присутствуют всегда и почти исключительно в растворах. Главными компонентами солевых растворов служат ионы Na + , К + , Са 2+ и Mg 2+ . Из анионов наибольший удельный вес принадлежит хлору (Сl -), остаткам серной кислоты (SO 4 2-) гидрокарбоната (НСО з -) и карбоната (СО 3 2-).

К важным компонентам природных растворов относятся также ионы двух- или трехвалентного железа и марганца.

В целом можно сказать, что в морской воде больше всего натрия и хлора. В пресных водах преимущественно встречаются ионы кальция, гидрокарбоната и карбоната. В некоторых водоемах преобладают сульфаты (Каспийское и Аральское моря).

1) пресные воды - до 0,5;

2) солоноватые воды - от 0,5 до 30;

3) соленые - от 30 до 40;

4) рассолы - свыше 40.

Концентрация и качественный состав солей в водоемах оказывают большое влияние на численность и распространение водных животных. Пресноводные животные в целом имеют более высокое осмотическое давление по отношению к окружающей их среде, поэтому вода поступает в их организм постоянно.

Для выведения излишков воды служат пульсирующие вакуоли (у простейших) и органы выделения у многоклеточных животных. Морские обитатели в большинстве изотоничны морской воде, но многие виды гипотоничны и для них регулирование концентрации растворенных в жидкостях тела веществ сопряжено с большими энергетическими затратами. Например, у древних хрящевых рыб (акул, скатов) осмотическое давление внутри тела равно давлению в окружающей морской воде. Но у костистых рыб, эволюционно возникших в пресной воде, осмотическое давление низкое.

Для компенсации потерь воды в их теле они пьют морскую воду, а поглощенные вместе с ней избыточные соли выделяются почками, а также через кишечник и жабры.

Немногие виды водных животных могут обитать и в пресной, и в соленой воде. Так, европейский речной угорь нерестится в море. Молодые угри проникают в реки и вырастают в пресной воде. Для нереста взрослые рыбы снова мигрируют в море. Наоборот, семга и лосось нерестятся в пресной воде, а вырастают в море. Точно так же некоторые крабы поднимаются по рекам далеко в глубь материка, но личинки их развиваются и достигают половой зрелости только в море. Это связано с историей развития видов. Так, у угря родственные виды - чисто морские рыбы, а виды, близкие к семге и лососю,- пресноводные. Таким образом, мигрирующие виды в своем онтогенезе повторяют филогенез соответствующих семейств рыб. Водоемы, очень богатые солями, в целом для обитания животных непригодны. К существованию в таких условиях приспособился рачок артемия, отдельные виды синезеленых водорослей, жгутиковых, бактерий. Кислотность и щелочность среды обитания (рН) почвы и воды оказывают сильное влияние на организмы. Высокие концентрации ионов Н + или ОН - (при рН соответственно ниже 3 или выше 9) оказываются токсичными.

В очень кислых или щелочных почвах повреждаются клетки корней растений. Кроме того, при рН ниже 4,0 почвы содержат много ионов алюминия, которые также токсически воздействуют на растения. В этих условиях токсических концентраций достигают и ионы железа и марганца, в малых количествах совершенно необходимые растениям. В щелочных почвах наблюдается обратное явление - нехватка необходимых химических элементов. При высоких значениях рН железо, марганец, фосфаты, ряд микроэлементов оказываются связанными в малорастворимых соединениях и малодоступны растениям.

В реках, прудах и озерах с повышением кислотности воды видовое разнообразие уменьшается. Повышенная кислотность действует на животных несколькими путями: нарушая процесс осморегуляции, работу ферментов, газообмен через дыхательные поверхности; повышая концентрацию токсичных элементов, особенно алюминия; снижая качество и разнообразие пищи. Например, при низком рН подавляется развитие грибов, а водная растительность менее разнообразна или совсем отсутствует.

Промышленное загрязнение атмосферы (диоксид серы, оксиды азота) приводит к выпадению кислотных дождей, рН которых достигает 3,7-3,3. Такие дожди служат причиной засыхания лесов и исчезновения рыбы из водоемов.

Кислород. Кислород необходим для обеспечения жизнедеятельности большинства живых организмов. В воздухе в среднем содержится 21 % кислорода (по объему), в воде не более 1%. С повышением высоты над уровнем моря содержание кислорода в воздухе уменьшается параллельно снижению атмосферного давления. В высокогорных областях содержание кислорода в воздухе служит границей распространения многих видов животных.

За последние десятилетия резко возросло потребление кислорода промышленностью и увеличился выброс в атмосферу диоксида углерода. Например, при сгорании 100 л бензина расходуется количество кислорода, достаточное для дыхания одного человека в течение года. Вместе с тем в промышленных центрах содержание СО 2 в атмосфере в безветренные дни может в десятки раз превышать обычную норму (0,03 % по объему). Источником пополнения запасов кислорода в атмосфере служат в основном леса. Один гектар соснового леса дает в год около 30 т кислорода - столько, сколько требуется для дыхания 19 человек в течение года. Один гектар лиственного леса выделяет в год около 16 т. а гектар сельскохозяйственных угодий - от 3 до 10т в год. Отсюда понятно, что сведение лесов наряду с возрастающим выбросом в атмосферу СО 2 может серьезно изменить соотношение этих газов и повлиять на животный мир планеты.

Удовлетворение потребности в кислороде у живущих в воде животных осуществляется по-разному: одни создают постоянный ток воды над своими дыхательными поверхностями (например, движениями жаберных крышек у рыб), другие имеют очень большую (по отношению к объему) поверхность тела или разнообразные выросты (многие водные ракообразные), третьи часто возвращаются на поверхность, чтобы сделать вдох (киты, дельфины, черепахи, тритоны).

Потребности корней растений в кислороде только отчасти удовлетворяются из почвы. Часть кислорода диффундирует к корням от побегов. У растений, живущих на бедных кислородом почвах (тропические болота), образуются дыхательные корни. Они поднимаются вертикально вверх, на их поверхности имеются отверстия, через которые воздух поступает в корни, а затем в части растения, погруженные в болотистую почву.

Магнитное поле Земли. Магнитное поле Земли - важный фактор окружающей среды, под влиянием которого протекала эволюция и который оказывает постоянное влияние на живые организмы. Напряженность магнитного поля возрастает с широтой. При изменении интенсивности потоков частиц, движущихся от Солнца («солнечного ветра»), возникают кратковременные нарушения в магнитном поле Земли - «магнитные бури».

Напряженность магнитного поля Земли не остается постоянной и на протяжении суток. Резкие колебания напряженности геомагнитного поля нарушают у человека функционирование нервной и сердечно-сосудистой системы. Насколько глубоко геомагнитное поле влияет на растения, скорость роста растения зависит от ориентации семени по отношению к магнитным силовым линиям.

Классификация экологических факторов.

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

4.1. Классификация экологических факторов.

4.2. Абиотические факторы

4.3. Биотические факторы

4.3. Экологическая пластичность. Понятие о лимитирующем факторе

С экологической позиции окружающая среда – это природные тела и явления, с которыми организм находится в прямых или косвенных отношениях.

Окружающая организм среда характеризуется огромным разнообразием, слагаясь из множества динамичных во времени и пространстве элементов, явлений, условий, которые рассматриваются в качестве факторов.

Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития, или любое условие среды, к которому организм приспосабливается. В свою очередь организм реагирует на экологический фактор специфичными приспособительными реакциями.

Экологические факторы среды делятся на три категории:

1) факторы неживой природы (абиотические) ;

2) факторы живой природы (биотические) ;

3) антропогенные.

Из многих существующих классификаций экологических факторов для задач данного курса целесообразно использовать следующую (рис. 1).

Рис. 4.1. Классификация экологических факторов

Антропогенные факторы - это все формы деятельности человеческого общества, изменяющие природу как среду обитания живых организмов или непосредственно влияющие на их жизнь. Выделение антропогенных факторов в отдельную группу обусловлено тем, что в настоящее время судьба растительного покрова Земли и всех ныне существующих видов организмов практически находится в руках человеческого общества.

Все экологические факторы в общем случае могут быть сгруппированы в две крупные категории: факторы неживой, или косной, природы, называемые иначе абиотическими или абиогенными , и факторы живой природы - биотические или биогенные . Но по своему происхождению обе группы могут быть как природными , так и антропогенными , т. е. связанными с влиянием человека. Иногда различают антропические и антропогенные факторы. К первым относят лишь прямые воздействия человека на природу (загрязнение, промысел, борьбу с вредителями), а ко вторым - преимущественно косвенные последствия, связанные с изменением качества окружающей среды.



Наряду с рассмотренной, существуют и другие классификации экологических факторов. Выделяют факторы зависимые и независимые от численности и плотности организмов . Например, климатические факторы не зависят от численности животных, растений, а массовые заболевания, вызываемые патогенными микроорганизмами (эпидемии) у животных или растений, безусловно, связаны с их численностью: эпидемии возникают при тесном контакте между индивидуумами или при их общем ослаблении из-за нехватки корма, когда возможна быстрая передача болезнетворного начала от одной особи к другой, а также утрачена сопротивляемость к патогену.

Макроклимат от численности животных не зависит, а микроклимат может существенно изменяться в результате их жизнедеятельности. Если, например, насекомые при их высокой численности в лесу уничтожат большую часть хвои или листвы деревьев, то здесь изменится ветровой режим, освещенность, температура, качество и количество корма, что скажется на состоянии последующих поколений тех же или других, обитающих здесь животных. Массовые размножения насекомых привлекают насекомых-хищников и насекомоядных птиц. Урожаи плодов и семян влияют на изменение численности мышевидных грызунов, белки и ее хищников, а также многих птиц, питающихся семенами.

Можно делить все факторы на регулирующие (управляющие) и регулируемые (управляемые) , что также легко понять в связи с приведенными выше примерами.

Оригинальную классификацию экологических факторов предложил А.С. Мончадский. Он исходил из представлений о том, что все приспособительные реакции организмов к тем или иным факторам связаны со степенью постоянства их воздействия, или, иначе говоря, с их периодичностью. В частности, он выделял:

1. первичные периодические факторы (те, которым свойственна правильная периодичность, связанная с вращением Земли: смена времен года, суточная и сезонная смена освещенности и температуры); эти факторы изначально присущи нашей планете и зарождающаяся жизнь должна была сразу к ним приспосабливаться;

2. вторичные периодические факторы (они являются производными от первичных); к ним относятся все физические и многие химические факторы, например влажность, температура, осадки, динамика численности растений и животных, содержание растворенных газов в воде и др.;

3. непериодические факторы , которым не свойственна правильная периодичность (цикличность); таковы, например, факторы, связанные с почвой, или разного рода стихийные явления.

Разумеется, «непериодично» лишь само тело почвы, подстилающие ее грунты, а динамика температуры, влажности и многих других свойств почвы также связана с первичными периодическими факторами.

Антропогенные факторы однозначно относятся к непериодическим. В числе таких факторов непериодического действия прежде всего - загрязняющие вещества, содержащиеся в промышленных выбросах и сбросах. К природным периодическим и непериодическим факторам живые организмы в процессе эволюции способны вырабатывать адаптации (например, спячка, зимовка и т. п.), а к изменению содержания примесей в воде или воздухе растения и животные, как правило, не могут приобрести и наследственно закрепить соответствующие адаптации. Правда, некоторые беспозвоночные, например растениеядные клещи из класса паукообразных, имеющие в условиях закрытого грунта десятки поколений в году, способны при постоянном применении против них одних и тех же ядохимикатов образовывать устойчивые к яду расы путем отбора особей, наследующих такую устойчивость.

Необходимо подчеркнуть, что к понятию «фактор» следует подходить дифференцированно, учитывая, что факторы могут быть как прямого (непосредственного), так и опосредованного действия. Различия между ними состоят в том, что фактор прямого действия можно выразить количественно, в то время как факторы непрямого действия - нет. Например, климат или рельеф могут быть обозначены в основном словесно, но они определяют режимы факторов прямого действия - влажности, длины светового дня, температуры, физико-химических характеристик почвы и др.

Абиотические факторы – это совокупность важных для организмов свойств неживой природы.

Абиотическая компонента наземной среды представляет совокупность климатических и почвенно – грунтовых факторов, воздействующих как друг на друга, так и на живые существа.

Температура

Диапазон существующих во Вселенной температур равен 1000 градусов, и по сравнению с ним пределы, в которых может существовать жизнь, очень узки (около 300 0) от -200 0 С до +100 0 С (в горячих источниках на дне Тихого океана у входа в Калифорнийский залив обнаружены бактерии, для которых оптимальна температура 250 0 С). Большинство видов и большая часть активности приурочены к ещё более узкому диапазону температур. Верхний температурный предел для бактерий горячих источников лежит около 88 0 С, для сине-зелёных водорослей около 80 0 С,а для самых устойчивых рыб и насекомых - около 50 0 С.

Диапазон колебаний температур в воде меньше, чем на суше и диапазон толерантности к температуре у водных организмов уже, чем у наземных животных. Таким образом, температура представляет важный и очень часто лимитирующий фактор. Температура очень часто создаёт зональность и стратификацию в водных и наземных местообитаниях. Легко поддаётся измерению.

Изменчивость температуры крайне важна с экологической точки зрения. Жизнедеятельность организмов, которые в природе обычно подвергаются воздействию переменных температур, подавляется частично или полностью или замедляется при воздействии постоянной температуры.

Известно, что количество тепла, падающего на горизонтальную поверхность, прямо пропорционально синусу угла стояния солнца над горизонтом. Поэтому в одних и тех же районах наблюдаются суточные и сезонные колебания температуры, и вся поверхность земного шара разделяется на ряд поясов с условными границами. Чем выше широта местности, тем больше угол наклона солнечных лучей к поверхности земли и тем холоднее климат.

Излучение, свет.

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на протоплазму смертельно для организмов, с другой, - свет служит первичным источником энергии, без которой невозможна жизнь. Поэтому, многие морфологические и поведенческие характеристики организмов связаны с решением этой проблемы. Эволюция биосферы в целом была направлена главным образом, на укрощение поступающего солнечного излучения, использование его полезных составляющих и ослабление вредных или на защиту от них. Освещённость играет важнейшую роль для всего живого и организмы физиологически адаптированы к смене дня и ночи, к соотношению тёмного и светлого периода суток. Практически у всех животных существуют суточные ритмы, связанные со сменой дня и ночи. По отношению к свету растения подразделяют на светолюбивые и тенелюбивые.

Излучение представляет собой электромагнитные волны разной длины. Через атмосферу Земли легко проходит свет, соответствующий двум областям спектра. Это видимый свет (48%) и соседние с ним области (УФ – 7%, ИК – 45%), а также радиоволны длиной более 1 см. Видимая, т.е. воспринимаемая человеческим глазом область спектра охватывает диапазон волн от 390 до 760 нм. Преимущественное значение для жизни имеют инфракрасные лучи, а в процессах фотосинтеза наиболее важную роль играют оранжево-красные и ультрафиолетовые лучи. Количество энергии солнечной радиации, проходящей через атмосферу к поверхности Земли, практически постоянно и оценивается приблизительно в 21*10 23 кДж. Эту величину называют солнечной постоянной. Но приход солнечной энергии в различные точки поверхности Земли неодинаков и зависит от продолжительности дня, угла падения лучей, прозрачности атмосферного воздуха и т.д. Поэтому чаще солнечную постоянную выражают в количестве джоулей, приходящихся на 1см 2 поверхности в единицу времени. Её среднее значение составляет около 0,14 Дж/см 2 в 1с. С лучистой энергией связана освещённость земной поверхности, которая определяется продолжительностью и интенсивностью светового потока.

Солнечная энергия не только поглощается поверхностью земли, но и частично ею отражается. От того, какую долю энергии солнечной радиации поглотит поверхность, зависит общий режим температуры, влажности.

Влажность атмосферного воздуха

Связана с насыщением его водяными парами. Наиболее богаты влагой нижние слои атмосферы (1,5 - 2,0 км.), где концентрируется ок.50% всей влаги. Количество водяного пара, содержащегося в воздухе, зависит от температуры воздуха. Чем выше температура, тем больше влаги содержит воздух. Однако при конкретной температуре воздуха существует определённый предел насыщения его парами воды, который называют максимальным. Обычно насыщение воздуха парами воды не достигает максимального, и разность между максимальным и данным насыщением носит название дефицита влажности. Дефицит влажности - важнейший экологический параметр, т.к. он характеризует сразу две величины: температуру и влажность. Чем выше дефицит влажности, тем суше и теплее и наоборот. Повышение дефицита влажности в определённые отрезки вегетационного периода способствует усиленному плодоношению растений, а у ряда животных, например насекомых, приводит к размножению вплоть до вспышек.

Осадки

Осадки представляют собой результат конденсации водяных паров. Благодаря конденсации в приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги (иней). Вследствие конденсации и кристаллизации паров воды в более высоких слоях атмосферы формируются облака и атмосферные осадки. Осадки - одно из звеньев в круговороте воды на Земле, причём в их выпадении прослеживается резкая неравномерность, в связи с чем выделяют гумидные (влажные) и аридные (засушливые) зоны. Максимальное количество осадков выпадает в зоне тропических лесов (до 2000 мм. в год) в то время как в засушливых зонах - 0,18мм. в год (в пустыне тропического пояса). Зоны с количеством осадков менее 250мм. в год считаются засушливыми.

Газовый состав атмосферы

Состав относительно постоянен и включает преимущественно азот и кислород, с примесью СО 2 и Ar (аргона). В верхних слоях атмосферы содержится озон. Присутствуют твёрдые и жидкие частицы (воды, оксиды различных веществ, пыль и дымы). Азот - важнейший биогенный элемент, участвующий в образовании белковых структур организмов; кислород - обеспечивает окислительные процессы, дыхание; озон - экранирующая роль по отношению к УФ части солнечного спектра. Примеси мельчайших частиц влияют на прозрачность атмосферы, препятствуя прохождению солнечных лучей к поверхности Земли.

Движение воздушных масс (ветер).

Причина ветра - неодинаковый нагрев земной поверхности, связанный с перепадами давления. Ветровой поток направлен в сторону меньшего давления, т.е. туда, где воздух более прогрет. В приземном слое воздуха движение воздушных масс оказывает влияние на режим температуры, влажности, испарение с поверхности Земли и транспирацию растений. Ветер - важный фактор переноса и распределения примесей в атмосферном воздухе.

Давление атмосферы.

Нормальным считается давление 1кПа, соответствующее 750,1 мм. рт. ст. В пределах земного шара существуют постоянные области высокого и низкого давления, причём в одних и тех же точках наблюдаются сезонные и суточные минимумы и максимумы давления.