Что такое на самом деле звезды. Из чего состоят звезды на небе? Виды звезд, их характеристики

На протяжении веков каждую ночь мы видим в небе загадочные огоньки – звезды нашей Вселенной. В древности люди видели фигуры животных в скоплениях звезд, и позже они начали называться созвездиями. На текущий момент ученые выделяют 88 созвездий, которые разделяют ночное небо на участки. Звезды – это источники энергии и света для Солнечной системы. Они способны создавать тяжелые элементы, которые необходимы для начала жизни. Таким образом, Солнце дарит свое тепло всему живому на планете. Степень яркости звезд определяется их размерами.

Звезда Canis Majoris из созвездия Большого Пса является самой крупной во Вселенной. Она находится в 5 тыс. световых лет от Солнечной системы. Ее диаметр – 2,9 миллиарда километров.

Конечно же, не все звезды в Космосе такие огромные. Есть и звезды-карлики. Величину звезд ученые оценивают по шкале – чем звезда ярче, тем ее номер меньше. Самая яркая звезда в ночном небе Сириус. По цветам звезды делятся на классы, которые указывают на их температуру. К классу О относятся самые горячие, они голубого цвета. Звезды красного цвета являются самыми холодными.

Следует заметить, что звезды не мерцают. Этот эффект похож на то, что мы наблюдаем в жаркие дни лета, посмотрев на раскаленный бетон или асфальт. Кажется, что мы смотрим через дрожащее стекло. Этот же процесс вызывает иллюзию мерцания звезды. Чем ближе она к нашей планете, тем больше она «мерцает».

Виды звезд

Главная последовательность – время существования звезды, которое зависит от ее размера. Маленькие звезды сияют дольше, крупные, наоборот, меньше. Массивным звездам топлива хватит на пару сотен тысяч лет, а малые будут гореть на протяжении миллиардов лет.

Красный гигант – большая звезда оранжевого или красноватого оттенка. Звезды этого типа очень крупных размеров, которые превышают обычные в сотни раз. Самые массивные из них становятся сверхгигантами. Бетельгейзе, из созвездия Орион, является самой яркой среди красных супергигантов.

Белый карлик – это остатки обычной звезды, после красного гиганта. Эти звезды довольно плотные. Их размер не больше нашей планеты, но их массу можно сравнить с Солнцем. Температура белых карликов достигает 100 тыс. градусов и больше.

Коричневые карлики еще называют субзвездами. Это газовые массивные шары, которые больше Юпитера и меньше Солнца. Эти звезды не излучают тепла и света. Они являют собой темный сгусток материи.

Цефеида. Цикл ее пульсации колеблется между несколькими секундами и несколькими годами. Все зависит от разновидности переменной звезды. Цефеиды изменяют свою светимость в конце жизни и в начале. Они могут быть внешними и внутренними.

Большинство звезд – это часть звездных систем. Двойные звезды – две гравитационно связанные звезды. Ученые доказали, что у половины звезд галактики есть пара. Они могут затмевать друг друга, потому что их орбиты находятся под малым углом к лучу зрения.

Новые звезды. Это тип катаклизмических переменных звезд. Их блеск меняется не так резко, по сравнению со сверхновыми. В нашей галактике выделяют две группы новых звезд: новые балджа (медленные и слабее) и новые диска (быстрее и ярче).

Сверхновые. Звезды, которые заканчивают эволюцию во взрывном процессе. Этим термином были названы звезды, которые вспыхнули сильнее новых. Но ни одни, ни другие не являются новыми. Всегда вспыхивают звезды, которые уже существуют.

Гиперновые. Это очень крупная сверхновая звезда. Теоретически они могли бы создать Земле серьезную угрозу сильной вспышкой, но на данный момент подобных звезд поблизости нашей планеты нет.

Цикл жизни звезд

Звезда берет свое начало в виде облака газа и пыли, которое называют туманностью. Взрывная волна сверхновой или гравитация соседней звезды способна заставить ее сжиматься. Элементы облака собираются в плотную область, которая называется протозвездой. При следующем сжатии она нагревается и достигает критической массы. После происходит ядерный процесс, и звезда проходит все фазы существования. Первый является самым стабильным и долгим. Но со временем топливо заканчивается, и мелкая звезда становится красным гигантом, а большая – красным супергигантом. Эта фаза будет длиться, пока топливо полностью не закончится. Туманность, которая останется после звезды, может расширяться на протяжении миллионов лет. После чего на нее подействует взрывная волна или гравитация, и все повторится сначала.

Основные процессы и характеристики

Звезда имеет два параметра, которые определяют все внутренние процессы, – химический состав и масса. Задав их одиночной звезде, можно предсказать спектр, блеск и внутреннюю структуру звезды.

Расстояние

Есть много способов для определения расстояний до звезды. Самый точный – измерение параллаксов. До звезды Веги расстояние измерил астроном Василий Струве в 1873. Если звезда находится в звездном скоплении, расстояние до звезды можно принять равным расстоянию до скопления. Если звезда из класса цефеид, расстояние можно вычислить из зависимости абсолютная звездная величина – период пульсации. Чтобы определить расстояние к далеким звездам, астрономы используют фотометрию.

Масса

Точная масса звезды определяется, если это компонент двойной звезды. Для этого используется третий закон Кеплера. Также можно косвенно определить массу, к примеру, из зависимости светимость – масса. В 2010 году ученые предложили еще один способ вычисления массы. Он основывается на наблюдениях за прохождением планеты со спутником по диску звезды. Применив законы Кеплера и изучив все данные, определяют плотность и массу звезды, период вращения спутника и планеты и другие характеристики. На данный момент этот способ использовался на практике.

Химический состав

Химический состав зависит от вида звезды и ее массы. Крупные звезды не обладают элементами тяжелее гелия, а красные и желтые карлики относительно на них богаты. Это помогает звезде зажечься.

Структура

Выделяют три внутренние зоны: конвективную, ядро и зону лучистого переноса.

Конвективная зона. Здесь за счет конвенции происходит перенос энергии.

Ядро – центральная часть звезды, где проходят ядерные реакции.

Лучистая зона. Здесь перенос энергии происходит благодаря излучению фотонов. У малых звезд эта зона отсутствует, у крупных находится между конвективной зоной и ядром.

Атмосфера находится над поверхностью звезды. Она состоит из трех частей – хромосферы, фотосферы и короны. Фотосфера является самой глубокой ее частью.

Звездный ветер

Это процесс, при котором вещество из звезды стекает в межзвездное пространство. Он играет немаловажную роль в эволюции. В результате звездного ветра масса звезды уменьшается, значит, ее жизнь полностью зависит от интенсивности этого процесса.

Принципы обозначения звезд и каталоги

В галактике находится больше 200 миллиардов звезд. На фотоснимках крупных телескопов их настолько много, что не имеет смысла давать им всем имена и даже считать. Примерно 0,01 процента звезд нашей галактики занесено в каталоги. У каждого народа самые яркие звезды получили имена. К примеру, Алголь, Ригель, Альдебаран, Денеб и другие происходят с арабского.

В Уранометрии Байера звезды обозначаются буквами греч. алфавита в порядке убывания блеска (α – самая яркая, β – вторая по блеску). Если греческого алфавита не хватало, использовался латинский. Некоторые звезды называют именами ученых, которые описывали их уникальные свойства.

Большая Медведица

Созвездие Большая Медведица являет собой 7 эффектных звезд, которые отыскать на небе довольно просто. Помимо этих, в созвездии насчитывается еще 125 звезд. Это созвездие одно из самых крупных и захватывает на небе 1280 кв. градусов. Ученые выяснили, что звезды ковша находятся от нас на неравном расстоянии.

Ближе всех расположена звезда Алиот, самая дальняя – Бенетнаш. Для любителей астрономии это созвездие способно служить «тренировочным полигоном»:

· Благодаря Большой Медведице можно с легкостью найти и другие созвездия.

· В течение года оно четко показывает обращение неба за сутки и перестроение его вида.

· Если запомнить угловые расстояния между звездами, можно проводить угловые приближенные измерения.

· Имея едва ощутимый телескоп, можно рассмотреть переменные и двойные звезды в Большой Медведице.

Легенды и мифы созвездия

«Ковш» известен нам с давних времен. Древние греки утверждали, что это нимфа Калисто, которая была спутницей Артемиды и возлюбленной Зевса. Она проигнорировала правила и навлекла немилость богини. Та обратила ее в медведицу и натравила собак. Чтобы возлюбленная Зевса была в безопасности, он поднял ее на небо. Событие это темное, и каждый раз в эту историю пытаются добавить что-то новое, как, например, подругу нимфы Каллисто, которую превратили в Малую Медведицу.

Большую Медведицу можно увидеть и днем, использовав интерактивную карту созвездий. Здесь Вы сможете найти другие малые и большие созвездия, посмотреть их в большом приближении..

Вопрос о том, сколько звёзд на небе, волновал умы людей, как только первая звезда была замечена ими на небосклоне (причём задачу эту они решают до сих пор). Некоторые подсчёты астрономы всё-таки сделали, установив, что невооружённым взглядом на небе можно рассмотреть около 4,5 тыс. небесных светил, а в состав нашей галактики Млечный Путь входит около 150 млрд. звёзд. Учитывая, что Вселенная содержит несколько триллионов галактик, общее количество звёзд и созвездий, свет которых достигает земной поверхности, равняется септиллиону – и оценка эта лишь приблизительна.

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Температура небесных светил чрезвычайно раскалена: в результате большого количества термоядерных реакций температурные показатели звёздных поверхностей колеблются от 2 до 22 тыс. градусов Цельсия.

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Жизнь небесных светил

Астрономы утверждают, что звёзды и созвездия образовываются до сих пор: согласно последним научным данным, лишь в нашей галактике ежегодно появляется около сорока новых небесных светил.

На первоначальном этапе своего образования новая звезда являет собой холодное разряженное облако межзвёздного газа, которое вращается вокруг своей галактики. Толчком для того чтобы в облаке начали происходить реакции, стимулирующие образование небесного светила, может послужить взорвавшаяся неподалёку сверхновая звезда (взрыв небесного тела в результате которого оно через некоторое время полностью разрушается).

Также вполне вероятными причинами может оказаться его столкновение с другим облаком или же на процесс могут повлиять столкнувшиеся друг с другом галактики, словом, всё, что способно воздействовать на газовое межзвёздное облако и заставить его сжиматься в шар под действием собственной гравитации.

Во время сжатия гравитационная энергия трансформируется в тепло в результате чего газовый шар чрезвычайно сильно нагревается. Когда температурные показатели внутри шара поднимаются до 15-20 К, начинают происходить термоядерные реакции в результате которых прекращается сжатие. Шар превращается в полноценное небесное светило, и на протяжении длительного времени внутри его ядра происходит преобразования водорода в гелий.



Когда запасы водорода заканчиваются, реакции останавливаются, формируется гелиевое ядро и структура небесного светила постепенно начинает изменяться: она становится более яркой, а ее внешние слои расширяются. После того как вес гелиевого ядра достигает максимальных показателей, небесное тело начинает уменьшаться, температура подниматься.

Когда температурные показатели достигают 100 млн. К, внутри ядра возобновляются термоядерные процессы, во время которых гелий преобразовывается в твёрдые металлы: гелий – углерод – кислород – кремний – железо (когда ядро становится железным, все реакции полностью прекращаются). В результате яркая звезда, увеличившись во сто крат, превращается в Красного гиганта.

Сколько именно проживёт то или иное светило, во многом зависит от размера: небесные тела малой величины сжигают запасы водорода очень медленно и вполне способны просуществовать миллиарды лет. Из-за недостаточной массы, в них не происходят реакций с участием гелия, и после остывания, они продолжают излучать небольшое количество электромагнитного спектра.


Жизнь светил средних параметров, среди которых и Солнце, составляет около 10 млрд. После этого периода их поверхностные слоя обычно превращаются в туманность с абсолютно безжизненным ядром внутри. Это ядро некоторое время спустя трансформируется в гелиевый белый карлик, диаметром ненамного больше Земли, затем темнеет и становится невидимым.

Если же небесное светило средних размеров было довольно крупное, оно сначала превращается в чёрную дыру, а затем на её месте вспыхивает сверхновая звезда.

А вот продолжительность существования сверхмассивных светил (напр., Полярная звезда) длится лишь несколько миллионов лет: в горячих и больших небесных телах водород сгорает чрезвычайно быстро. После того как огромное небесное тело заканчивает своё существование, на его месте происходит взрыв чрезвычайно огромной силы – и возникает сверхновая звезда.

Взрывы во Вселенной

Сверхновой звездой астрономы называют взрыв звезды, во время которого объект почти полностью разрушается. Через несколько лет объём сверхновой звезды увеличивается настолько, что она становится полупрозрачной и очень разреженной – и эти остатки можно увидеть ещё на протяжении нескольких тысяч лет, после чего она темнее и трансформируется в тело, полностью состоящее из нейтронов. Интересно, что явление это нередкое и в галактике происходит раз в тридцать лет.


Классификация

Большую часть видимых нам небесных светил относят к звёздам главной последовательности, то есть к небесным телам, внутри которых происходят термоядерные процессы, вызывающие преобразование водорода в гелий. Астрономы подразделяют их в зависимости от их цвета и температурных показателей на следующие классы звёзд:

  • Голубые, температура: 22 тыс. градусов Цельсия (класс О);
  • Бело-голубые, температура: 14 тыс. градусов Цельсия (класс В);
  • Белые, температура: 10 тыс. градусов Цельсия (класс А);
  • Бело-жёлтые, температура: 6,7 тыс. градусов Цельсия (класс F);
  • Жёлтые, температура: 5,5 тыс. градусов Цельсия (класс G);
  • Желто-оранжевые, температура: 3,8 тыс. градусов Цельсия (класс К);
  • Красные, температура: 1,8 тыс. градусов Цельсия (класс М).


Кроме светил главной последовательности, учёные выделяют следующие типы небесных светил:

  • Коричневые карлики – слишком малые небесные тела, чтобы внутри ядра мог начаться процесс преобразования водорода в гелий, поэтому они не являются полноценными звёздами. Сами по себе они чрезвычайно тусклые и учёные узнали об их существовании лишь по выделяемому ими инфракрасному излучению.
  • Красные гиганты и сверхгиганты – несмотря на свою низкую температуру (от 2,7 до 4,7 тыс. градусов Цельсия), это чрезвычайно яркая звезда, инфракрасное излучение которой достигает максимальных показателей.
  • Типа Вольфа-Райе – излучение отличается тем, что в нём присутствует ионизированный гелий, водород, углерод, кислород и азот. Это очень горячая и яркая звезда, являющаяся гелиевыми остатками огромных небесных светил, которые на определённом этапе развития скинули свою массу.
  • Типа Т Тельца – относятся к классу переменных звёзд, а также к таким классам, как F, G, K, M, . Имеют большой радиус, обладают высокой яркостью. Увидеть эти светила можно возле молекулярных облаков.
  • Яркие голубые переменные (второе название – переменные типа S Золотой Рыбы) – чрезвычайно яркие пульсирующие гипергиганты, чья яркость может превышать яркость Солнца в миллион раз и быть тяжелее в 150 раз. Считается, что небесное светило этого типа – самая яркая звезда во Вселенной (встречается, правда, очень редко).
  • Белые карлики – умирающие небесные светила, в которые преобразуются светила средних размеров;
  • Нейтронные звезды – также относятся к умирающим небесным телам, которые после гибели образуют более крупные светила, чем Солнце. Ядро в них уменьшается до тех пор, пока не преобразуется в нейтроны.


Путеводная нить моряков

Одной из наиболее известных небесных светил нашего небосклона является Полярная звезда из созвездия Малая Медведица, почти никогда не меняющая своего положения на небосклоне относительно определённой широты. В любое время года она указывает на север, из-за чего получила второе своё название – Северная звезда.

Естественно, легенда о том, что Полярная звезда не двигается, далека от истины: как и любое другое небесное тело, она совершает обороты. Северная звезда уникальна тем, что она ближе всех находится к северному полюсу – на расстоянии около одного градуса. А потому из-за угла наклона Полярная звезда кажется неподвижной, и вот уже на протяжении не одного тысячелетия служит великолепным ориентиром для моряков, пастухов, путешественников.

Надо заметить, что Северная звезда сместится, если наблюдатель изменит своё местоположение, так как полярная звезда изменяет свою высоту в зависимости от географической широты. Эта особенность давала возможность морякам, при измерении угла наклона между горизонтом и Полярной звездой, определять своё месторасположение.


В действительности Полярная звезда состоит из трёх объектов: недалеко от неё расположены две звезды-спутника, которые связаны с ней силами взаимного притяжения. При этом сама Полярная звезда относится к гигантам: её радиус почти в 50 раз больше радиуса Солнца, а светимость превышает в 2,5 тыс. раз. Это значит, что Северная звезда будет иметь крайне непродолжительную жизнь, а потому, несмотря на относительно молодой возраст (не более 70 млн. лет), Полярная звезда считается старой.

Интересно, что в списке самых ярких звёзд, Северная звезда находится на 46 месте – именно поэтому в городе на ночном небе, освещенном уличными фонарями, Полярная звезда практически никогда не видна.

Падающие светила

Порой, посмотрев на небо, можно увидеть, как по небу проносится упавшая звезда, яркая светящаяся точка – иногда одна, иногда несколько. Выглядит это так, будто звезда упала, а на ум сразу приходит легенда о том, что когда на глаза попадается упавшая звезда, нужно загадать желание – и оно непременно сбудется.

Мало кто задумывается, что в действительности – это метеориты, летящие к нашей планете из космоса, которые столкнувшись с атмосферой Земли, оказались настолько раскалены, что стали гореть и походить на яркую летящую звёздочку, получившую понятие «упавшая звезда». Как ни странно, явление это нередкое: если следить за небом постоянно, увидеть, как звезда упала, можно практически каждую ночь – на протяжении суток в атмосфере нашей планеты сгорает около сотни миллионов метеоров и около ста тонн очень мелких пылевых частиц.

В некоторые годы упавшая звезда показывается на небосклоне намного чаще, чем обычно, а если она при этом не одна, земляне имеют возможность наблюдать за метеорным потоком – несмотря на то, что кажется, будто звезда упала на поверхность нашей планеты, почти все небесные тела потока сгорают в атмосфере.

Появляются они в таком количестве, когда комета приближается к Солнцу, нагревается и частично разрушается, отдавая в космос определенное количество камней. Если проследить траекторию метеоритов, создаётся обманчивое впечатление, будто все они летят из одной точки: движутся они по параллельным траекториям и каждая упавшая звезда имеет свою.

Интересно, что многие из этих метеорных потоков возникают в один и тот же период года и земляне имеют возможность увидеть падение звезды довольно продолжительное время – от нескольких часов, до нескольких недель.

И только метеориты крупных размеров, обладающие достаточной массой, способны достигнуть земной поверхности, и если в это время такая звезда упала недалеко от населённого пункта, например, это случилось несколько лет назад в Челябинске, то это может вызвать чрезвычайно разрушительные последствия. Иногда упавшая звезда может быть не одна, что именуют метеоритным дождем.

Несмотря на разницу в размерах, в начале своего развития все эти звезды имели похожий состав.

То, из чего состоят звезды, полностью определяет их характер и судьбу - начиная от цвета и яркости, заканчивая сроком жизни. Более того, на составе звезды завязан весь процесс ее образования, равно как и формирования ее - и нашей Солнечной системы в том числе.

Любая звезда в начале своего жизненного пути - будь то монструозные гиганты вроде или желтые карлики как наше - состоит приблизительно из равной пропорции одних и тех же веществ. Это 73% водорода, 25% гелия и еще 2% атомов дополнительных тяжелых веществ. Почти таким же был состав Вселенной после , за исключением 2% тяжелых элементов. Они образовались после взрывов первых во Вселенной звезд, чьи размеры превышали размах современных галактик.

Однако почему тогда звезды такие разные? Секрет кроется в тех самых «дополнительных» 2 процентах звездного состава. Это не единственный фактор - очевидно, что достаточно большую роль играет масса звезды. Именно определяет судьбу светила - сгорит оно за пару сотен миллионов лет, подобно , или же будет светить миллиардами лет, как Солнце. Однако дополнительные вещества в составе звезды могут перебить все другие условия.

Состав звезды SDSS J102915 +172927 идентичен составу первых звезд, возникших после Большого взрыва.

Вглубь звезды

Но как такая ничтожная часть состава звезды может серьезно изменить ее функционирование? Для человека, в среднем состоящего на 70% из воды, потеря 2% жидкости не страшна - это всего лишь ощущается как сильная жажда и не приводит к необратимым изменениям в организме. Но Вселенная очень чуткая даже к самым малым переменам - будь 50-я часть состава нашего Солнца хоть капельку иной, жизнь в могла и не образоваться.

Как это работает? Для начала вспомним одно из главных последствий гравитационных взаимодействий, упоминаемое повсеместно в астрономии - тяжелое стремится к центру. Любая планета служит этого принципа: самые тяжелые элементы, вроде железа, располагаются в ядре, когда более легкие - снаружи.

То же самое происходит во время образования звезды из рассеянного вещества. В условном стандарте строения звезды гелий образует ядро светила, а из водорода собирается окружающая оболочка. Когда масса гелия переваливает за критическую точку, гравитационные силы сжимают ядро с такой силой, что в прослойках между гелием и водородом в ядре начинается .

Именно тогда звезда и зажигается - еще совсем молодая, окутанная водородными облаками, которые со временем улягутся на ее поверхности. Свечение играет важную роль в существовании звезды - именно , пытающиеся вырваться из ядра после термоядерной реакции, удерживают светило от моментального сжатия в или . Также имеет силу обычная конвекция, перемещение вещества под воздействием температуры - ионизированные накалом у ядра, атомы водорода поднимаются в верхние слои звезды, перемешивая тем самым материю в нем.

Так все же, при чем тут 2% тяжелых веществ в составе звезды? Дело в том, что любой элемент тяжелее гелия - будь то углерод, кислород или металлы - неминуемо окажется в самом центре ядра. Они опускают планку массы, по достижению которой зажигается термоядерная реакция - и чем тяжелее вещества в центре, тем быстрее зажигается ядро. Однако при этом оно будет излучать меньше энергии - размеры эпицентра горения водорода будут скромнее, чем если бы ядро звезды состояло из чистого гелия.

Солнцу повезло?

Итак, 4 с половиной миллиарда лет назад, когда Солнце только стало полноценной звездой, оно состояло из того же материала, что и вся - трех четвертей водорода, одной четверти гелия, и пятидесятой части примесей металлов. Благодаря особой конфигурации этих добавок, энергия Солнца стала подходящей для наличия жизни в его системе.

Под металлами не подразумевается только никель, железо или золото - астрономы называют металлами все, что отличается от водорода и гелия. Туманность, из которой по теории сформировалось , была сильно металлизирована - она состояла из остатков сверхновых звезд, которые стали источником тяжелых элементов во Вселенной. Звезды, чьи условия зарождения были схожи с Солнечными, называются звездами населения I. Такие светила составляют большую часть нашей .

Мы уже знаем, что благодаря 2% металлов в содержании Солнца оно горит медленнее - это обеспечивает не только долгую «жизнь» звезде, но и равномерную подачу энергии - важные для зарождения жизни на критерии. Кроме того, раннее начало термоядерной реакции поспособствовало тому, что не все тяжелые вещества были поглощены младенцем-Солнцем - в итоге сумели зародиться и полностью сформироваться существующие нынче планеты.

К слову, Солнце могло гореть немногим тусклее - пусть и маленькую, но все же значимую часть металлов забрали у Солнца газовые гиганты. В первую очередь стоит выделить , немало изменивший в Солнечной системе. Влияние планет на состав звезд было доказано в процессе наблюдений за тройной звездной системой . Там есть две звезды, похожие на Солнце, и возле одной из них нашли газовый гигант, масса которого минимум в 1,6 раза больше Юпитера. Металлизация этой звезды оказалась существенно ниже ее соседки.

Старение звезды и изменение состава

Однако время не стоит на месте - и термоядерные реакции внутри звезд постепенно изменяют их состав. Главной и самой простой реакцией синтеза, который протекает в большинстве звезд во Вселенной, и в нашем Солнце в том числе, является протон-протонный цикл. В нем четыре атома водорода сливаются воедино, образуя в итоге один атом гелия и очень большой выход энергии - до 98% общей энергии звезды. Такой процесс называется еще «горением» водорода: в Солнце «сгорает» до 4 миллионов тонн водорода ежесекундно.

Как меняется состав звезды в процессе ? Это мы можем понять того, что мы уже узнали о звездах в статье. Рассмотрим на примере нашего Солнца: количество гелия в ядре будет увеличиваться; соответственно, будет расти объем ядра звезды. Из-за этого увеличится площадь термоядерной реакции, а вместе с ней - интенсивность свечения и температура Солнца. Через 1 миллиард лет (в возрасте 5,6 млрд лет) энергия звезды вырастет на 10%. В возрасте 8 миллиардов лет (через 3 млрд лет от сегодняшнего дня) солнечное излучение составит 140% от современного - условия на Земле к тому времени поменяются настолько, что она в точности будет напоминать .

Рост интенсивности протон-протонной реакции сильно отразится на составе звезды - водород, мало затронутый с момента рождения, станет сгорать куда быстрее. Нарушится баланс между оболочкой Солнца и его ядром - водородная оболочка станет расширяться, а гелиевое ядро, наоборот, сужаться. В возрасте 11 миллиардов лет сила излучения из ядра звезды станет слабее сжимающей его гравитации - греть ядро теперь станет именно растущее сжатие.

Существенные изменения в составе звезды произойдут еще через миллиард лет, когда температура и сжатие ядра Солнца вырастет настолько, что запустится следующая стадия термоядерной реакции - «горение» гелия. В итоге реакции, атомные ядра гелия сначала сбиваются вместе, превращаясь в нестабильную форму бериллия, а затем в углерод и кислород. Сила этой реакции невероятно велика - когда будут зажигаться нетронутые островки гелия, Солнце будет вспыхивать до 5200 раз ярче, чем сегодня!

Во время этих процессов ядро Солнца будет продолжать накаляться, а оболочка расширится до границ орбиты Земли и значительно остынет - ибо чем больше площадь излучения, тем больше энергии теряет тело. Пострадает и масса светила: потоки звездного ветра будут уносить остатки гелия, водорода и новообразованных углерода с кислородом в далекий космос. Так наше Солнце превратится в . Полностью завершится развитие светила тогда, когда оболочка звезды окончательно истощится, и останется только плотное, горячее и маленькое ядро - . Оно медленно будет остывать миллиардами лет.

Эволюция состава звезд, отличных от Солнца

На этапе возгорания гелия термоядерные процессы в звезде размеров Солнца заканчиваются. Массы небольших звезд недостаточно для возгорания новообразованных углерода и кислорода - светило должно быть минимум в 5 раз массивнее Солнца, чтобы углерод начал ядерное преобразование.

Большинство из нас любит смотреть на ночное звездное небо. Оно притягивает наши взгляды своей завораживающей красотой, манит к себе. Предки наши считали, что по звездам можно предсказать судьбу и найти по ним дорогу домой. Звезды – это не только красивые огоньки в небе, служащие для написания гороскопов и являющиеся навигаторами. Так что же такое «звезда» на самом деле?

Звезда – это небесный объект, газовый шар, образующийся из газово-пылевой среды, включающей водород и гелий, в результате гравитационного сжатия. Среда эта распространяется неоднородно, благодаря чему появляются области повышенной плотности. Под действием гравитации среда сжимается, увеличивая температуру и плотность. Процесс сжатия и нагрева продолжается до тех пор, пока температура центральной области не достигнет нескольких миллионов градусов. Вследствие термоядерной реакции, освобождается некоторая часть энергии, после чего в центре звезды перерабатывается энергия, поддерживающая ее существование и излучение.

Температура звезд в центре составляет около миллиона Кельвинов, а на поверхности – несколько тысяч. Выделяемая в ходе термоядерных реакций энергия, служит основным источником энергии на планетах.

Кроме гелия и водорода звезды содержат в себе другие некоторые химические элементы. Астрономы называют их металлами. Например, кальций, натрий, магний, алюминий и кремний. Химический состав можно определить по линиям в спектрах. Выделение энергии в обычной звезде происходит за счет превращения водорода в гелий в самой ее сердцевине.

Звезда – это небесное тело, излучающее свет. Существует их во Вселенной очень и очень много. Они различаются по размерам, плотности и температуре. Бывают звезды «красные супергиганты», размер которых превышает Солнце, а плотность меньше, чем воздух, а бывают «белые карлики», по размерам сравнительны с нашей планетой и имеющие плотность в сотни тысяч раз больше, чем «супергиганты».

Из одной и теорий следует, что звезда, в течение своей жизни, проходит обе фазы. Ведь звезда образовалась из облака космической пыли, которое постепенно сжимается. Далее эта «среда» превращается в газообразную и становится «красным супергигантом». На этом сжатие не заканчивается, и звезда становится похожа по размеру и температуре на Солнце. В таком состоянии она остается миллиарды лет, излучая энергию, благодаря водороду.

Звезда разрушается, когда водород заканчивается. Происходят взрывы, и звезда превращается в «белого карлика». Когда запасы энергии исчерпываются полностью, звезда начинает гаснуть. В древности видели некую связь, систему между звездами. Так появились созвездия - некие группы звезд, фигуры, образованные с их помощью. Также звезды образуют галактики – совокупность звезд, звездных скоплений, пыли и темной материи.

Таким образом, звезда в первую очередь не путеводитель и не предсказатель будущего и судьбы человека. Она проходит некий жизненный цикл: она рождается, развивается, объединяется в группы-созвездия и умирает.

Издревле человек стремился постичь неизведанное, устремляя свой взгляд на ночное небо, на котором буквально рассыпаны миллионы звезд. Ученые всегда уделяли серьезное внимание изучению космоса и теперь они имеют возможность, с помощью мощнейшего научного оборудования не только рассматривать его, но и делать уникальные фотографии. Предлагаю вам насладиться удивительными фотографиями космоса, которые были сделаны ими совсем недавно и узнать немного интересных фактов.

Прекрасная тройная туманность NGC 6514 в созвездии Стрельца. Название туманности предложено Уильямом Гершелем и означает «разделенная на три лепестка». Точное расстояние до нее неизвестно, но по различным оценкам составляет от 2 до 9 тысяч световых лет. NGC 6514 состоит сразу из трех основных типов туманностей - эмиссионной (розоватый цвет), отражающей (голубой цвет) и поглощающей (чёрный цвет). (Фото Máximo Ruiz):

Космический Хобот слона

Туманность Хобот слона извивается вокруг эмиссионной туманности и молодого звездного скопления в комплексе IC 1396 в созвездии Цефея. Длина космического слоновьего хобота составляет более 20 световых лет. Эти темные облака, похожие на усы, содержат материал для образования новых звезд и скрывают протозвезды - звезды на завершающем этапе своего формирования - за слоями космической пыли. (Фото Juan Lozano de Haro):

Мир-кольцо

Объект Хога - странная кольцеобразная галактика в созвездии Змеи, названная в честь открывателя.Расстояние до Земли составляет около 600 млн световых лет. В центре галактики находится скопление из относительно старых звезд желтого цвета. Оно окружено практически правильным кольцом из звезд более молодых, имеющих голубой оттенок. Диаметр галактики - около 100 тыс. световых лет. Среди гипотез о происхождении рассматриваются столкновение галактик, произошедшее несколько миллиардов лет тому назад. (Фото R. Lucas (STScI | AURA), Hubble Heritage Team, NASA):

Луна над Андромедой

Большая спиральная галактика Туманность Андромеды, находится всего в 2.5 млн световых лет от нас и является самой близкой к нашему Млечному Пути спиральной галактикой. Ее можно увидеть невооруженным глазом как небольшое размытое пятнышко на небе. Эта составная фотография позволяет сравнить угловой размер Туманности Андромеды и Луны. (Фото Adam Block and Tim Puckett):

Постоянно меняющаяся поверхность Ио

Спутник Юпитера Ио - самый вулканически активный объект в Солнечной системе. Его поверхность постоянно меняется из-за новых потоков лавы. Эта фотография стороны спутника Ио, повернутой к Юпитеру, она составлена из снимков, сделанных в 1996 году космическим аппаратом НАСА Галилео. Отсутствие ударных кратеров объясняется тем, что вся поверхность Ио покрывается слоем вулканических отложений гораздо быстрее, чем возникают кратеры. Вероятной причиной вулканической активности является меняющиеся гравитационные приливы, вызывающиеся огромным Юпитером. (Фото Galileo Project, JPL, NASA):

Туманность Конус

Около туманности Конус можно наблюдать странные образования. Они возникают из-за взаимодействия межзвездной пыли со светом и газом, исходящих от молодых звезд. Голубое свечение вокруг звезды S Mon - это отражение излучения яркой звезды окружающей звездной пылью. Звезда S Mon находится в рассеянном звездном скоплении NGC 2264, расположенном на расстоянии 2 500 световых лет от Земли. (Фото Subaru Telescope (NAOJ) & DSS):

Спиральная галактика NGC 3370

Спиральная галактика NGC 3370 находится на расстоянии около 100 миллионов световых лет от нас в созвездии Льва. По размеру и структуре она близка к нашему Млечному Пути. (Фото NASA, ESA, Hubble Heritage (STScI | AURA):

Спиральная галактика M74

Эта спиральная галактика одна из фотогеничных. Она состоит из примерно 100 миллиардов звезд и находится на расстоянии около 32 млн световых лет от нас. Предположительно в этой галактике есть черная дыра промежуточной массы (то есть существенно больше звёздных масс, но меньше чёрных дыр в центре галактик). (Фото NASA, ESA, and the Hubble Heritage (STScI | AURA) - ESA | Hubble Collaboration):

Туманность Лагуна

Это гигантское межзвездное облако и область H II в созвездии Стрельца. Находясь на расстоянии 5200 световых лет, туманность Лагуна одна из двух звездоформирующих туманностей слабо различимых невооружённым глазом в средних широтах Северного полушария. Недалеко от центра Лагуны находится яркая область «песочных часов» - результат турбулентного взаимодействия звездных ветров и мощного излучения. (Фото Ignacio Diaz Bobillo):

Светящаяся полоса в туманности Пеликан

Хорошо видимая на небе, светящаяся полоса IC 5067 является частью большой эмиссионной туманности Пеликан с характерной формой. Длина полосы - около 10 световых лет, она очерчивает голову и шею космического пеликана. Находится на расстоянии около 2 000 световых лет от нас. (Фото César Blanco González):

Грозовое облако

Этот красивый снимок был сделан на юге провинции Альберта в Канаде. Это удаляющееся дождевое облако, на его ближнем краю видны необычные выступы, характерные для вымеобразных облаков, а из дальнего края облака идет дождь. Также читайте статью «Редкие виды облаков». (Фото Alan Dyer):

Три яркие туманности в Стрельце

Туманность Лагуна M8 находится слева от центра картинки, M20 - цветную туманность справа. Третья туманность, NGC 6559, расположена чуть выше M8 и отделена от нее темной полосой звездной пыли. Все они находятся на расстоянии около 5 тысяч световых лет от нас. (Фото Tony Hallas):

Галактика NGC 5195: знак вопроса

Карликовая галактика NGC 5195 в созвездии Гончие Псы хорошо известна как маленький спутник спиральной галактики M51 - галактики Водоворот. Вместе они похожи на космический вопросительный знак, в котором NGC 5195 является точкой. Находится на расстоянии около 30 млн световых лет от Земли. (Фото Hubble Legacy Archive, NASA, ESA):

Удивительный расширяющийся краб

Эта крабовидная туманность, находящаяся от нас на расстоянии 6 500 световых лет в созвездии Тельца - остаток вспышки сверхновой, расширяющееся облако вещества, оставшегося после взрыва огромной звезды. В настоящее время размер туманности - около 10 световых лет, и она расширяется со скоростью примерно 1000 км/с. (Фото Adam Block, Mt. Lemmon SkyCenter, U. Arizona):

Переменная звезда RS Кормы

Это - одна из самых важных звезд на небе. Одна из причин- она случайно оказалась окружена ослепительной отражательной туманностью. Самая яркая звезда в центре - пульсирующая RS Кормы. Она почти в 10 раз более массивна, чем Солнце, в 200 раз больше, а ее яркость в среднем в 15 000 раз больше солнечной, причем RS Кормы меняет яркость почти в пять раз каждые 41,4 дней. RS Кормы находится на расстоянии около четверти пути между Солнцем и центром Млечного Пути, на расстоянии 6 500 св. лет от Земли. (Фото Hubble Legacy Archive, NASA, ESA):

Планета-океан Глизе 1214b

Экзопланета (сверхземля) в созвездии Змееносца. Первая обнаруженная планета-океан, она обращается вокруг тусклого красного карлика GJ 1214. Планета находится достаточно близко к Земле (13 парсек или примерно 40 световых лет), и поскольку проходит транзитом по диску своей звезды, ее атмосфера может быть подробно изучена с помощью текущих технологий. Один год на планете длится 36 часов.

Атмосфера планеты состоит из густого водяного пара с небольшой примесью гелия и водорода. Однако учитывая высокую температуру на поверхности планеты (около 200 градусов Цельсия), ученые считают, что вода на планете находится в таких экзотических состояниях как «горячий лёд» и «супержидкая вода», которые не встречаются на Земле.

Возраст планетной системы оценивается в несколько миллиардов лет. Масса планеты составляет примерно 6,55 масс Земли, в то же время диаметр планеты превышает земной более чем в 2,5 раза. На этой картинке показано, как художник представляет себе прохождение сверхземли Глизе 1214b по диску своей звезды. (Фото ESO, L. Calçada):

Звездная пыль в Южной Короне

Здесь видны облака космической пыли, которые находятся на звездном поле около границы созвездия Южной Короны. Они находятся на расстоянии менее 500 световых лет от нас и блокируют свет от более далеких звезд галактики Млечный Путь. В самом центре снимка расположились несколько отражательных туманностей. (Фото Ignacio Diaz Bobillo):

Скопление галактик Abell 1689

Abell 1689 - скопление галактик в созвездии Девы. Это одно из наиболее больших и самое массивное из известных скоплений галактик, является гравитационной линзой, искажая свет галактик, находящихся за ним. Само скопление расположено на расстоянии 2.2 миллиарда световых лет (670 мегапарсек) от Земли.(Фото NASA, ESA, Hubble Heritage):

Плеяды

Рассеянное скопление в созвездии Тельца, иногда именуемое «Семь сестер»; одно из ближайших к Земле и одно из наиболее заметных для невооружённого глаза звездных скоплений. Пожалуй, это самое известное звездное скопление на небе. Звездное скопление Плеяд имеет около 12 световых лет в диаметре и содержит около 1 000 звезд. Общая масса звезд скопления оценивается в примерно 800 масс нашего Солнца. (Фото Roberto Colombari):

Туманность Креветка

У югу от от Антареса, в хвосте богатого туманностями созвездия Скорпиона, находится эмиссионная туманность IC 4628. Горячие массивные звезды, возраст которых всего лишь несколько миллионов лет, освещают туманность невидимым ультрафиолетовым светом. Астрономы называют это космическое облако туманностью Креветка. (Фото ESO):