Что такое электромагнитное поле его свойства. Основными характеристиками ЭМП являются

Электромагни́тное по́ле, особая форма материи. Посредством электромагнитного поля осуществляется взаимодействие между заряженными частицами.

Поведение электромагнитного поля изучает классическая электродинамика . Электромагнитное поле описывается Уравнениями Максвелла , которые связывают величины, характеризующие поле, с его источниками, то есть с зарядами и токами, распределенными в пространстве. Электромагнитное поле неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами; при ускоренном движении частиц электромагнитное поле «отрывается» от них и существует независимо в форме электромагнитных волн .

Из уравнений Максвелла следует, что переменное электрическое поле порождает магнитное, а переменное магнитное поле порождает электрическое, поэтому электромагнитное поле может существовать и в отсутствие зарядов. Порождение электромагнитного поля переменным магнитным полем и магнитного поля переменным электрическим приводит к тому, что электрические и магнитные поля не существуют обособленно, независимо друг от друга. Поэтому электромагнитное поле есть вид материи, определяющийся во всех точках двумя векторными величинами, которые характеризуют две его составляющие - «электрическое поле» и «магнитное поле», и оказывающий силовое воздействие на заряженные частицы, зависящее от их скорости и величины их заряда.

Электромагнитное поле в вакууме, то есть в свободном состоянии, не связанное с частицами вещества, существует в виде электромагнитных волн, и распространяется в пустоте при отсутствии весьма сильных гравитационных полей со скоростью, равной скорости света c = 2, 998 . 10 8 м/с. Такое поле характеризуется напряженностью электрического поля Е и индукцией магнитного поля В . Для описания электромагнитного поля в среде используют также величины электрической индукции D и напряженности магнитного поля Н . В веществе, а также при наличии весьма сильных гравитационных полей, то есть вблизи весьма больших масс вещества, скорость распространения электромагнитного поля меньше величины c .

Компоненты векторов, характеризующих электромагнитное поле, образуют, согласно теории относительности , единую физическую величину - тензор электромагнитного поля, компоненты которого преобразуются при переходе от одной инерциальной системы отсчета к другой в соответствии с преобразованиями Лоренца .

Электромагнитное поле обладает энергией и импульсом. Существование импульса электромагнитного поля впервые было обнаружено экспериментально в опытах П. Н. Лебедева по измерению давления света в 1899 г. Электромагнитное поле всегда обладает энергией. Плотность энергии электромагнитного поля = 1/2(ЕD+ВН) .

Электромагнитное поле распространяется в пространстве. Плотность потока энергии электромагнитного поля определяется вектором Пойтинга S = , единица измерения Вт/м 2 . Направление вектора Пойтинга перпендикулярно E и H и совпадает с направлением распространения электромагнитной энергии. Его величина равна энергии, переносимой через единичную площадку, перпендикулярную S за единицу времени. Плотность импульса поля в вакууме К = S/с 2 = /с 2 .

При больших частотах электромагнитного поля существенными становятся его квантовые свойства и электромагнитное поле можно рассматривать как поток квантов поля - фотонов . В этом случае электромагнитное поле описывается

Что такое электромагнитное поле, как оно влияет на здоровье человека и зачем его измерять — вы узнаете из этой статьи. Продолжая знакомить вас с ассортиментом нашего магазина, расскажем о полезных приборах — индикаторах напряженности электромагнитного поля (ЭМП). Они могут применяться как на предприятиях, так и в быту.

Что такое электромагнитное поле?

Современный мир немыслим без бытовой техники, мобильных телефонов, электричества, трамваев и троллейбусов, телевизоров и компьютеров. Мы привыкли к ним и совершенно не задумываемся о том, что любой электрический прибор создает вокруг себя электромагнитное поле. Оно невидимо, но влияет на любые живые организмы, в том числе и на человека.

Электромагнитное поле — особая форма материи, возникающая при взаимодействии движущихся частиц с электрическими зарядами. Электрическое и магнитное поле взаимосвязаны друг с другом и могут порождать одно другое — именно поэтому, как правило, о них говорят вместе как об одном, электромагнитном поле.

К основным источникам электромагнитных полей относят:

— линии электропередач;
— трансформаторные подстанции;
— электропроводку, телекоммуникации, кабели телевидения и интернета;
— вышки сотовой связи, радио- и телевышки, усилители, антенны сотовых и спутниковых телефонов, Wi-Fi роутеры;
— компьютеры, телевизоры, дисплеи;
— бытовые электроприборы;
— индукционные и микроволновые (СВЧ) печи;
— электротранспорт;
— радары.

Влияние электромагнитных полей на здоровье человека

Электромагнитные поля влияют на любые биологические организмы — на растения, насекомых, животных, людей. Ученые, изучающие влияние ЭМП на человека, пришли к выводу, что длительное и регулярное воздействие электромагнитных полей может привести к:
— повышенной утомляемости, нарушениям сна, головным болям, снижению давления, снижению частоты пульса;
— нарушениям в иммунной, нервной, эндокринной, половой, гормональной, сердечно-сосудистой системах;
— развитию онкологических заболеваний;
— развитию заболеваний центральной нервной системы;
— аллергическим реакциям.

Защита от ЭМП

Существуют санитарные нормы, устанавливающие максимально допустимые уровни напряженности электромагнитного поля в зависимости от времени нахождения в опасной зоне — для жилых помещений, рабочих мест, мест возле источников сильного поля. Если нет возможности уменьшить излучение конструкционно, например, от линии электромагнитных передач (ЭМП) или сотовой вышки, то разрабатываются служебные инструкции, средства защиты для работающего персонала, санитарно-карантинные зоны ограниченного доступа.

Различные инструкции регламентируют время пребывания человека в опасной зоне. Экранирующие сетки, пленки, остекление, костюмы из металлизированной ткани на основе полимерных волокон способны снизить интенсивность электромагнитного излучения в тысячи раз. По требованию ГОСТа зоны излучения ЭМП ограждаются и снабжаются предупреждающими табличками «Не входить, опасно!» и знаком опасности электромагнитного поля.

Специальные службы с помощью приборов постоянно контролируют уровень напряженности ЭМП на рабочих местах и в жилых помещениях. Можно и самостоятельно позаботиться о своем здоровье, купив портативный прибор «Импульс» или комплект «Импульс» + нитрат-тестер «SOEKS» .

Зачем нужны бытовые приборы измерения напряженности электромагнитного поля?

Электромагнитное поле негативно влияет на здоровье человека, поэтому полезно знать, какие места, в которых вы бываете (дома, в офисе, на приусадебном участке, в гараже) могут представлять опасность. Вы должны понимать, что повышенный электромагнитный фон могут создавать не только ваши электрические приборы, телефоны, телевизоры и компьютеры, но и неисправная проводка, электроприборы соседей, промышленные объекты, расположенные неподалеку.

Специалисты выяснили, что кратковременное воздействие ЭМП на человека практически безвредно, но длительное нахождение в зоне с повышенным электромагнитным фоном опасно. Вот такие зоны и можно обнаружить с помощью приборов типа «Импульс». Так, вы сможете проверить места, где проводите больше всего времени; детскую и свою спальню; рабочий кабинет. В прибор занесены значения, установленные нормативными документами, так что вы сразу сможете оценить степень опасности для вас и ваших близких. Возможно, что после обследования вы решите отодвинуть компьютер от кровати, избавиться от сотового телефона с усиленной антенной, поменять старую СВЧ-печь на новую, заменить изоляцию дверцы холодильника с режимом No Frost.

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное.

Скорость распространения электромагнитной волны V=C/EM

Где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна.
Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1.

При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным.

Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током.

Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве.

Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны.

Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты.

Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны.

Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты.
Электрические силовые линии идут от одного заряда к другому.

Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения.

Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление.
Напряжённость поля направлена по касательной к силовым линиям.

Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

Инструкция

Возьмите две батарейки и соедините их изолентой. Соедините батарейки так, чтобы на их концах были разные, то есть плюс напротив минуса и наоборот. С помощью скрепок к концу каждой батарейки прикрепите провод. Далее разместите одну из скрепок на вершине батареек. Если скрепка не доходит до центра каждой , возможно, придется разогнуть до нужной длины. Закрепите конструкцию лентой. Убедитесь, что концы проводов свободны и края скрепки доходят до центра каждой батарейки. Подключите батареи сверху, то же самое проделайте с другой стороны.

Возьмите медную проволоку. Около 15 сантиметров проволоки оставьте прямыми, а затем начните оборачивать ее вокруг стеклянного стакана. Сделайте примерно 10 оборотов. Оставьте прямыми еще 15 сантиметров. Подключите один из проводов от источника питания к одному из свободных концов получившейся медной катушки. Убедитесь, что провода хорошо соединены друг с другом. При подключении цепь дает магнитное поле . Соедините другой провод источника питания с медной проволокой.

В то , когда через катушку идет ток, помещенный внутрь будет намагничиваться. Скрепки будут держаться вместе, так же части ложки или вилки, отвертки будут намагничиваться и притягивать другие металлические предметы, в то время пока на катушку воздействует ток.

Обратите внимание

Катушка может быть горячей. Убедитесь, что рядом нет горючих веществ и будьте осторожны, чтобы не обжечь кожу.

Полезный совет

Наиболее легко намагничиваемый металл - это железо. При проверке поля не выбирайте алюминий или медь.

Для того чтобы сделать электромагнитное поле, нужно заставить его источник излучать. При этом он должен производить совокупность двух полей электрического и магнитного, которые могут распространяться в пространстве, порождая друг друга. Электромагнитное поле может распространяться в пространстве в виде электромагнитной волны.

Вам понадобится

  • - изолированный провод;
  • - гвоздь;
  • - два проводника;
  • - катушка Румкорфа.

Инструкция

Возьмите изолированный провод с малым сопротивлением, лучше всего подойдет медный. Намотайте его на стальной сердечник, подойдет обычный гвоздь длиной 100 мм (сотка). Подключите провод к источнику тока, подойдет обычная батарейка. В возникнет электрическое поле , которое породит в нем электрический ток.

Направленное движение заряженных (электрический ток), породит в свою очередь магнитное поле , которое будет сосредоточено в стальном сердечнике, с намотанным на него проводом. Сердечник превращается и притягивается к себе ферромагнетики ( , никель, кобальт и др.). Образовавшееся поле можно назвать электромагнитным, поскольку электрическое поле магнитное.

Для получения классического электромагнитного поля нужно чтобы и электрическое и магнитное поле изменялись со временем, тогда электрическое поле будет порождать магнитное и наоборот. Для этого нужно чтобы движущиеся заряды получали ускорение. Проще всего это сделать, заставив их колебаться. Поэтому для получения электромагнитного поля достаточно взять проводник и включить его в обычную бытовую сеть. Но его будет настолько мала, что измерить при помощи приборов не удастся.

Для получения достаточно мощного магнитного поля сделайте вибратор Герца. Для этого возьмите два прямых идентичных проводника, закрепите их так, чтобы зазор между ними составлял 7 мм. Это буде открытого колебательного контура, с малой и электроемкостью. Присоедините каждый из проводников к зажимам Румкорфа (она позволяет получать импульсы высокого напряжения). Присоедините схему к аккумуляторной батарее. В искровом промежутке между проводниками начнутся разряды, а сам вибратор станет источником электромагнитного поля.

Видео по теме

Внедрение новых технологий и повсеместное использование электричества привело к появлению искусственных электромагнитных полей, которые чаще всего вредно воздействуют на человека и окружающую среду. Эти физические поля возникают там, где имеются движущиеся заряды.

Природа электромагнитного поля

Электромагнитное поле представляет собой особый вид материи. Оно возникает вокруг проводников, по которым движутся электрические заряды. Состоит силовое поле из двух самостоятельных полей – магнитного и электрического, которые не могут существовать в отрыве одно от другого. Электрическое поле при возникновении и изменении неизменно порождает магнитное.

Одним из первых природу переменных полей в середине XIX века стал исследовать Джеймс Максвелл, которому и принадлежит заслуга создания теории электромагнитного поля. Ученый показал, что движущиеся с ускорением электрические заряды создают электрическое поле. Изменение его порождает поле магнитных сил.

Источником переменного магнитного поля может стать магнит, если привести его в движение, а также электрический заряд, который колеблется или движется с ускорением. Если заряд перемещается с постоянной скоростью, то по проводнику течет постоянный ток, для которого характерно постоянное магнитное поле. Распространяясь в пространстве, электромагнитное поле переносит энергию, которая зависит от величины тока в проводнике и частоты излучаемых волн.

Воздействие электромагнитного поля на человека

Уровень всех электромагнитных излучений, которые создают сконструированные человеком технические системы, во много раз превышает естественное излучение планеты. Это тепловым эффектом, что может привести к перегреву тканей организма и необратимым последствиям. К примеру, длительное пользование мобильным телефоном, который является источником излучения, может привести к повышению температуры головного мозга и хрусталика глаза.

Электромагнитные поля, возникающие при использовании бытовой техники, могут стать причиной появления злокачественных новообразований. В особенности это относится к детскому организму. Длительное нахождение человека вблизи источника электромагнитных волн снижает эффективность работы иммунной системы, ведет к заболеваниям сердца и сосудов.

Конечно, полностью отказаться от использования технических средств, которые являются источником электромагнитного поля, нельзя. Но можно применять самые простые меры профилактики, например, использовать телефон только с гарнитурой, не оставлять шнуры приборов в электрических розетках после использования техники. В быту рекомендуется применять удлинители и кабели, имеющие защитное экранирование.