Что поясняет гипотеза ампера. Магнитные свойства вещества

Открытия Эрстеда и Ампера привели к новому и более глубокому представлению о природе магнитных явлений. Опираясь на установленную в этих опытах тождественность магнитных действий магнитов и соответствующим образом подобранных токов, Ампер решительно отказался от представления о существовании в природе особых магнитных зарядов. С точки зрения Ампера, элементарный магнит – это круговой ток, циркулирующий внутри небольшой частицы вещества: атома, молекулы или группы их. При намагничивании большая или меньшая часть таких токов устанавливается параллельно друг другу, как показано на рис. 209 (амперовы токи).

Рис. 209. Упорядоченное расположение амперовых токов в намагниченном железе, помещенном в магнитном поле

Мы видели в § 115, что по своим магнитным свойствам круговой ток вполне подобен короткому магниту, ось которого перпендикулярна к плоскости тока. Поэтому изображенная условно на рис. 209 система ориентированных молекулярных токов совершенно равносильна цепочкам элементарных магнитиков в гипотезе Кулона.

Таким образом, теория Ампера сделала ненужным допущение о существовании особых магнитных зарядов, позволив объяснить все магнитные явления при помощи элементарных электрических токов. Дальнейшее более глубокое изучение свойств намагничивающихся тел показало не только, что гипотеза магнитных зарядов или элементарных магнитиков излишня, но что она неверна и не может быть согласована с некоторыми экспериментальными фактами. Мы позже познакомимся с этими фактами (§ 147).

С точки зрения теории Ампера становится совершенно понятной неотделимость друг от друга северных и южных полюсов, о которой мы говорили в предыдущем параграфе. Каждый элементарный магнит представляет собой круговой виток тока. Мы видели уже, что одна сторона этого витка соответствует северному, другая – южному полюсу. Именно поэтому нельзя отделить друг от друга северный и южный полюсы, как нельзя отделить одну сторону плоскости от другой.

Таким образом, мы пришли к следующему основному результату.

Никаких магнитных зарядов не существует. Каждый атом вещества можно рассматривать в отношении его магнитных свойств как круговой ток. Магнитное поле намагниченного тела слагается из магнитных полей этих круговых токов.

В ненамагниченном теле все элементарные токи расположены хаотически, и поэтому мы не наблюдаем во внешнем пространстве никакого магнитного поля.

Процесс намагничивания тела заключается в том, что под влиянием внешнего магнитного поля его элементарные токи в большей или меньшей степени устанавливаются параллельно друг другу и создают результирующее магнитное поле.

Значение теории Ампера не вызывало сомнения. Однако представления Ампера о существовании элементарных токов, непрерывно циркулирующих внутри частиц веществ, были чрезвычайно смелы и необычны для его времени. Дальнейшее развитие науки сделало эти представления естественным следствием созданной в XX веке теории атома. Атом представляет собой систему из центрального положительно заряженного ядра и электронов, обращающихся около него, подобно тому как планеты обращаются вокруг Солнца. Движение электронов представляет собой круговые токи, циркулирующие внутри атомов. Удалось даже осуществить специальные опыты, показывающие, что намагничивание тел сопровождается ориентировкой осей этих круговых токов, стремящихся расположиться параллельно.

Такие наглядные представления о строении атомов являются слишком грубыми и потому неточными, однако они в общих чертах правильно передают сущность дела.

Наверное, каждый из вас видел магниты и даже исследовал их свойства. Если поднести магнит к кучке мелких предметов, некоторые из них (гвоздики, кнопки, скрепки) притянутся к магниту, а некоторые (кусочки мела, медные и алюминиевые монетки, комочки земли) никак не отреагируют. Почему так? Действительно ли магнитное поле не оказывает никакого влияния на некоторые вещества? Именно об этом пойдет речь в параграфе.

Рис. 5.1. В результате действия электрического поля отрицательно заряженной палочки ближняя к ней часть проводящей сферы приобретает положительный заряд

Рис. 5.2. Образцы из диамагнетика (а) и парамагнетика (б) во внешнем магнитном поле: красные линии — линии магнитного поля, созданного образцом; синие — магнитные линии внешнего магнитного поля; зеленые — линии результирующего магнитного поля

Сравниваем действия электрического и магнитного полей на вещество

Изучая в 8 классе электрические явления, вы узнали, что под влиянием внешнего электрического поля происходит перераспределение электрических зарядов внутри незаряженного тела (рис. 5.1). В результате в теле образуется собственное электрическое поле, направленное противоположно внешнему, и именно поэтому электрическое поле в веществе всегда ослабляется.

Вещество изменяет и магнитное поле. Есть вещества, которые (как в случае с электрическим полем) ослабляют магнитное поле внутри себя. Такие вещества называют диамагнетиками. Многие вещества, наоборот, усиливают магнитное поле — это парамагнетики и ферромагнетики.

Дело в том, что любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле, магнитная индукция которого разная для разных веществ.

узнаём о слабомагнитных веществах

Вещества, которые намагничиваются, создавая слабое магнитное поле, магнитная индукция которого намного меньше магнитной индукции внешнего магнитного поля (то есть поля, вызвавшего намагничивание), называют слабомагнитными веществами. К таким веществам относятся диамагнетики и парамагнетики.

Диамагнетики (от греч. dia — расхождение) намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю (рис. 5.2, а). Именно поэтому диамагнетики незначительно ослабляют внешнее магнитное поле: магнитная индукция магнитного поля внутри

диамагнетика (В д) немного меньше магнитной индукции внешнего магнитного поля (В 0):

Если диамагнетик поместить в магнитное поле, он будет выталкиваться из него (рис. 5.3).

Рис. 5.4. Железный гвоздь намагничивается в магнитном поле так, что конец гвоздя, расположенный вблизи северного полюса магнита, становится южным полюсом, поэтому гвоздь притягивается к магниту

Рис. 5.5. Ферромагнетики создают сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (а); линии магнитной индукции как будто втягиваются в ферромагнитный образец (б)

Почему диамагнитное вещество выталкивается из магнитного поля (рис. 5.2, а)?

К диамагнетикам относятся инертные газы (гелий, неон и др.), многие металлы (золото, медь, ртуть, серебро и др.), молекулярный азот, вода и т. д. Тело человека — диамагнетик, так как оно в среднем на 78 % состоит из воды.

Парамагнетики (от греч. para — рядом) намагничиваются, создавая слабое магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.2, б). Парамагнетики незначительно усиливают внешнее поле: магнитная индукция магнитного поля внутри парамагнетика (В п) немного больше магнитной индукции внешнего магнитного поля (В 0):

К парамагнетикам относятся кислород, платина, алюминий, щелочные и щелочноземельные металлы и другие вещества. Если парамагнитное вещество поместить в магнитное поле, то оно будет втягиваться в это поле.


Изучаем ферромагнетики

Если слабомагнитные вещества извлечь из магнитного поля, их намагниченность сразу исчезнет. Иначе происходит с сильномагнитными веществами — ферромагнетиками.

Ферромагнетики (от лат. ferrum — железо) — вещества или материалы, которые остаются намагниченными и при отсутствии внешнего магнитного поля.

Ферромагнетики намагничиваются, создавая сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.4, 5.5, а). Если изготовленное из ферромагнетика тело поместить в магнитное поле, оно будет втягиваться в него (рис. 5.5, б).

Почему на постоянном магните удерживаются только предметы, изготовленные из ферромагнитных материалов (рис. 5.6)?

К ферромагнетикам относится небольшая группа веществ: железо, никель, кобальт, редкоземельные вещества и ряд сплавов. Ферромагнетики значительно усиливают внешнее магнитное поле: магнитная индукция магнитного поля внутри ферромагнетиков (Вф) в сотни и тысячи раз больше магнитной индукции внешнего магнитного поля (В 0):

Температура Кюри для некоторых ферромагнетиков

Так, кобальт усиливает магнитное поле в 175 раз, никель — в 1120 раз, а трансформаторная сталь (на 96-98 % состоит из железа) — в 8000 раз.

Ферромагнитные материалы условно делят на два типа. Материалы, которые после прекращения действия внешнего магнитного поля остаются намагниченными длительное время, называют магнитожесткими ферромагнетиками. Их применяют для изготовления постоянных магнитов. Ферромагнитные материалы, которые легко намагничиваются и быстро размагничиваются, называют магнитомягкими ферромагнетиками. Их применяют для изготовления сердечников электромагнитов, двигателей, трансформаторов, то есть устройств, которые во время работы постоянно перемагничиваются (о строении и принципе действия таких устройств вы узнаете позже).

Обратите внимание! При достижении температуры Кюри (см. таблицу) ферромагнитные свойства магнитомягких и магнитожестких материалов исчезают — материалы становятся парамагнетиками.

Знакомимся с гипотезой Ампера

Наблюдая действие проводника с током на магнитную стрелку (см. рис. 1.1) и выяснив, что катушки с током ведут себя как постоянные магниты (см. рис. 1.3), А. Ампер выдвинул гипотезу о магнитных свойствах веществ. Ампер предположил, что внутри веществ существует огромное количество незатухающих малых круговых токов и каждый из них, как маленькая катушка, является магнитиком. Постоянный магнит состоит из множества таких элементарных магнитиков, ориентированных в определенном направлении.

Механизм намагничивания веществ Ампер объяснял так. Если тело не намагничено, круговые токи ориентированы беспорядочно (рис. 5.7, а). Внешнее магнитное поле пытается сориентировать эти токи так, чтобы направление магнитного поля каждого тока совпадало с направлением внешнего

Рис. 5.7. Механизм намагничивания тел согласно гипотезе Ампера: а— круговые токи ориентированы беспорядочно, тело не намагничено; б — круговые токи ориентированы в определенном направлении, тело намагничено

магнитного поля (рис. 5.7, б). У некоторых веществ такая ориентация токов (намагничивание) остается и после прекращения действия внешнего магнитного поля. Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц.

Гипотеза Ампера послужила толчком к созданию теории магнетизма. На основе этой гипотезы были объяснены известные свойства ферромагнетиков, однако она не могла объяснить природу диа- и парамагнетизма, а также то, почему только небольшое количество веществ имеет ферромагнитные свойства. Современная теория магнетизма основана на законах квантовой механики и теории относительности А. Эйнштейна.

Подводим итоги

Любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле.

Диамагнетики

Парамагнетики

Ферромагнетики

Намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю

Намагничиваются, создавая слабое магнитное поле, направленное в сторону внешнего магнитного поля

Намагничиваются, создавая сильное магнитное поле, направленное в сторону внешнего магнитного поля; остаются намагниченными после прекращения действия внешнего магнитного поля

Незначительно ослабляют внешнее магнитное поле, выталкиваются из него

Незначительно усиливают внешнее магнитное поле, втягиваются в него

Усиливают внешнее магнитное поле в сотни и тысячи раз, втягиваются в него

Инертные газы, медь, золото, ртуть, серебро, азот, вода и др.

Кислород, платина, алюминий, щелочные металлы и др.

Железо, никель, кобальт, редкоземельные вещества (например, неодим), ряд сплавов


Контрольные вопросы

1. Почему вещество изменяет магнитное поле? 2. Приведите примеры диамагнетиков; парамагнетиков; ферромагнетиков. Как направлено собственное магнитное поле каждого из этих веществ? 3. Как во внешнем магнитном поле ведет себя тело, изготовленное из диамагнетика? парамагнетика? ферромагнетика? 4. Почему ферромагнитные материалы считают сильномагнитными?

5. Где применяют магнитомягкие материалы? магнитожесткие материалы?

6. Как А. Ампер объяснял намагниченность ферромагнетиков?

Упражнение № 5

1. Какая сталь — магнитомягкая или магнитожесткая — более пригодна для изготовления постоянных магнитов?

2. Какие магнитные свойства будет иметь: а) железо при 900 °С? б) кобальт при 900 °С?

3. Медный цилиндр подвесили на пружине и поместили в сильное магнитное поле (рис. 1). Как при этом изменилось удлинение пружины?

4. Почему на постоянном магните можно удерживать цепочку железных предметов (рис. 2)?

5. В сосуде под большим давлением содержится смесь газов (азота и кислорода). Предложите способ разделения этой смеси на отдельные компоненты.

6. Воспользовавшись дополнительными источниками информации, узнайте о магнитной левитации. Каковы перспективы ее применения?

Экспериментальное задание

Исследуйте взаимодействие достаточно сильного магнита с телами, изготовленными из разных материалов (например, из меди, алюминия, железа).

Это материал учебника

Рассмотрим изолированный атом, не подверженный действию внешнего магнитного поля. Согласно представлениям классической физики, электроны в атомах движутся по некоторым замкнутым орбитам. Такое движение каждого электрона эквивалентно замкнутому контуру тока. Поэтому любой атом или молекулу, с точки зрения их магнитных свойств, можно рассматривать как некоторую совокупность электронных микротоков. В этом состоит, гипотеза Ампера о природе магнетизма.

Магнитный момент р m электрического тока, вызванного движением электрона по орбите, называется орбитальным магнитным моментом электрона. Предположим для простоты, что электрон в атоме движется со скоростью v по круговой орбите радиуса r (рис.).

Согласно определению магнитного момента тока, орбитальный магнитный момент электрона численно равен

где S - площадь орбиты электрона. Вектор р m направлен в ту же сторону, что и магнитное поле в центре кругового тока.

Свойства, которые проявляют вещества в магнитном поле называют магнитными, а сами вещества – магнетиками . Магнитные свойства веществ определяется наличием у их атомов магнитных моментов. У большинства элементов в отсутствии внешнего магнитного поля магнитные моменты электронов, входящих в атомы, равны нулю, так как имеют разные направления и полностью компенсируют друг друга. Наложение внешнего магнитного поля приводит к переориентации моментов магнитных атомов и появлению отличного от нуля магнитного момента. При этом отличный от нуля суммарный магнитный момент изменяет магнитное поле.

При изучении магнитного поля в веществе (магнетике) различают два типа токов - макротоки и микротоки. Под макротоками понимают электрические токи проводимости, а также конвекционные токи, связанные с движением заряженных макроскопических тел. Микротоками или молекулярными токами называют токи, обусловленные движением электронов в атомах, ионах и молекулах.

В веществе на магнитное поле макротоков (его часто называют внешним) накладывается дополнительное магнитное поле микротоков (его соответственно называют внутренним). Вектор магнитной индукции В характеризует результирующее магнитное поле в веществе, т. е. он равен геометрической сумме магнитных индукций внешнего (Во) и внутреннего (В внутр) полей:

Т.е. вектор В должен зависеть от магнитных свойств магнетика. Магнитное поле микротоков возникает в результате намагничивания магнетика при его помещении во внешнее магнитное поле. Поэтому первичным источником магнитного поля в веществе являются макротоки.

Так как в вакууме поле создают только макротоки, а в веществе - макротоки и микротоки, то для поля в веществе закон полного тока имеет вид

(13.1.1)

где I макро и I микро - алгебраические суммы соответственно макро- и микротоков, охватываемых замкнутым.контуром L, т. е. результирующие макро- и микротоки сквозь поверхность, образованную контуром L.

Величину Н, зависящую от магнитных свойств среды называют напряженностью магнитного поля.

Единицей измерения напряженности магнитного поля является А/м. Если направления векторов намагниченности и напряженности магнитного поля совпадают, то вещества называются изотропными магнетиками. Если направление вектора намагниченности зависит от направления поля относительно кристаллографических осей, то вещества являются анизотропными магнетиками. Графически напряженность магнитного поля изображают с помощью линий, касательная к которым в каждой точке совпадает с направлением напряженности в этой точке. Густота этих линий пропорциональна величине вектора напряженности. В отличие от вектора магнитной индукции, линии вектора Н начинаются и заканчиваются на границе раздела между двумя веществами с разными магнитными свойствами.

Диамагнетиками называются вещества, магнитные моменты атомов или молекул которых при отсутствии внешнего магнитного поля равны нулю, т.е. в атомах или молекулах диамагнитных веществ векторная сумма орбитальных магнитных моментов всех электронов равна нулю. Диамагнетиками являются инертные газы, большинство органических соединений, многие металлы (висмут, цинк, золото, медь, серебро, ртуть и др.), смолы, вода, стекло, мрамор.

При внесении диамагнитного вещества в магнитное поле в каждом его атоме наводится магнитный момент ΔР m , направленный противоположно вектору В индукции магнитного поля.

Для характеристики намагничивания вещества вводится физическая величина, называемая интенсивностью намагничивания.

Вектором намагниченности или интенсивностью намагничивания J называется отношение магнитного момента малого объема ΔV вещества к этому объему

где Р mi - магнитный момент i -й молекулы, n - общее число молекул в объеме ΔV. Объем ΔV должен быть столь малым, чтобы в его пределах магнитное поле можно было считать однородным. В Международной системе единиц (СИ) вектор намагниченности измеряется в амперах на метр (А/м).

Если в однородное магнитное поле напряженностью Н 0 в среде с проницаемостью μ 1 внести некоторое тело, то напряженность магнитного поля внутри этого тела Н будет равна сумме напряженностей внешнего (первоначального) поля Н 0 и поля Н м, создаваемого молекулярными токами тела:

Н= Н 0 + Н м,

где Н м называют полем размагничивания . Это поле зависит от координат рассматриваемой точки тела, его формы и ориентации относительно внешнего поля.

Магнитная индукция B в магнетике определяется суммой поля, созданного внешними источниками, и поля магнитных моментов самого магнетика:

Откуда напряженность магнитного поля

Магнитная проницаемость в отличие от диэлектрической проницаемости может быть как большее, так и меньше единицы. У диамагнетиков μ<1, а у парамагнетиков μ>1.

Если векторная сумма орбитальных магнитных моментов всех электронов атома (или молекулы) не равна нулю, то атом в целом обладает некоторым магнитным моментом Р m . Такие атомы (молекулы) называются парамагнитными, а состоящие из них вещества - парамагнетиками . К парамагнетикам относятся кислород, окись азота, алюминий, платина, и другие вещества.

В парамагнетиках вектор намагниченности направлен вдоль приложенного поля. При этом магнитные моменты атомов и молекул отличны от нуля, но направлены хаотично. При наложении внешнего магнитного поля происходит перераспределение их направлений. Число магнитных моментов, приближающихся по направлению к магнитному полю, оказывается преобладающим. Это приводит к тому, что появляется отличная от нуля намагниченность, направленная вдоль вектора индукции поля.

В отличие от диамагнетиков у парамагнетиков магнитная восприимчивость сильно зависит от температуры.

Для многих парамагнитных веществ изменение магнитной восприимчивости с температурой подчиняется закону, установленному Кюри:

где T – термодинамическая температура, C – постоянная Кюри, зависящая от рода вещества.

Классическая теория парамагнетизма была развита П. Ланжевеном в 1905 г. Он рассмотрел статистическую задачу о поведении молекулярных токов (и соответствующих им магнитных моментов Р m) в однородном магнитном поле. Ориентирующее действие магнитного поля на атом зависит от магнитного момента атома и магнитной индукции В поля.

За последние 50 лет все отрасли наук шагнули стремительно вперед. Но прочитав множество журналов о природе магнетизма и гравитации, можно прийти к выводу, что у человека появляется еще больше вопросов, чем было.

Природа магнетизма и гравитации

Всем очевидно и понятно, что предметы, подброшенные вверх, стремительно падают на землю. Что же их притягивает? Можно смело предположить, что они притягиваются какими-то неведомыми силами. Те самые силы получили название - природная гравитация. После каждый интересующийся сталкивается со множеством споров, догадок, предположений и вопросов. Какова природа магнетизма? Чем являются В результате какого воздействия они образуются? В чем проявляется их сущность, а также частота? Как они воздействуют на окружающую среду и на каждого человека по отдельности? Как рационально можно использовать это явление во благо цивилизации?

Понятие магнитизма

В начале девятнадцатого века физик Эрстед Ханс Кристиан открыл магнитное поле электрического тока. Это дало возможность предполагать, что природа магнетизма тесно взаимосвязана с электрическим током, который образуется внутри каждого из существующих атомов. Возникает вопрос, какими явлениями можно объяснить природу земного магнетизма?

На сегодняшний день установлено, что магнитные поля в намагниченных объектах зарождаются в большей степени электронами, которые беспрерывно делают обороты вокруг своей оси и около ядра существующего атома.

Давно установлено, что хаотичное перемещение электронов являет собой самый настоящий электрический ток, а его прохождение провоцирует зарождение магнитного поля. Подводя итог этой части, можно смело утверждать, что электроны вследствие своего хаотичного перемещения внутри атомов порождают внутриатомные токи, которые, в свою очередь, способствуют зарождению магнитного поля.

Но чем же обусловлено то, что в разных материях магнитное поле имеет значительные отличия в собственной величине, а также различную силу намагничивания? Это связано с тем, что оси и орбиты перемещения самостоятельных электронов в атомах способны быть в разнообразных положениях относительно друг друга. Это приводит к тому, что в соответствующих положениях располагаются и произведенные перемещающимися электронами магнитные поля.

Таким образом, следует отметить, что среда, в которой зарождается магнитное поле, оказывает воздействие непосредственно на него, преумножая или ослабевая само поле.

Поле которых ослабляет результирующее поле, получили название диамагнитные, а материалы, весьма слабо усиливающие магнитное поле, именуются парамагнитными.

Магнитные особенности веществ

Следует отметить, то природа магнетизма зарождается не только благодаря электрическому току, но и постоянными магнитами.

Постоянные магниты могут быть изготовлены из небольшого количества веществ на Земле. Но стоит отметить, что все предметы, которые будут находиться в радиусе магнитного поля, намагнитятся и станут непосредственными Проведя анализ вышеизложенного, стоит добавить, что вектор магнитной индукции в случае наличия вещества отличается от вектора вакуумной магнитной индукции.

Гипотеза Ампера о природе магнетизма

Причинно-следственная связь, в результате которой была установлена связь обладания тел магнитными особенностями, была открыта выдающимся французским ученым Андре-Мари Ампером. Но в чем состоит гипотеза Ампера о природе магнетизма?

История положила свое начало благодаря сильному впечатлению от увиденного ученым. Он стал свидетелем исследований Эрстеда Лмиера, который смело предположил, что причиной магнетизма Земли являются токи, которые регулярно проходят внутри земного шара. Был сделан основополагающий и самый весомый вклад: магнитные особенности тел можно было объяснить беспрерывной циркуляцией в них токов. После Ампер выдвинул следующее заключение: магнитные особенности любого из существующих тел определены замкнутой цепью электрических токов, протекающих внутри них. Заявление физика было смелым и отважным поступком, поскольку он перечеркнул все предшествующие открытия, объяснив магнитные особенности тел.

Перемещение электронов и электрический ток

Гипотеза Ампера гласит, что внутри каждого атома и молекулы существует элементарный и циркулирующий заряд электрического тока. Стоит отметить, что на сегодняшний день нам уже известно, что те самые токи образуются в результате хаотичного и беспрерывного перемещения электронов в атомах. Если оговариваемые плоскости находятся беспорядочно относительно друг к друга вследствие теплового перемещения молекул, то их процессы взаимокомпенсируются и совершенно никакими магнитными особенностями не владеют. А в намагниченном предмете простейшие токи направлены на то, чтобы их действия слаживались.

Гипотеза Ампера в силах объяснить, почему магнитные стрелки и рамки с электрическим током в магнитном поле ведут себя идентично друг другу. Стрелку, в свою очередь, следует рассмотреть как комплекс небольших контуров с током, которые направлены идентично.

Особую группу в которых значительно усиливается магнитное поле, называют ферромагнитной. К этим материал относится железо, никель, кобальт и гадолиний (и их сплавы).

Но как объяснить природу магнетизма постоянных магнитов? Магнитные поля образуются ферромагнетиками не исключительно в результате перемещения электронов, но и в результате их собственного хаотичного движения.

Момент импульса (собственного вращательного момента) приобрел название - спин. Электроны в течение всего времени существования вращаются вокруг своей оси и, имея заряд, зарождают магнитное поле вместе с полем, образующимся вследствие их орбитального перемещения около ядер.

Температура Мария Кюри

Температура, выше которой вещество-ферромагнетик теряет намагниченность, получила свое определенное название - температура Кюри. Ведь именно французский ученый с данным именем сделал это открытие. Он пришел к выводу: если существенно нагреть намагниченный предмет, то он лишится возможности притягивать к себе предметы из железа.

Ферромагнетики и их использование

Невзирая на то, что ферромагнитных тел в мире существует не так много, их магнитные особенности имеют большое практическое применение и значение. Сердечник в катушке, изготовленный из железа или стали, многократно усиливает магнитное поле, при этом не превышает расхода силы тока в катушке. Это явление значительно помогает экономить электроэнергию. Сердечники изготавливаются исключительно из ферромагнетиков, и не имеет значения, для каких целей послужит эта деталь.

Магнитный способ записи информации

С помощью ферромагнетиков изготавливают первоклассные магнитные ленты и миниатюрные магнитные пленки. Магнитные ленты имеют широкое применение в сферах звуко-и видеозаписи.

Магнитная лента является пластичной основой, состоящей из полирхлорвинила или прочих составляющих. Поверх нее наносится слой, представляющий собой магнитный лак, которые состоит из множества очень маленьких игольчатых частичек железа или прочего ферромагнетика.

Процесс звукозаписи осуществляется на ленту благодаря поле которых подвергается изменениям в такт вследствие колебаний звука. В результате движения ленты около магнитной головки, каждый участок пленки подвергается намагничиванию.

Природа гравитации и его понятия

Стоит прежде всего отметить, что гравитация и ее силы заключены в пределах закона всемирного тяготения, который гласит о том, что: две материальные точки притягивают друг друга с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Современная наука немного иначе стала рассматривать понятия гравитационной силы и объясняет его как действие гравитационного поля самой Земли, происхождение которой до сих пор, к сожалению ученых, не установлено.

Подводя итоги всего вышеизложенного, хочется отметить, что все в нашем мире тесно взаимосвязано, и существенного отличия между гравитацией и магнетизмом нет. Ведь гравитация обладает тем самым магнетизмом, просто не в большой мере. На Земле нельзя отрывать объект от природы - нарушается магнетизм и гравитация, что в будущем может значительно усложнить жизнь цивилизации. Следует пожинать плоды научных открытий великих ученых и стремиться к новым свершениям, но использовать всю данность следует рационально, не причиняя вреда природе и человечеству.

Любое вещество в мире имеет определенные магнитные свойства. Измеряются они магнитной проницаемостью. В этой статье мы рассмотрим магнитные свойства вещества.

Гипотеза Ампера

Магнитная проницаемость показывает во сколько раз меньше или больше индукция магнитного поля в данной среде индукции магнитного поля в вакууме.

Намагниченным называется то вещество, которое создает собственное магнитное поле. Намагниченность возникает, если вещество поместить во внешнее магнитное поле.

Французский ученый Ампер установил причину, следствием которой является обладание телами магнитных свойств. В гипотезе Ампера говорится о том, что внутри вещества имеются микроскопические электрические токи (электрон имеет собственный магнитный момент, имеющий квантовую природу, орбитальное движение в атомах электронов). Именно ими и определяются магнитные свойства вещества. Если токи имеют неупорядоченные направления, то магнитные поля, которые они порождают, компенсируют друг друга. Тело оказывается не намагничено. Внешнее магнитное поле упорядочивает эти токи. Вследствие этого в веществе возникает собственное магнитное поле. Это и есть намагниченность вещества.

Именно по реакции веществ на внешнее магнитное поле и по упорядоченности их внутренней структуры, определяют магнитные свойства вещества. В соответствии с этими параметрами их делят на такие группы:

  • Парамагнетики
  • Диамагнетики
  • Ферромагнетики
  • Антиферромагнетики

Диамагнетики и парамагнетики

  • Вещества, которые имеют отрицательную магнитную восприимчивость, не зависящую от напряженности магнитного поля, называются диамагнетики. Давайте разберемся, какие магнитные свойства вещества, называются отрицательной магнитной восприимчивостью. Это когда к телу подносится магнит, и оно при этом отталкивается, а не притягивается. К диамагнетикам относятся например, инертные газы, водород, фосфор, цинк, золото, азот, кремний, висмут, медь, серебро. То есть это вещества, которые находятся в сверхпроводящем состоянии или имеющие ковалентные связи.
  • Парамагнетики. У этих веществ магнитная восприимчивость тоже не зависит от того, какая напряженность поля существует. Она при этом положительная. То есть при сближении парамагнетика с постоянно действующим магнитом, возникает сила притягивания. К ним можно отнести алюминий, платину, кислород, марганец, железо.

Ферромагнетики

Вещества, у которых высокая положительная магнитная восприимчивость, называются ферромагнетиками. У этих веществ, в отличие от диамагнетиков и парамагнетиков, магнитная восприимчивость зависит от температуры и напряженности магнитного поля, причем в значительной мере. К ним относятся кристаллы никеля и кобальта.

Антиферромагнетики и ферримагнетики

  • Вещества, у которых во время нагревания совершается фазовый переход данного вещества, сопровождающегося появлением парамагнитных свойств, называются антиферромагнетиками. Если температура становится, ниже какой-то определенной, эти свойства у вещества наблюдаться не будут. Примерами этих веществ будут марганец и хром.
  • Ферримагнетики характеризуются присутствием в них некомпенсированного антиферромагнетизма. Их магнитная восприимчивость тоже зависит от температур и напряженности магнитного поля. Но отличия у них все же, есть. К этим веществам можно отнести различные оксиды.

Все вышеперечисленные магнетики можно еще разделить на 2 категории:

  • Магнитотвердые материалы. Это материалы с высоким значением коэрцитивной силы. Для их перемагничивания необходимо создать мощное магнитное поле. Эти материалы применяются в изготовлении постоянных магнитов.
  • Магнитомягкие материалы, напротив, имеют маленькую коэрцитивную силу. При слабых магнитных полях они способны войти в насыщение. На перемагничивание у них малые потери. Из-за этого эти материалы применяются для изготовления сердечников для электрических машин, которые работают на переменном токе. Это, например, трансформатор тока и напряжения, или генератор, или асинхронный двигатель.

Мы рассмотрели все основные магнитные свойства вещества и разобрались, какие виды магнетиков существуют.