Что такое трение и сила трения. Силы трения

Вместе с Анной Бушмановой, выпускницей инженерно-физического факультета Амурского государственного университета, вспоминаем школьные уроки физики. Сегодня разберёмся с силой трения.

Sp-force-hide { display: none;}.sp-form { display: block; background: #ffffff; padding: 5px; width: 100%; max-width: 100%; border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; font-family: "Segoe UI", Segoe, "Open Sans", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 420px;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #333333; font-size: 14px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 0px; -moz-border-radius: 0px; -webkit-border-radius: 0px; background-color: #eecc00; color: #262626; width: auto; font-weight: 400; font-style: normal; font-family: "Segoe UI", Segoe, "Open Sans", sans-serif; box-shadow: none; -moz-box-shadow: none; -webkit-box-shadow: none;}.sp-form .sp-button-container { text-align: left; width: auto;}

Мы отправляем нашу интересную и очень полезную рассылку
каждый четверг

Не все силы способствуют развитию движения. Сила трения (F тр ) – сила, которая, скажем так, всё тормозит. Ну например: вы только разбежались и заскользили в носках по гладкой плитке в доме, как уже остановились. Да-да, при этом ещё и пятки жжёт, но об этом не сейчас.

Сила трения – это некий антигерой. Вы руками разогнали неработающий автомобиль, чтобы тот покатился по прямой дороге, а он через некоторое время остановился. И всё это из-за силы трения. Вы изо всех сил разогнались на роликах, перестали перебирать ногами и просто по инерции покатились вперёд, раскинув руки, чтобы насладиться ветром. Но через некоторое время снова останавливаетесь. И всё это из-за трения.

Сила трения – это сила, которая возникает при движении одного тела по поверхности другого. И направлена она всегда против этого движения.

Почему так происходит?

Раз уж все тела, а значит, и их поверхности состоят из молекул, то трение возникает из-за того, что молекулы одного вещества цепляются за молекулы другого.

Правда, это, конечно, очень и очень грубо. Узнать, что именно происходит на самом деле на таком мелком уровне, как молекулярный, довольно трудно.

Зачем мне эти знания?

Силу трения изучают для того, чтобы узнать, насколько сильно это трение будет мешать .

Для этого придумали коэффициент трения различных веществ, а ещё ввели общий для всех способ его измерения и записали все измеренные коэффициенты в большую таблицу.

Какие бывают силы трения

Сила трения скольжения

Самая распространенная – сила трения скольжения.

Это когда одно тело ставят на другое и начинают тянуть первое по второму. Именно поэтому коэффициенты трения существуют только в паре. То есть нет коэффициента трения скольжения просто для дерева. Надо знать, с чем именно это дерево будет соприкасаться. Так что коэффициенты бывают только для пар веществ: дерево по дереву, дерево по стеклу, дерево по льду.

Сила трения покоя

Отличают также силу трения покоя. По сути, это та же сила трения скольжения, как в первом случае, только с тем отличием, что сила трения скольжения действует на тело, которое уже двигается, а сила трения покоя – это сила, которую надо преодолеть, чтобы неподвижный предмет в принципе начал двигаться.

Кстати, изучение последней, силы трения покоя, – это тот случай, когда антигерой превращается в героя. Ведь что было бы, если бы трения в мире не существовало? Мы бы просто не смогли ходить. Именно благодаря тому, что подошвы нашей обуви цепляются за землю или асфальт и что нам при каждом шаге приходится преодолевать небольшое сопротивление, мы в принципе можем совершать эти шаги.

Да, сила трения – это та сила, которая замедляет наш автомобиль, если его постоянно не двигать вперёд, но именно сила трения – это то, благодаря чему шины автомобиля могут зацепиться за частички дороги и оттолкнуться от них, чтобы наш автомобиль смог поехать.

Анна Бушманова

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Сила трения - сила механического сопротивления, возникающая в плоскости соприкосновения двух прижатых друг к другу тел при их относительном перемещении.

Сила сопротивления, действующая на тело, направлена противоположено относительному перемещению данного тела.

Сила трения возникает по двум причинам: 1) первая и основная причина заключается в том, что в местах соприкосновения молекулы веществ притягиваются друг к другу, и для преодоления их притяжения требуется совершить работу. Соприкасающиеся поверхности касаются друг друга лишь в очень небольших по площади местах. Их суммарная площадь составляет 0,01 ÷ 0,001 0,01 \div 0,001 от общей (кажущейся) площади соприкосновения. При скольжении площадь реального соприкосновения не остается неизменной. Сила трения (скольжения) будет изменяться в процессе движения. Если тело, которое скользит, прижать сильнее к телу, по которому происходит скольжение, то вследствие деформации тел пло щадь пятен соприкосновения (и сила трения) увеличится пропорционально прижимающей силе.

$$F_\text{тр} \sim F_\text{приж}$$

2) вторая причина возникнове ния силы трения - это наличие шероховатостей (неровностей) поверхностей, и деформация их при движении одного тела по поверхности другого. Глубина проникновения (зацепления) шероховатостей зависит от прижимающей силы, а от этого зависит и величина деформаций. Последние, в свою очередь, определяют величину силы трения : F тр ∼ F приж F_\mathrm{тр} \sim F_\mathrm{приж} .

При относительном скольжении обе причины имеют место, потому характер взаимодействия имеет вид простого соотношения:

F тр = μ N - \boxed{F_\mathrm{тр} =\mu N}\ - сила трения скольжения (формула Кулона - Амонтона), где

μ - \mu\ - коэффициент трения скольжения,

N - N\ - сила реакции опоры, равная прижимающей силе.

Величина коэффициента трения различна для разных комбинаций трущихся веществ даже при одинаковой их обработке (силы притяжения и упругие свойства зависят от рода вещества).

Если между трущимися поверхностями будет находится смазка, то сила притяжения изменится заметным образом (будут притягиваться другие молекулы, и сила трения скольжения частично заменится силой вязкого трения, которую мы рассмотрим ниже).

Если на тело, лежащее на горизонтальной поверхности, действует горизонтальная сила F → \vec F , то движение будет вызвано этой силой только в том случае, когда она станет больше некоторого значения (μ N) (\mu N) . До начала движения внешняя сила скомпенсирована силой трения покоя.












Рис. 13

Сила трения покоя всегда равна внешней силе, параллельной поверхности, и возникает по причине притяжения между молекулами в областях пятен соприкосновения и деформации шероховатостей.

Сила трения покоя различна в разных участках поверхности по которой будет происходить движение. Если тело долго лежит на поверхности, то вследствие вибраций (они всегда присутствуют на поверхности Земли) площадь пятен соприкосновения незначительно увеличится. Поэтому для начала движения придётся преодолеть немного большую силу трения, чем сила трения скольжения. Данное явление называется явлением застоя. С этим явлением мы сталкиваемся, например передвигая мебель в комнате. (На рисунке 13 превосходство трения покоя над трением скольжения сильно преувеличено).

Силой трения покоя мы пользуемся для перемещения на лыжах или просто при ходьбе.

Рассмотренные виды силы трения относятся к сухому трению или внешнему. Но есть еще один вид силы трения - вязкое трение.

При движении тела в жидкости или газе происходят достаточно сложные процессы обмена молекулами между слоями обтекающей жидкости или газа. Эти процессы называют процессами переноса.

При небольших скоростях движения тела относительно газа или жидкости сила сопротивления будет определяться выражением:

F тр = 6 π η r v - \boxed{F_\mathrm{тр} = 6\pi \eta r v}\ - закон Стокса для шара, где

η - \eta\ - вязкость вещества, в котором движется тело;

r - r\ - средний поперечный размер (радиус) тела;

v - v\ - относительная скорость тела;

6 π - 6\pi\ - коэффициент, соответствующей сферической форме тела.

Вывод о величине скорости (большая она или маленькая) можно сделать, определив безразмерный коэффициент, называемый числом Рейнольдса:

R e = ρ r v η - \boxed{Re = \frac{\rho r v}{\eta}}\ - число Рейнольдса, где

ρ - \rho\ - плотность вещества, в которой движется тело.

Если R e < 1700 Re движение газа (жидкости) вокруг тела ламинарное (слоистое), и скорости можно считать малыми.

Если R e > 1700 Re > 1700 , то движение газа (жидкости) вокруг тела турбулентное (с завихрениями), и скорости можно считать большими.

В последнем случае на образование вихрей тратится большая часть кинетической энергии тела, а значит, сила трения становится большей, а зависимость перестаёт быть линейной.

F тр = k v 2 ρ S - \boxed{F_\mathrm{тр} = kv^2\rho S}\ - сила вязкого трения при больших скоростях, где

S - S\ - площадь поперечного сечения тела,

k - k\ - постоянная величина, зависящая от поперечных размеров тела.

Часто последнюю формулу можно видеть в виде:

Число Рейнольдса, выбранное равным 1700 1700 , в действительности определяется конкретной задачей (условиями) и может принимать другие значения того же порядка. Объясняется это тем, что зависимость силы вязкого трения от скорости носит сложный характер: при некотором значении скорости линейная зависимость начинает нарушаться, а при некотором значении скорости эта зависимость становится квадратичной.

Рис. 14

В промежутке от v 1 v_1 до v 2 v_2 степень принимает дробные значения (рис. 14) . Число Рейнольдса характеризует состояние динамической системы, при котором движение слоёв остаётся ламинарным, и сильно зависит от внешних условий. К примеру: стальной шар, двигаясь в воде вдали от границ жидкости (в океане, озере) сохраняет ламинарным движение слоёв при R e = 1700 Re = 1700 , а тот же шар, движущийся в вертикальной трубе немного большего, чем шар, радиуса, заполненной водой, уже при R e = 2 Re=2 вызовет появление завихрений воды вокруг шара. (Отметим, что число Рейнольдса не единственное, применяемое для описания подобного движения. Например, применяют ещё числа Фруда и Маха.)

Определение 1

Сила трения представляет силу, появляющуюся в момент соприкосновения двух тел и препятствующую их относительному движению.

Главная причина, провоцирующая трение, кроется в шероховатости трущихся поверхностей и молекулярном взаимодействии указанных поверхностей. Сила трения зависима от материала соприкасающихся поверхностей и от силы их взаимного прижатия.

Понятие силы трения

Исходя из простых моделей трения (на основании закона Кулона), сила трения будет считаться прямо пропорциональной степени нормальной реакции соприкасающихся и трущихся поверхностей. Если рассматривать в целом, то процессы силы трения невозможно описать только лишь простыми моделями классической механики, что объясняется сложностью реакций в зоне взаимодействия трущихся тел.

Силы трения, подобно силам упругости, обладают электромагнитной природой. Их возникновение становится возможным, благодаря взаимодействию между молекулами и атомами тел, которые соприкасаются.

Замечание 1

Силы трения отличны от сил упругости и гравитационных фактом зависимости не только от конфигурации тел (от их взаимного расположения), но и от относительных скоростей их взаимодействия.

Разновидности силы трения

При условии наличия относительного движения двух контактирующих между собой тел, возникающие в таком процессе силы трения подразделяются на такие виды:

  1. Трение скольжения (представляет силу, возникающую как следствие поступательного перемещения одного из взаимодействующих тел относительно второго и воздействующая на данное тело в направлении, которое будет противоположным направлению скольжения).
  2. Трение качения (представляет момент сил, способный возникать в условиях процесса качения одного из двух контактирующих с другим тел).
  3. Трение покоя (считается силой, возникающей между двумя взаимодействующими телами, при этом она становится серьезным препятствием для возникновения относительного движения. Такая сила преодолевается с целью приведения данных контактирующих тел в движение относительно друг друга. Такой вид трения появляется при микроперемещениях (к примеру, при деформации) контактирующих тел. При возрастании усилий начнется повышение и силы трения.
  4. Трение верчения (является моментом силы, возникающим между контактирующими телами в условиях вращения одного из них в отношении другого и направленным против вращения). Определяется формулой: $M=pN$, где $N$ - нормальное давление, $p$- коэффициент трения верчения, имеющий размерность длины.

Экспериментальным образом была установлена независимость силы трения от площади поверхности, вдоль которой наблюдается соприкосновение тел, и пропорциональность силе нормального давления, с которой одно тело будет действовать на второе.

Определение 2

Постоянная величина представляет коэффициент трения, при этом зависимый от природы и состояния трущихся поверхностей.

В определенных ситуациях трение оказывается полезным. Можно привести примеры с невозможностью хождения человека (при отсутствии трения) и движением автотранспорта. Наряду с тем, трение может оказывать и вредный эффект. Так, оно провоцирует износ соприкасающихся деталей механизмов, дополнительный расход топлива для транспортных средств. Средством противостояния этому служат различные смазки (воздушные или жидкостные подушки). Еще одним эффективным способом считается замена скольжения качением.

Основные расчетные формулы для определения силы трения

Расчетная формула силы трения при скольжении будет выглядеть так:

  • $m$-коэффициент пропорциональности (трения скольжения),
  • $Р$ – сила вертикального (нормального) давления.

Сила трения скольжения представляет одну из управляющих движением сил, а ее формулу записывают с применением силы реакции опоры. На основе действия третьего закона Ньютона, силы нормального давления, а также реакции опоры оказываются равными по величине и противоположными по направлению:

Перед определением силы трения, формула которой будет записываться таким образом: $F=mN$, определяется сила реакции.

Замечание 2

Коэффициент сопротивления при процессе скольжения вводят экспериментально для трущихся поверхностей, при этом он будет зависимым от материала и качества обработки.

Максимальная сила трения покоя определяется подобно силе трения скольжения. Это играет важное значение для решения задач по определению силы движущего сопротивления. Можно привести пример с книгой, передвигаемой прижатой к ней рукой. Так, скольжение этой книги будет осуществляться под воздействием силы сопротивления покоя между книгой и рукой. При этом величина сопротивления будет зависеть от показателя силы вертикального давления на книгу.

Интересным будет факт пропорциональности силы трения квадрату соответствующей скорости, а ее формула станет видоизменяться, в зависимости от скорости перемещения взаимодействующих тел. К такой силе можно отнести силу вязкого сопротивления в жидкости.

В зависимости от скорости перемещения, силу сопротивления будет определять скорость движения, форма перемещающегося тела или вязкость жидкости. Движение в масле и воде одного и того же тела сопровождает различное по величине сопротивление. Для незначительных скоростей оно выглядит так:

  • $k$ – коэффициент пропорциональности, зависящий от линейных размеров тела и свойств среды,
  • $v$ – скорость тела.

Сила трения скольжения - сила , возникающая между соприкасающимися телами при их относительном движении.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения. Так как никакое тело не является абсолютно ровным, сила трения не зависит от площади соприкосновения, и истинная площадь соприкосновения гораздо меньше наблюдаемой; кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.

Величина, характеризующая трущиеся поверхности, называется коэффициентом трения , и обозначается чаще всего латинской буквой k {\displaystyle k} или греческой буквой μ {\displaystyle \mu } . Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то k {\displaystyle k} можно считать постоянным. В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

F = k N {\displaystyle F=kN}

K {\displaystyle k} - коэффициент трения скольжения ,

N {\displaystyle N} - сила нормальной реакции опоры.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда в большей или меньшей степени происходит преобразование механического движения в другие формы движения материи - чаще всего в тепловую форму движения, и происходит нагревание взаимодействующих тел.

Энциклопедичный YouTube

    1 / 3

    ✪ Урок 67. Сила трения

    ✪ Сила трения

    ✪ Статика. Трение скольжения. Лекция (28)

    Субтитры

Типы трения скольжения

Если между телами отсутствует жидкая или газообразная прослойка (смазочный материал), то такое трение называется сухим . В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя .

По физике взаимодействия трение скольжения принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазочными материалами - очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения - наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазочного материала) различной толщины - как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и т. д.) - наиболее распространённый случай при трении скольжения.

Также можно классифицировать трение по его области. Силы трения, возникающие при относительном перемещении различных тел, называются силами внешнего трения. Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

Измерение

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики. Поэтому нет точной формулы для коэффициента трения. Его оценка производится на основе эмпирических данных: так как по первому закону Ньютона тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения, то для измерения действующей на тело силы трения достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.