Что представляет собой электромагнитное поле. Антропогенные источники электромагнитных полей

1. Введение. Предмет изучения в валеологии.

3. Основные источники электромагнитного поля.

5. Методы защиты здоровья людей от электромагнитного воздействия.

6. Список использованных материалов и литературы.

1. Введение. Предмет изучения в валеологии.

1.1 Введение.

Валеология – от лат. «valeo»-«здравствую» - научная дисциплина, изучающая индивидуальное здоровье здорового человека. Принципиальное отличие валеологии от других дисциплин (в частности, от практической медицины) состоит именно в индивидуальном подходе к оценке здоровья каждого конкретного субъекта (без учета общих и усредненных по какому-либо коллективу данных).

Впервые валеология как научная дисциплина была официально зарегистрирована в 1980 году. Её основоположником стал российский ученый И. И. Брехман, работавший во Владивостокском Государственном Университете.

В настоящее время новая дисциплина активно развивается, накапливаются научные работы, активно ведутся практические исследования. Постепенно происходит переход от статуса научной дисциплины к статусу самостоятельной науки.

1.2 Предмет изучения в валеологии.

Предметом изучения в валеологии является индивидуальное здоровье здорового человека и влияющие на него факторы. Также валеология занимается систематизацией здорового образа жизни с учетом индивидуальности конкретного субъекта.

Наиболее распространённым на данный момент определением понятия «здоровье» является определение, предложенное экспертами Всемирной Организации Здравоохранения (ВОЗ):

Здоровье есть состояние физического, психического и социального благополучия.

Современная валеология выделяет следующие основные характеристики индивидуального здоровья:

1. Жизнь – наиболее сложное проявление существования материи, которое превосходит по сложности различные физико-химические и био- реакции.

2. Гомеостаз – квазистатичное состояние жизненных форм, характеризующееся изменчивостью на относительно больших временных отрезках и практической статичностью – на малых.

3. Адаптация – свойство жизненных форм приспосабливаться к изменяющимся условиям существования и перегрузкам. При нарушениях адаптации или слишком резких и радикальных изменениях условий возникает дезадаптация – стресс.

4. Фенотип – сочетание факторов окружающей среды, влияющих на развитие живого организма. Также термин «фенотип» характеризует совокупность особенностей развития и физиологии организма.

5. Генотип – сочетание наследственных факторов, влияющих на развитие живого организма, являющихся сочетанием генетического материала родителей. При передаче от родителей деформированных генов возникают наследственные патологии.

6. Образ жизни – совокупность поведенческих стереотипов и норм, характеризующих конкретный организм.

        Здоровье (согласно определению ВОЗ).

2. Электромагнитное поле, его виды, характеристики и классификация.

2.1 Основные определения. Виды электромагнитного поля.

Электромагнитное поле – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами.

Электрическое поле – создается электрическими зарядами и заряженными частицами в пространстве. На рисунке представлена картина силовых линий (воображаемых линий, используемых для наглядного представления полей) электрического поля для двух покоящихся заряженных частиц:

Магнитное поле – создается при движении электрических зарядов по проводнику. Картина силовых линий поля для одиночного проводника представлена на рисунке:

Физической причиной существования электромагнитного поля является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а изменяющееся магнитное поле – вихревое электрическое поле. Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. Поле неподвижной или равномерно движущейся частицы неразрывно связано с носителем (заряженной частицей).

Однако при ускоренном движении носителей электромагнитное поле «срывается» с них и существует в окружающей среде независимо, в виде электромагнитной волны, не исчезая с устранением носителя (например, радиоволны не исчезают при исчезновении тока (перемещения носителей – электронов) в излучающей их антенне).

2.2 Основные характеристики электромагнитного поля.

Электрическое поле характеризуется напряженностью электрического поля (обозначение «E», размерность СИ – В/м, вектор). Магнитное поле характеризуется напряженностью магнитного поля (обозначение «H», размерность СИ – А/м, вектор). Измерению обычно подвергается модуль (длина) вектора.

Электромагнитные волны характеризуются длиной волны (обозначение «(», размерность СИ - м), излучающий их источник – частотой (обозначение – «(», размерность СИ - Гц). На рисунке Е – вектор напряженности электрического поля, H – вектор напряженности магнитного поля.

При частотах 3 – 300 Гц в качестве характеристики магнитного поля может также использоваться понятие магнитной индукции (обозначение «B», размерность СИ - Тл).

2.3 Классификация электромагнитных полей.

Наиболее применяемой является так называемая «зональная» классификация электромагнитных полей по степени удаленности от источника/носителя.

По этой классификации электромагнитное поле подразделяется на «ближнюю» и «дальнюю» зоны. «Ближняя» зона (иногда называемая зоной индукции) простирается до расстояния от источника, равного 0-3(,де (- длина порождаемой полем электромагнитной волны. При этом напряженность поля быстро убывает (пропорционально квадрату или кубу расстояния до источника). В этой зоне порождаемая электромагнитная волна еще не полностью сформирована.

«Дальняя» зона – это зона сформировавшейся электромагнитной волны. Здесь напряженность поля убывает обратно пропорционально расстоянию до источника. В этой зоне справедливо экспериментально определенное соотношение между напряженностями электрического и магнитного полей:

где 377 – константа, волновое сопротивление вакуума, Ом.

Электромагнитные волны принято классифицировать по частотам:

|Наименование |Границы |Наименование |Границы |

|частотного |диапазона |волнового |диапазона |

|диапазона | |диапазона | |

|Крайние низкие, | Гц |Декамегаметровые | Мм |

|Сверхнизкие, СНЧ | Гц |Мегаметровые | Мм |

|Инфранизкие, ИНЧ | Кгц |Гектокилометровые | |

|Очень низкие, ОНЧ | Кгц |Мириаметровые | км |

|Низкие частоты, НЧ| Кгц|Километровые | км |

|Средние, СЧ | МГц |Гектометровые | км |

|Высокие, ВЧ | МГц |Декаметровые | м |

|Очень высокие, ОВЧ| МГц|Метровые | м |

|Ультравысокие, УВЧ| ГГц |Дециметровые | м |

|Сверхвысокие, СВЧ | ГГц |Сантиметровые | см |

|Крайне высокие, | ГГц|Миллиметровые | мм |

|Гипервысокие, ГВЧ | |Децимиллиметровые | мм |

Измеряют обычно только напряженность электрического поля E. При частотах выше 300 МГц иногда измеряется плотность потока энергии волны, или вектор Пойтинга (обозначение «S», размерность СИ – Вт/м2).

3.Основные источники электромагнитного поля.

В качестве основных источников электромагнитного поля можно выделить:

Линии электропередач.

Электропроводка (внутри зданий и сооружений).

Бытовые электроприборы.

Персональные компьютеры.

Теле- и радиопередающие станции.

Спутниковая и сотовая связь (приборы, ретрансляторы).

Электротранспорт.

Радарные установки.

3.1 Линии электропередач (ЛЭП).

Провода работающей линии электропередач создают в прилегающем пространстве (на расстояниях порядка десятков метров от провода) электромагнитное поле промышленной частоты (50 Гц). Причем напряженность поля вблизи линии может изменяться в широких пределах, в зависимости от ее электрической нагрузки. Стандартами установлены границы санитарно-защитных зон вблизи ЛЭП (согласно СН 2971-84):

|Рабочее напряжение |330 и ниже |500 |750 |1150 |

|ЛЭП, кВ | | | | |

|Размер |20 |30 |40 |55 |

|санитарно-защитной | | | | |

|зоны, м | | | | |

(фактически границы санитарно-защитной зоны устанавливаются по наиболее удаленной от проводов граничной линии максимальной напряженности электрического поля, равной 1 кВ/м).

3.2 Электропроводка.

К электропроводке относятся:кабели электропитания систем жизнеобеспечения зданий, токораспределительные провода, а также разветвительные щиты, силовые ящики и трансформаторы. Электропроводка является основным источником электромагнитного поля промышленной частоты в жилых помещениях. При этом уровень напряженности электрического поля, излучаемого источником, зачастую относительно невысок (не превышает 500 В/м).

3.3 Бытовые электроприборы.

Источниками электромагнитных полей являются все бытовые приборы, работающие с использованием электрического тока. При этом уровень излучения изменяется в широчайших пределах в зависимости от модели, устройства прибора и конкретного режима работы. Также уровень излучения сильно зависит от потребляемой мощности прибора – чем выше мощность, тем выше уровень электромагнитного поля при работе прибора. Напряженность электрического поля вблизи электробытовых приборов не превышает десятков В/м.

В нижеприведенной таблице представлены предельно допустимые уровни магнитной индукции для наиболее мощных источников магнитного поля среди бытовых электроприборов:

|Прибор |Интервал предельно допустимых |

| |величин магнитной индукции, мкТл|

|Кофеварка | |

|Стиральная машина | |

|Утюг | |

|Пылесос | |

|Электроплита | |

|Лампа «дневного света» (люминесцентные лампы ЛТБ,| |

|Электродрель (электродвигатель | |

|мощностью Вт) | |

|Электромиксер (электродвигатель мощностью | |

| Вт) | |

|Телевизор | |

|Микроволновая печь (индукционная, СВЧ) | |

3.4 Персональные компьютеры.

Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения (СВО) монитора. В большинстве современных мониторов СВО представляет собой электронно-лучевую трубку. В таблице перечислены основные факторы воздействия СВО на здоровье:

|Эргономические |Факторы воздействия электромагнитного |

| |поля электронно-лучевой трубки |

|Значительное снижение контрастности |Электромагнитное поле в частотном |

|воспроизводимого изображения в условиях |диапазоне МГц. |

|внешней подсветки экрана прямыми лучами | |

|света. | |

|Зеркальное отражение лучей света от |Электростатический заряд на поверхности |

|поверхности экрана (блики). |экрана монитора. |

|Мультипликационный характер |Ультрафиолетовое излучение (диапазон |

|воспроизведения изображения |длин волн нм). |

|(высокочастотное непрерывное обновление | |

|Дискретный характер изображения |Инфракрасное и рентгеновское |

|(подразделение на точки). |ионизирующие излучения. |

В дальнейшем в качестве главных факторов воздействия СВО на здоровье будем рассматривать только факторы воздействия электромагнитного поля электронно- лучевой трубки.

Кроме монитора и системного блока персональный компьютер может также включать в себя большое количество других устройств (таких, как принтеры, сканеры, сетевые фильтры и т.п.). Все эти устройства работают с применением электрического тока, а значит, являются источниками электромагнитного поля. Следующая таблица показывает электромагнитную обстановку вблизи компьютера (вклад монитора в данной таблице не учитывается, так как был рассмотрен ранее):

|Источник |Диапазон частот генерируемого |

| |электромагнитного поля |

|Системный блок в сборе. |. |

|Устройства ввода-вывода (принтеры, | Гц. |

|сканеры, дисководы и др.). | |

|Источники бесперебойного питания, |. |

|сетевые фильтры и стабилизаторы. | |

Электромагнитное поле персональных компьютеров имеет сложнейший волновой и спектральный состав и трудно поддается измерению и количественной оценке. Оно имеет магнитную, электростатическую и лучевую составляющие (в частности, электростатический потенциал сидящего перед монитором человека может колебаться от –3 до +5 В). Учитывая то условие, что персональные компьютеры сейчас активно используются во всех отраслях человеческой деятельности, их влияние на здоровье людей подлежит тщательнейшему изучению и контролю.

3.5 Теле- и радиопередающие станции.

На территории России в настоящее время размещается значительное количество радиотрансляционных станций и центров различной принадлежности.

Передающие станции и центры размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). Каждая система включает в себя излучающую антенну и фидерную линию, подводящую транслируемый сигнал.

Электромагнитное поле, излучаемое антеннами радиотрансляционных центров, имеет сложный спектральный состав и индивидуальное распределение напряженностей в зависимости от конфигурации антенн, рельефа местности и архитектуры прилегающей застройки. Некоторые усредненные данные по различным видам радиотрансляционных центров представлены в таблице:

|Тип |Нормируемая |Нормируемая |Особенности. |

|радиотрансляционно|напряженность |напряженность | |

|го центра. |электрического |магнитного поля, | |

| |поля, В/м. |А/м. | |

|ДВ – радиостанции |630 |1,2 |Наибольшая напряженность |

|(частота | | |поля достигается на |

|КГц, | | |расстояниях менее 1 длины |

|мощности | | |волны от излучающей |

|передатчиков 300 –| | |антенны. |

|500 КВт). | | | |

|СВ – радиостанции |275 |<нет данных> |Вблизи антенны (на |

|(частота , | | |наблюдается некоторое |

|мощности | | |понижение напряженности |

|передатчиков 50 - | | |электрического поля. |

|200 КВт). | | | |

|КВ – радиостанции |44 |0,12 |Передатчики могут быть |

|(частота | | |расположены на |

|МГц, | | |густозастроенных |

|мощности | | |территориях, а также на |

|передатчиков 10 – | | |крышах жилых зданий. |

|100 КВт). | | | |

|Телевизионные |15 |<нет данных> |Передатчики обычно |

|радиотрансляционны| | |расположены на высотах |

|е центры (частоты | | |более 110 м над средним |

| МГц, | | |уровнем застройки. |

|мощности | | | |

|передатчиков 100 | | | |

|КВт – 1МВт и | | | |

|более). | | | |

3.6 Спутниковая и сотовая связь.

3.6.1 Спутниковая связь.

Системы спутниковой связи состоят из передающей станции на Земле и путников – ретрансляторов, находящихся на орбите. Передающие станции спутниковой связи излучают узконаправленный волновой пучок, плотность потока энергии в котором достигает сотен Вт/м. Системы спутниковой связи создают высокие напряженности электромагнитного поля на значительных расстояниях от антенн. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км плотность потока энергии 2,8 Вт/м2. Рассеяние энергии относительно основного луча очень небольшое и происходит больше всего в районе непосредственного размещения антенны.

3.6.2 Сотовая связь.

Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции и мобильные радиотелефонные аппараты. Базовые станции поддерживают радиосвязь с мобильными аппаратами, вследствие чего они являются источниками электромагнитного поля. В работе системы применяется принцип деления территории покрытия на зоны, или так называемые «соты», радиусом км. В нижеследующей таблице представлены основные характеристики действующих в России систем сотовой связи:

|Наименование|Рабочий |Рабочий |Максимальная |Максимальная |Радиус |

|системы, |диапазон |диапазон |излучаемая |излучаемая |покрытия |

|принцип |базовых |мобильных |мощность |мощность |единичной |

|передачи |станций, |аппаратов,|базовых |мобильных |базовой |

|информации. |МГц. |МГц. |станций, Вт. |аппаратов, |станции, |

| | | | |Вт. |км. |

|NMT450. | |

|Аналоговый. |5] |5] | | | |

|AMPS. |||100 |0,6 | |

|Аналоговый. | | | | | |

|DAMPS (IS – |||50 |0,2 | |

|136). | | | | | |

|Цифровой. | | | | | |

|CDMA. |||100 |0,6 | |

|Цифровой. | | | | | |

|GSM – 900. |||40 |0,25 | |

|Цифровой. | | | | | |

|GSM – 1800. | |

|Цифровой. |0] |5] | | | |

Интенсивность излучения базовой станции определяется нагрузкой, то есть наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения станции, дня недели и других факторов. В ночные часы загрузка станций практически равна нулю. Интенсивность же излучения мобильных аппаратов зависит в значительной степени от состояния канала связи «мобильный радиотелефон – базовая станция» (чем больше расстояние от базовой станции, тем выше интенсивность излучения ппарата).

3.7 Электротранспорт.

Электротранспорт (троллейбусы, трамваи, поезда метрополитена и т.п.) является мощным источником электромагнитного поля в диапазоне частот Гц. При этом в роли главного излучателя в подавляющем большинстве случаев выступает тяговый электродвигатель (для троллейбусов и трамваев воздушные токоприёмники по напряженности излучаемого электрического поля соперничают с электродвигателем). В таблице приведены данные по измеренной величине магнитной индукции для некоторых видов электротранспорта:

|Вид транспорта и род |Среднее значение величины |Максимальное значение |

|потребляемого тока. |магнитной индукции, мкТл. |величины магнитной |

| | |индукции, мкТл. |

|Пригородные электропоезда.|20 |75 |

|Электротранспорт с |29 |110 |

|приводом постоянного тока | | |

|(электрокары и т.п.). | | |

3.8 Радарные установки.

Радиолокационные и радарные установки имеют обычно антенны рефлекторного типа («тарелки») и излучают узконаправленный радиолуч.

Периодическое перемещение антенны в пространстве приводит к пространственной прерывистости излучения. Наблюдается также временная прерывистость излучения, обусловленная цикличностью работы радиолокатора на излучение. Они работают на частотах от 500 МГц до 15 ГГц, однако отдельные специальные установки могут работать на частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2 и более).

4. Влияние электромагнитного поля на индивидуальное здоровье человека.

Человеческий организм всегда реагирует на внешнее электромагнитное поле. В силу различного волнового состава и других факторов электромагнитное поле различных источников действует на здоровье человека по-разному. Вследствие этого в данном разделе воздействие различных источников на здоровье будем рассматривать по отдельности. Однако резко диссонирующее с естественным электромагнитным фоном поле искусственных источников почти во всех случаях оказывает на здоровье находящихся в зоне его воздействия людей негативное влияние.

Широкие исследования влияния электромагнитных полей на здоровье были начаты в нашей стране в 60-е годы. Было установлено, что нервная система человека чувствительна к электромагнитному воздействию, а также что поле обладает так называемым информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта (величина напряженности поля, при которой начинает проявляться его тепловое воздействие).

В нижеследующей таблице приведены наиболее распространенные жалобы на ухудшение состояния здоровья людей, находящихся в зоне воздействия поля различных источников. Последовательность и нумерация источников в таблице соответствуют их последовательности и нумерации, принятых в разделе 3:

|Источник |Наиболее распространенные жалобы. |

|электромагнитного | |

|1. Линии |Кратковременное облучение (порядка нескольких минут) способно|

|электропередач (ЛЭП). |привести к негативной реакции только у особо чувствительных |

| |людей или у больных некоторыми видами аллергических |

| |заболеваний. Продолжительное облучение обычно приводит к |

| |различным патологиям сердечно-сосудистой и нервной систем |

| |(из-за разбалансировки подсистемы нервной регуляции). При |

| |сверхдлительном (порядка 10-20 лет) непрерывном облучении |

| |возможно (по непроверенным данным) развитие некоторых |

| |онкологических заболеваний. |

|2. Внутренняя |На настоящее время данных о жалобах на ухудшение состояния |

|электропроводка зданий|здоровья, связанное непосредственно с работой внутренних |

|и сооружений. |электросетей не имеется. |

|3. Бытовые |Имеются непроверенные данные о жалобах на кожные, |

|электроприборы. |сердечно-сосудистые и нервные патологии при долговременном |

| |систематическом пользовании микроволновыми печами старых |

| |моделей (до 1995 года выпуска). Также имеются аналогичные |

| |данные относительно применения микроволновых печей всех |

| |моделей в производственных условиях (например, для разогрева |

| |пищи в кафе). Кроме микроволновых печей имеются данные о |

| |негативном влиянии на здоровье людей телевизоров, имеющих в |

| |качестве прибора визуализации электронно-лучевую трубку. |

Инструкция

Возьмите две батарейки и соедините их изолентой. Соедините батарейки так, чтобы на их концах были разные, то есть плюс напротив минуса и наоборот. С помощью скрепок к концу каждой батарейки прикрепите провод. Далее разместите одну из скрепок на вершине батареек. Если скрепка не доходит до центра каждой , возможно, придется разогнуть до нужной длины. Закрепите конструкцию лентой. Убедитесь, что концы проводов свободны и края скрепки доходят до центра каждой батарейки. Подключите батареи сверху, то же самое проделайте с другой стороны.

Возьмите медную проволоку. Около 15 сантиметров проволоки оставьте прямыми, а затем начните оборачивать ее вокруг стеклянного стакана. Сделайте примерно 10 оборотов. Оставьте прямыми еще 15 сантиметров. Подключите один из проводов от источника питания к одному из свободных концов получившейся медной катушки. Убедитесь, что провода хорошо соединены друг с другом. При подключении цепь дает магнитное поле . Соедините другой провод источника питания с медной проволокой.

В то , когда через катушку идет ток, помещенный внутрь будет намагничиваться. Скрепки будут держаться вместе, так же части ложки или вилки, отвертки будут намагничиваться и притягивать другие металлические предметы, в то время пока на катушку воздействует ток.

Обратите внимание

Катушка может быть горячей. Убедитесь, что рядом нет горючих веществ и будьте осторожны, чтобы не обжечь кожу.

Полезный совет

Наиболее легко намагничиваемый металл - это железо. При проверке поля не выбирайте алюминий или медь.

Для того чтобы сделать электромагнитное поле, нужно заставить его источник излучать. При этом он должен производить совокупность двух полей электрического и магнитного, которые могут распространяться в пространстве, порождая друг друга. Электромагнитное поле может распространяться в пространстве в виде электромагнитной волны.

Вам понадобится

  • - изолированный провод;
  • - гвоздь;
  • - два проводника;
  • - катушка Румкорфа.

Инструкция

Возьмите изолированный провод с малым сопротивлением, лучше всего подойдет медный. Намотайте его на стальной сердечник, подойдет обычный гвоздь длиной 100 мм (сотка). Подключите провод к источнику тока, подойдет обычная батарейка. В возникнет электрическое поле , которое породит в нем электрический ток.

Направленное движение заряженных (электрический ток), породит в свою очередь магнитное поле , которое будет сосредоточено в стальном сердечнике, с намотанным на него проводом. Сердечник превращается и притягивается к себе ферромагнетики ( , никель, кобальт и др.). Образовавшееся поле можно назвать электромагнитным, поскольку электрическое поле магнитное.

Для получения классического электромагнитного поля нужно чтобы и электрическое и магнитное поле изменялись со временем, тогда электрическое поле будет порождать магнитное и наоборот. Для этого нужно чтобы движущиеся заряды получали ускорение. Проще всего это сделать, заставив их колебаться. Поэтому для получения электромагнитного поля достаточно взять проводник и включить его в обычную бытовую сеть. Но его будет настолько мала, что измерить при помощи приборов не удастся.

Для получения достаточно мощного магнитного поля сделайте вибратор Герца. Для этого возьмите два прямых идентичных проводника, закрепите их так, чтобы зазор между ними составлял 7 мм. Это буде открытого колебательного контура, с малой и электроемкостью. Присоедините каждый из проводников к зажимам Румкорфа (она позволяет получать импульсы высокого напряжения). Присоедините схему к аккумуляторной батарее. В искровом промежутке между проводниками начнутся разряды, а сам вибратор станет источником электромагнитного поля.

Видео по теме

Внедрение новых технологий и повсеместное использование электричества привело к появлению искусственных электромагнитных полей, которые чаще всего вредно воздействуют на человека и окружающую среду. Эти физические поля возникают там, где имеются движущиеся заряды.

Природа электромагнитного поля

Электромагнитное поле представляет собой особый вид материи. Оно возникает вокруг проводников, по которым движутся электрические заряды. Состоит силовое поле из двух самостоятельных полей – магнитного и электрического, которые не могут существовать в отрыве одно от другого. Электрическое поле при возникновении и изменении неизменно порождает магнитное.

Одним из первых природу переменных полей в середине XIX века стал исследовать Джеймс Максвелл, которому и принадлежит заслуга создания теории электромагнитного поля. Ученый показал, что движущиеся с ускорением электрические заряды создают электрическое поле. Изменение его порождает поле магнитных сил.

Источником переменного магнитного поля может стать магнит, если привести его в движение, а также электрический заряд, который колеблется или движется с ускорением. Если заряд перемещается с постоянной скоростью, то по проводнику течет постоянный ток, для которого характерно постоянное магнитное поле. Распространяясь в пространстве, электромагнитное поле переносит энергию, которая зависит от величины тока в проводнике и частоты излучаемых волн.

Воздействие электромагнитного поля на человека

Уровень всех электромагнитных излучений, которые создают сконструированные человеком технические системы, во много раз превышает естественное излучение планеты. Это тепловым эффектом, что может привести к перегреву тканей организма и необратимым последствиям. К примеру, длительное пользование мобильным телефоном, который является источником излучения, может привести к повышению температуры головного мозга и хрусталика глаза.

Электромагнитные поля, возникающие при использовании бытовой техники, могут стать причиной появления злокачественных новообразований. В особенности это относится к детскому организму. Длительное нахождение человека вблизи источника электромагнитных волн снижает эффективность работы иммунной системы, ведет к заболеваниям сердца и сосудов.

Конечно, полностью отказаться от использования технических средств, которые являются источником электромагнитного поля, нельзя. Но можно применять самые простые меры профилактики, например, использовать телефон только с гарнитурой, не оставлять шнуры приборов в электрических розетках после использования техники. В быту рекомендуется применять удлинители и кабели, имеющие защитное экранирование.

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное. Скорость распространения электромагнитной волны V=C/EM где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна. Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1. При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным. Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током. Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве. Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны. Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты. Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны. Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты. Электрические силовые линии идут от одного заряда к другому. Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения. Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление. Напряжённость поля направлена по касательной к силовым линиям. Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуетсямагнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34).Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36)

Электромагнитное поле это такой вид материи, которая возникает вокруг движущихся зарядов. Например, вокруг проводника с током. Электромагнитное поле состоит из двух составляющих это электрическое и магнитное поле. Независимо друг от друга они существовать не могут. Одно порождает другое. При изменении электрического поля тут же возникает магнитное.

Скорость распространения электромагнитной волны V=C/EM

Где e и м соответственно магнитная и диэлектрическая проницаемость среды, в которой распространяется волна.
Электромагнитная волна в вакууме распространяется со скоростью света, то есть 300 000 км/с. Поскольку диэлектрическая и магнитная проницаемость вакуума считается равными 1.

При изменении электрического поля возникает магнитное поле. Так как вызвавшее его электрическое поле не является неизменным (то есть изменяется во времени) то и магнитное поле также будет переменным.

Изменяющееся магнитное поле в свою очередь порождает электрическое поле и так далее. Таким образом, для последующего поля (неважно будет оно электрическое или магнитное) источником будет служить предыдущее поле, а не первоначальный источник, то есть проводник с током.

Таким образом, даже после отключения тока в проводнике электромагнитное поле будет продолжать существовать и распространятся в пространстве.

Электромагнитная волна распространяется в пространстве во все стороны от своего источника. Можно себе представить включению лампочку, лучи света от нее распространяются во все стороны.

Электромагнитная волна при распространении переносит энергию в пространстве. Чем сильнее ток в проводнике вызвавший поле, тем больше энергия переносимая волной. Также энергия зависит от частоты излучаемых волн, при увеличении ее в 2,3,4 раза энергия волны увеличится в 4,9,16 раз соответственно. То есть энергия распространения волны пропорциональна квадрату частоты.

Наилучшие условия распространения волн создаются, когда длинна проводника, равна длине волны.

Силовые линии магнитного и электрического полетим взаимно перпендикулярно. Магнитные силовые линии охватывают проводник с током и всегда замкнуты.
Электрические силовые линии идут от одного заряда к другому.

Электромагнитная волна это всегда поперечная волна. То есть силовые линии как магнитные, так и электрические лежат в перпендикулярной плоскости к направлению распространения.

Напряжённость электромагнитного поля силовая характеристика поля. Также напряженность, векторная величина то есть у нее есть начало и направление.
Напряжённость поля направлена по касательной к силовым линиям.

Поскольку напряжённость электрического и магнитного поля перпендикулярны между собой, то есть правило, по которому можно определить направление распространения волны. При вращении винта по кратчайшему пути от вектора напряжённости электрического поля к вектору напряжённости магнитного поля поступательное движение винта укажет направление распространения волны.

Электромагнитные поля и излучения окружают нас повсюду. Достаточно щелкнуть выключателем - и загорается свет, включить компьютер - и вы в Интернете, набрать номер на мобильном телефоне - и можно общаться с далекими континентами. Фактически именно электрические приборы создали современный мир таким, каким мы его знаем. Однако в последнее время все чаще поднимается вопрос о том, что электромагнитные поля (ЭМП), генерируемые электрооборудованием, вредны. Так ли это? Попробуем разобраться.

Начнем с определения. Электромагнитные поля, как известно из школьного курса физики, представляют собой особый Ключевая особенность подобных полей - это способность определенным образом взаимодействовать с телами и частицами, обладающими электрическим зарядом. Как следует из названия, электромагнитные поля являются совокупностью магнитного и электрического полей, причем в данном случае они так тесно взаимосвязаны, что их считают единым целым. Особенности взаимодействия с заряженными объектами объясняются с помощью

Впервые электромагнитные поля были математически выражены в теории Максвеллом в 1864 году. Собственно, именно он выявил неделимость магнитного и электрического полей. Одним из следствий теории являлся тот факт, что любое возмущение (изменение) электромагнитного поля является причиной появления электромагнитных волн, распространяющихся в вакууме со Расчеты показали, что свет (все части спектра: инфракрасный, видимый, ультрафиолетовый) является именно электромагнитной волной. Вообще, классифицируя излучения по длине волны, различают рентгеновское, радио и пр.

Появлению теории Максвелла предшествовали работы Фарадея (в 1831 г.) по исследованию в проводнике, двигающемся или находящемся в периодически изменяющемся магнитном поле. Еще ранее, в 1819 году, Х. Эрстед обратил внимание, что если рядом с проводником с током поместить компас, то его стрелка отклоняется от естественного что позволило предположить о непосредственной связи магнитных и электрических полей.

Все это свидетельствует о том, что любой электроприбор является генератором электромагнитных волн. Данное свойство особенно ярко выражено для некоторых специфичных приборов и высокотоковых цепей. Как первые, так и вторые сейчас присутствуют практически в каждом доме. Так как ЭМП распространяется не только в проводящих материалах, но и в диэлектриках (например, вакуум), то человек постоянно находится в зоне их действия.

Если раньше, когда в помещении была только «лампочка Ильича», вопрос никого не беспокоил. Сейчас все иначе: измерение электромагнитного поля выполняется с помощью специальных приборов для измерения напряженности поля. Фиксируются обе составляющие ЭМП в определенном диапазоне частот (зависит от чувствительности прибора). В документе СанПиН указывается ПДН (допустимая норма). На предприятиях и в крупных компаниях периодически выполняются проверки ПДН ЭМП. Стоит отметить, что окончательных результатов исследований воздействия ЭМП на живые организмы все еще нет. Поэтому, например, при работе с вычислительной техникой рекомендуется организовывать 15-минутные перерывы после каждого часа - на всякий случай… Все объясняется довольно просто: вокруг проводника есть значит, присутствует и ЭМП. Оборудование полностью безопасно в том случае, когда из розетки выдернут шнур питания.

Очевидно, что полностью отказаться от использования электрической техники мало кто решится. Однако дополнительно обезопасить себя можно путем подключения домашних приборов в заземленную сеть, что позволяет потенциалу не собираться на корпусе, а «стекать» в контур заземления. Различные удлинители, особенно смотанные в кольца, усиливают ЭМП за счет взаимоиндукции. И, конечно, следует избегать близкого размещения сразу нескольких включенных приборов.