Что означает в математике запись у = f(x) — Гипермаркет знаний. Урок "свойства функций"

Материал, представленный в видеоуроке, является продолжением темы построения графиков функций путем различных преобразований. Мы рассмотрим, как строится график функции y= f (kx ), если известен график функции у= f (x ) . В данном случае k - любое действительное число, не равное нулю.

Вначале рассмотрим случай, когда k - положительное число. Для примера построим график функции у= f (3 x ) , если график функции у= f (х) у нас есть. На рисунке на оси координат изображен график у= f ), на котором есть точки с координатами А и В. Выбирая произвольные значения х и подставляя их в функцию у= f (3 x ), находят соответствующие значения функции у . Таким образом, получают точки графика функции у= f (3 x ) А 1 и В 1 , у которых ординаты такие же, как у точек А и В. То есть мы можем сказать, что из графика функции у= f (x ) путемсжатия с коэффициентом k к оси ординат можно получить график функции y= f (kx ) . Важно отметить, что точки пересечения с осью ординатпри сжатии остаются на прежнем месте.

В случае, когда k - отрицательное число, график функции y= f (kx ) преобразовывается из графика функции у= f (x ) путем растяжения от оси ординат с коэффициентом 1/ k .

1) вначале строится часть волны графика функции у = sin х (см. рисунок);

2) т.к. k = 2, выполняется сжатие графика функции у= sinx к оси ординат, коэффициент сжатия равен 2. Находим точку пересечения с осью x . Т.к. график функции у = sin х пересекает ось абсцисс в точке π, то график функции у = sin 2 х пересекает ось абсцисс в точке π/k = π/2.Аналогичным способом находятся все остальные точки графика функции у = sin 2x и по этим точкам строится весь график.

Рассмотрим 2-й пример - построение графика функции у = cos (x/2) .

1) строим часть волны графика функции у = cosх (см. рисунок);

2) т.к. k =1/2, выполняем растяжение графика функции у = sin х от оси ординат с коэффициентом ½.

Найдем точку пересечения графика с осью х . Т.к. график функции у = cos х пересекает ось абсцисс в точке π/2, то график функции у = cos (x/2) пересекает ось абсцисс в точке π. Таким же образом находим все остальные точки графика функции у = cos (x/2) , построим по этим точкам весь график.

Далее рассмотрим вариант построения графика функции y = f (kx ), где k - число отрицательное. Например, при k = -1 функция y = f (kx ) = f (- x ). На рисунке изображен график у= f (х), на котором есть точки с координатами А и В. Выбрав произвольные значения х и подставив их в функцию y = f (- x ), находим соответствующие значения функции у . Получим точки графика функции y = f (- x ) А 1 и В 1 , которые будут симметричны точкам А и В относительно оси ординат. То есть при использовании симметрии относительно оси ординат из графика функции у= f (kx ) получаем график функции y= f (- x ).

Переходим к построению графика функции y = f (kx ) при k<0 на примере функции у = 4 sin (- x/2).

1) построим часть волны графика у = sin х ;

2) т.к. k = 4, выполним растяжение полуволны графика относительно оси абсцисс, где коэффициент растяжения равен 4;

3) выполним симметричное преобразование относительно оси абсцисс;

4) произведем растяжение от оси ординат (коэффициент растяжения равен 2);

5) завершим построение всего графика.

В данном видеоуроке мы подробно рассмотрели, каким образом поэтапно можно построить график функции y= f (kx ) при разных значениях k .

ТЕКСТОВАЯ РАСШИФРОВКА:

Сегодня познакомимся с преобразованием, которое поможет научиться строить график функции у = f (kx)

(игрек равен эф от аргумента, который представляет произведение ка и икс), если известен график функции у = f (x) (игрек равно эф от икс), где ка - любое действительное число (кроме нуля)».

1) Рассмотрим случай, когда k - положительное число на конкретном примере, когда k = 3.То есть нужно построить график функции

у = f (3x) (игрек равен эф от трех икс), если известен график функции у = f (x). Пусть на графике функции у = f (x) есть точка А с координатами (6; 5) и В с координатами (-3; 2). Это значит, что f (6) = 5 и f (- 3) = 2 (эф от шести равно пяти и эф от минус трех равно двум). Проследим за перемещением этих точек при построении графика функции у = f (3x).

Возьмем произвольное значение х = 2, вычислим у, подставив значение х в график функции у = f (3x) , получим, что у = 5. (на экране: у = f (3x) = f (3∙2)= f (6) = 5.) То есть на графике функции у= f (3x) есть точка с А 1 координатами (2; 5). Если же х = - 1, то подставив значение х в график функции у = f (3x), получим значение у= 2.

(На экране: у = f (3x) = f (- 1∙ 3) = f (- 3) = 2.)

То есть на графике функции у= f (3x) есть точка с координатами В 1 (- 1; 2). Итак, на графике функции у = f (3x) есть точки с той же ординатой, что и на графике функции у = f (x), при этом абсцисса точки в два раза меньше по модулю.

То же будет справедливо и для других точек графика функции у = f (x), когда мы будем переходить к графику функции у = f (3x).

Обычно такое преобразование называют сжатием к оси у(игрек) с коэффициентом 3.

Следовательно, график функции у = f (kx) получается из графика функции у = f (x) с помощью сжатия к оси у(игрек) с коэффициентом k. Заметим, что при таком преобразовании на месте остается точка пересечения графика функции у = f (x) с осью ординат.

Если же k меньше единицы, то говорят не о сжатии с коэффициентом k, а о растяжении от оси у с коэффициентом (то есть, если k = , то говорят о растяжении с коэффициентом 4).

ПРИМЕР 1. Построить график функции у = sin 2x (игрек равен синусу двух икс).

Решение. Вначале построим полуволну графика у = sin x на промежутке от ноля до пи. Так как коэффициент равен двум, а значит k - положительное число больше единицы, значит осуществим сжатие графика функции у = sin x к оси ординат с коэффициентом 2. Найдем точку пересечения с осью ОХ. Если график функции у = sin x пересекает ось ОХ в точке π, то график функции у = sin 2x будет пересекать в точке (π: k =π: 2 =)(пи делим на ка равно пи деленное на два равно пи на два). Аналогичным способом найдем все остальные точки графика функции у = sin2 x. Так, точке графика функции у = sin x с координатами (;1) будет соответствовать точка графика функции у = sin 2x с координатами (;1). Таким образом получим одну полуволну графика функции у = sin 2x. Используя периодичность функции построим весь график.

ПРИМЕР 2. Построить график функции у = cos (игрек равен косинусу частного икс и двух).

Решение. Вначале построим полуволну графика у = cos x. Так как k - положительное число меньше е единицы, значит осуществим растяжение графика функции у = cos x от оси ординат с коэффициентом 2.

Найдем точку пересечения с осью ОХ. Если график функции у = cos x пересекает ось ОХ в точке, то график функции у = cos будет пересекать в точке π. (: k =π: = π). Аналогичным способом найдем все остальные точки графика функции у = cos. Таким образом получим одну полуволну искомого графика функции. Используя периодичность функции построим весь график.

Рассмотрим случай, когда k равно минус единице. То есть нужно построить график функции у = f (-x) (игрек равен эф от минус икс), если известен график функции у = f (x). Пусть на графике есть точка А с координатами (4; 5) и точка В (-5; 1). Это значит, что f (4) = 5 и f (- 5) = 1.

Так как при подстановке в формулу у = f (-x) вместо х = - 4 получим у = f (4) = 5, то на графике функции у = f (-x) есть точка с координатами А 1

(- 4 ; 5) (минус четыре, пять). Аналогично, графику функции у = f (-x) принадлежит точка В 1 (5; 1).То есть графику функции у = f (x) принадлежат точки А(4; 5) и В(-5; 1), а графику функции у = f (-x) принадлежат точки А 1 (- 4; 5) и В 1 (5; 1). Эти пары точек симметричны относительно оси ординат.

Следовательно, график функции у = f (-x) с помощью преобразования симметрии относительно оси ординат можно получить из график функции у = f (x).

3) И, наконец, рассмотрим случай, когда k - отрицательное число. Учитывая, что равенство f (kx) = f (- |k|x) (эф от произведения ка на икс равно эф от произведения минус модуля ка и икса) справедливое, то речь идет о построении графика функции у = f (- |k|x), который можно построить поэтапно:

1) построить график функции у = f (x);

2) построенный график подвергнуть сжатию или растяжению к оси ординат с коэффициентом |k| (модуль ка);

3) осуществить преобразование симметрии относительно оси у

(игрек) полученного во втором пункте графика.

ПРИМЕР 3. Построить график функции у = 4 sin (-) (игрек равно четыре, умноженное на синус частного минус икс на два).

Решение. Прежде всего вспомним, что sin(- t) = -sint(синус от минус тэ равно минус синусу тэ), значит, у = 4 sin (-) = - 4 sin (игрек равен минус четырем, умноженным на синус частного икс на два). Строить будем поэтапно:

1) Построим одну полуволну графика функции у= sinх.

2) Осуществим растяжение построенного графика от оси абсцисс с коэффициентом 4 и получим одну полуволну графика функции

у= 4sinх(игрек равно четыре, умноженное на синус икс).

3) К построенной полуволне графика функции у= 4sinх применим преобразование симметрии относительно оси х(икс) и получим полуволну графика функции у= - 4sinх.

4) Для полуволны графика функции у= - 4sinх осуществим растяжение от оси ординат с коэффициентом 2; получим полуволну графика функции - 4 sin .

5) С помощью полученной полуволны построим весь график.

ФУНКЦИЯ - F(X) y=f(x).

Что такое функция f(х)?
Как бывший школьный учитель математики напоминаю тем, кто забыл.
Y – функция, Х-аргумент, f- закон, по которому находим Y.
Пример:
Поезд идет со средней скоростью 30 км. в час. Два часа в пути – 60 км прошел. 4 часа в пути – 120 км. и т.д. Чем больше времени поезд в пути, тем большее расстояние он проходит. Х и Y –переменные величины, и функция y =f(x) ,где Y – расстояние, a X – время в пути, и есть необходимый закон.
Вспомнили? Я тоже вспомнил, нo другое.
По окончании физмата Хабаровского пединститута меня направили на работу в Биробиджан, в школу номер 6, которая располагалась в поселке Сопка, за рекой, где стоял военный гарнизон, довольно многочисленный, со своим госпиталем, Домом офицеров, мастерскими по ремонту танков, деревянными двухэтажными домами, где жили семьи военослужащих.
Школа имела два здания: большое, кирпичное, двухэтажное, и маленькое, деревянное, одноэтажное, где располагались классы начальной школы – с 1-го по 4-й. В ней меня и поселили. В маленьком угловом классе я жил с бабушкой, которая поехала со мной, зная мою житейскую неприспособленность. Она мне варила, стирала, сидела рядом, когда я проверял тетради, защищала от работников местного КЭЧ, которые сильно хотели забрать наши две кровати, числящиеся у них на учете.
Зарплата была минимальная для учителя. 18 рабочих часов в неделю, три 5-х класса, самый трудный для учителя возраст. Денег нехватало даже на еду, и бабушка отказалась от мяса, ела картошку, так как считала, что мясо стоит слишком дорого. Хорошо, что не нужно было платить за свет, печное отопление и канализацию, которой не было. Кроме того, в классе, в котором я был классным руководителем, учились дети высокопоставленных офицеров гарнизона: сын командира части полковника Андронова, сын начальника госпиталя подполковника мед, службы Заровняева, дочь начмеда Жекова, дети врачей госпиталя и офицеров. Контроль за моей деятельностью, как воспитателя, был постоянный. Надо сказать, что дети этих высоких чинов были исключительно дисциплинированными, все они учились только на отлично, с ними было приятно работать. Мне был 21 год, я играл с ними в баскетбол, футбол, но, к сожалению, это не прибавляло денег в мой кошелек. К тому же, в классе учились и другие дети, которые резко отличались по уровню развития от детей военных.
Но мне, случайно, улыбнулась удача. Моя коллега сообщила мне, что требуется, временно, преподаватель математики в «Школу паровозных машинистов», которая существовала в то время в Биробиджане.
Это был хороший приработок. Меня приняли преподавателем по совместительству.
Известно, что на тепловозную тягу Дальний Восток перешел последним на Транссибе.
Студентами «Школы" были мужики, все старше меня: демобилизованные солдаты, бывшие заключенные, которых на Дальнем Востоке всегда было много, бывшие деревенские жители, часто малограмотные, хотя принимали в школу только закончивших семилетку. Школа давала им шанс хорошего заработка, и они «грызли гранит науки» очень добросовестно, хотя многим было трудно.

Однажды, когда я проверял тетради, бабушка привела посетителя, который искал в здании средней школы «Владимира Давидовича». Оказалось – курсант «Школы» по имени Вася Дорошенко, бывший деревенский житель из пригородного совхоза. Поставил на стол чемоданчик, открыл. Там – бутылка водки с закуской: деревенская колбаса, копченое мясо, деревенский хлеб. Я – опешил.
Васю я приметил давно, Он ничего не понимал из моих обьяснений, от опросов уклонялся, контрольные списывал.
-Что тебя привело ко мне?
-Владимир Давидович, я все понимаю, что Вы обьясняете, но функция F(X) ! Что это?
Мы с бабушкой еле-еле заставили Васю сложить все принесенное обратно в чемодан, я отставил в сторону тетради, и мы начали занятия. К своему ужасу, я обнаружил, что Вася не знает таблицы умножения. Дла меня это был шок. Теперь, с высоты своих лет и опыта я понимаю всю нищету моих тогдашних понятий. В дальнейшей своей жизни мне встретились и директор музыкальной школы, который всегда ходил с карандашом, на котором была таблица умножения, и жена моего друга, русского писателя Эдуарда П…… Наталия К........., - бывший преподаватель МАИ - профессор математики, которая сама мне сказала, что таблицу не знает до сих пор.
Но тогда, в далекой молодости, мне это казалось невероятным, отбивало охоту что-то обьяснять. Я сосредоточился на функции
F(x). Долго обьяснял, приводил примеры, что-то получилось. Вася встал удовлетворенный. Опять открыл чемодан, предложил выпить и закусить. Для меня выпивка - острый нож в сердце. Душа не приемлет, возможно, на генетическом уровне, хотя мой отец вернулся с фронта с большим пристрастием к водке.
Ах, водка! Сколько раз мне пришлось ее выливать незаметно, заменять, отдавать, когда участвовал в застольях, как гармонист, затем, баянист! Ведь на Руси всегда первый стакан – гармонисту!
Наконец, мы убедили Васю снова собрать все в чемоданчик. Он сказал, что идет в туалет и больше не вернулся. Чемоданчик остался на столе.
Я боялся, что его примеру последуют и другие курсанты, имеющие с математикой проблемы, но обошлось. Очевидно, сработал слух, что я не пью.
Вася «Школу» закончил. Я уже там в это время не работал, вернулась прежняя преподавательница, которая была в декрете. Скоро «Школу» закрыли. Дорога переходила на тепловозную тягу, значит снова Васе учиться. Мне, наконец, дали две небольшие комнаты в «коммуналке» и мои родители, жившие в городке Пограничный, возле Уссурийска, все бросили и приехали ко мне.
А Вася? Думаю, что стал достойным железнодорожником и без функции Y = F(X).
А эта функция, как маленький золотой ключик, открывает потайную дверь в ту область знаний, которая приучает человека мыслить отвлеченно, абстрактно и которая на всех великих языках называется почти одинаково – МАТЕМАТИКА.
P.S.
|Эти дети, у которых я был классным руководителем в 5,6,7,8 классах, были моими первыми учениками в моей учительской карьере, я их запомнил навсегда. Они – на 10 лет младше меня, сегодня им – по 68. Некоторые из них стали очень известными людьми в России и Израиле.

Рецензии

Здравствуйте, Владимир! С удовольствием и интересом прочитал Ваш рассказ. Должен сказать, что к старости пропадает желание читать выдуманные истории, даже если написано хорошим языком и, с художественной точки зрения, правдиво. Не знаю, хорошо это или плохо. ...А математику я люблю. Как и Вы. С уважением, Юрий.

1. Общие положения

1.1. С целью поддержания деловой репутации и обеспечения выполнения норм федерального законодательства ФГАУ ГНИИ ИТТ «Информика» (далее – Компания) считает важнейшей задачей обеспечение легитимности обработки и безопасности персональных данных субъектов в бизнес-процессах Компании.

1.2. Для решения данной задачи в Компании введена, функционирует и проходит периодический пересмотр (контроль) система защиты персональных данных.

1.3. Обработка персональных данных в Компании основана на следующих принципах:

Законности целей и способов обработки персональных данных и добросовестности;

Соответствия целей обработки персональных данных целям, заранее определенным и заявленным при сборе персональных данных, а также полномочиям Компании;

Соответствия объема и характера обрабатываемых персональных данных, способов обработки персональных данных целям обработки персональных данных;

Достоверности персональных данных, их актуальности и достаточности для целей обработки, недопустимости обработки избыточных по отношению к целям сбора персональных данных;

Легитимности организационных и технических мер по обеспечению безопасности персональных данных;

Непрерывности повышения уровня знаний работников Компании в сфере обеспечения безопасности персональных данных при их обработке;

Стремления к постоянному совершенствованию системы защиты персональных данных.

2. Цели обработки персональных данных

2.1. В соответствии с принципами обработки персональных данных, в Компании определены состав и цели обработки.

Цели обработки персональных данных:

Заключение, сопровождение, изменение, расторжение трудовых договоров, которые являются основанием для возникновения или прекращения трудовых отношений между Компанией и ее работниками;

Предоставление портала, сервисов личного кабинета для учеников, родителей и учителей;

Хранение результатов обучения;

Исполнение обязательств, предусмотренных федеральным законодательством и иными нормативными правовыми актами;

3. Правила обработки персональных данных

3.1. В Компании осуществляется обработка только тех персональных данных, которые представлены в утвержденном Перечне персональных данных, обрабатываемых в ФГАУ ГНИИ ИТТ «Информика»

3.2. В Компании не допускается обработка следующих категорий персональных данных:

Расовая принадлежность;

Политические взгляды;

Философские убеждения;

О состоянии здоровья;

Состояние интимной жизни;

Национальная принадлежность;

Религиозные убеждения.

3.3. В Компании не обрабатываются биометрические персональные данные (сведения, которые характеризуют физиологические и биологические особенности человека, на основании которых можно установить его личность).

3.4. В Компании не осуществляется трансграничная передача персональных данных (передача персональных данных на территорию иностранного государства органу власти иностранного государства, иностранному физическому лицу или иностранному юридическому лицу).

3.5. В Компании запрещено принятие решений относительно субъектов персональных данных на основании исключительно автоматизированной обработки их персональных данных.

3.6. В Компании не осуществляется обработка данных о судимости субъектов.

3.7. Компания не размещает персональные данные субъекта в общедоступных источниках без его предварительного согласия.

4. Реализованные требования по обеспечению безопасности персональных данных

4.1. С целью обеспечения безопасности персональных данных при их обработке в Компании реализуются требования следующих нормативных документов РФ в области обработки и обеспечения безопасности персональных данных:

Федеральный закон от 27.07.2006 г. № 152-ФЗ «О персональных данных»;

Постановление Правительства Российской Федерации от 1 ноября 2012 г. N 1119 "Об утверждении требований к защите персональных данных при их обработке в информационных системах персональных данных";

Постановление Правительства Российской Федерации от 15.09.2008 г. №687 «Об утверждении Положения об особенностях обработки персональных данных, осуществляемой без использования средств автоматизации»;

Приказ ФСТЭК России от 18.02.2013 N 21 "Об утверждении Состава и содержания организационных и технических мер по обеспечению безопасности персональных данных при их обработке в информационных системах персональных данных";

Базовая модель угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 15.02.2008 г.);

Методика определения актуальных угроз безопасности персональных данных при их обработке в информационных системах персональных данных (утверждена заместителем директора ФСТЭК России 14.02.2008 г.).

4.2. Компания проводит оценку вреда, который может быть причинен субъектам персональных данных и определяет угрозы безопасности персональных данных. В соответствии с выявленными актуальными угрозами Компания применяет необходимые и достаточные организационные и технические меры, включающие в себя использование средств защиты информации, обнаружение фактов несанкционированного доступа, восстановление персональных данных, установление правил доступа к персональным данным, а также контроль и оценку эффективности применяемых мер.

4.3. В Компании назначены лица, ответственные за организацию обработки и обеспечения безопасности персональных данных.

4.4. Руководство Компании осознает необходимость и заинтересовано в обеспечении должного как с точки зрения требований нормативных документов РФ, так и обоснованного с точки зрения оценки рисков для бизнеса уровня безопасности персональных данных, обрабатываемых в рамках выполнения основной деятельности Компании.

Переменную x называют независимой переменной или аргументом. Переменную y зависимой переменной, а также значениями функции. Записывают функцию так: («игрек равно эф от икс»). Символом также обозначают значение функции с аргументом x. f называют правило, по которому y зависит от x. Вместо f используют и другие буквы: g, φ и т.п.

Пример 1

Медицинский термометр

Когда вы измеряете температуру (своего тела), высота, на которую поднимется ртуть в градуснике, будет зависеть от температуры вашего тела. Например, если x -- температура вашего тела в градусах Цельсия, а y -- высота, на которую поднимется ртуть в миллиметрах, то записать зависимость x от y можно так: y = f (x) {\displaystyle y=f(x)} . Если 0.1°C соответствует 1 мм, то f (x) = 10 (x − 35) {\displaystyle f(x)=10(x-35)} (т.е. ). Догадайтесь, почему надо вычитать 35?

Давайте найдём на какую высоту поднимется ртуть при температуре тела 36,6°C:
f (36 , 6) = 10 (36 , 6 − 35) = 16 {\displaystyle f(36{,}6)=10(36{,}6-35)=16} (мм)

Пример 2

Зависимость длины рельсы от температуры.

Пример 3

Решим задачу:
Функция задана формулой: f (x) = 2 x + 1 {\displaystyle f(x)=2x+1} . Найдите: f (1) {\displaystyle f(1)} ; f (2) {\displaystyle f(2)} ; f (3) {\displaystyle f(3)} ; f (7 , 1) {\displaystyle f(7{,}1)} ;
Решение:
f (1) = 2 ⋅ 1 + 1 = 3 {\displaystyle f(1)=2\cdot 1+1=3}
f (2) = 2 ⋅ 2 + 1 = 5 {\displaystyle f(2)=2\cdot 2+1=5}
f (3) = 2 ⋅ 3 + 1 = 7 {\displaystyle f(3)=2\cdot 3+1=7}
f (7 , 1) = 2 ⋅ 7 , 1 + 1 = 15 , 2 {\displaystyle f(7{,}1)=2\cdot 7{,}1+1=15{,}2}
Ответ: f (1) = 3 {\displaystyle f(1)=3} ; f (2) 1 = 5 {\displaystyle f(2)1=5} ; f (3) = 7 {\displaystyle f(3)=7} ; f (7 , 1) = 15 , 2 {\displaystyle f(7{,}1)=15{,}2} .

Область определения и область значений функции

Функция y = f (x) {\displaystyle y=f(x)} является заданной, если указана область определения и правило, по которому можно определить значение функции по заданному значению аргумента x. Если область определения не задана, то считают, что областью определения являются все значения аргумента, при котором f (x) {\displaystyle f(x)} имеет смысл.

Пример 1

Пример с тем же градусником. Областью определения функции y = 10 (x − 35) {\displaystyle y=10(x-35)} будет шкала градусника. Например, от 35°C до 42°C (т.е. закрытый интервал [ 35 ; 42 ] {\displaystyle } ). Область значений будет высота от 0 мм до 70 мм (т.е. ). Наша функция является заданной.

Пример 2

Решим задачу:
g (x) = x + 7 {\displaystyle g(x)={\sqrt {x+7}}} . Определите область определения функции.
Решение:
Областью определения функции являются все допустимые выражения g (x) {\displaystyle g(x)} . То есть область определения будут все значения x, при которых подкоренное выражение будет больше или равно нулю:
x + 7 ⩾ 0 {\displaystyle x+7\geqslant 0}

Ответ: x ⩾ − 7 {\displaystyle x\geqslant -7} или x ∈ [ − 7 ; + 1) {\displaystyle x\in [-7;+{\mathcal {1}})} .

График функции

С графиками некоторых функций вы уже знакомились в предыдущих классах.

ОБРАТИ ВНИМАНИЕ
Понятие функции в школьном курсе математики часто встречается и хорошо известно ученикам. Слово «функция» используется в математике в нескольких смыслах, об этом в школе говорят редко, а в учебниках эта тема почти не затрагивается. Поэтому мы прежде всего обратимся к определению функции и другим относящимся сюда понятиям и подробно остановимся на тех различных пониманиях слова «функция», которые встречаются в школьном курсе математики.

ИЗ ИСТОРИИ МАТЕМАТИКИ
Понятия переменной величины и функции фактически в неявном виде использовались в математике задолго до появления работ французских математиков П. Ферма (1601 - 1665) и Р. Декарта (1596 - 1650), в которых они ввели метод координат. Этот метод использовали для графического исследования свойств функции и графического решения уравнений. Термин "функция" ввел немецкий математик Г. Лейбниц (1646 - 1716). У него функция связывалась с графиком.

Под влиянием Л Эйлера (1707 - 1783) И. Бернулли (1667 - 1748) функцию стали понимать как аналитическое выражение, т. е. выражение, состоящее из переменных, чисел и знаков действий. У Л Эйлера появился и более общий подход к понятию функции как зависимости одной переменной от другой. Эта точка зрения получила дальнейшее развитие в трудах Н.И. Лобачевского (1792 - 1856) и немецкого математика Дирихле (1805 - 1859). Примерно с этого момента функцию стали понимать как соответствие между числовыми множествами, которое могло быть установлено различными способами (таблицей, графиком, формулой, описанием).

Функция.

Самым общим (и, безусловно, основным) является в математике следующее определение понятия функции.

Говорят, что определена некоторая функция, если, во-первых, задано некоторое множество, называемое областью определения функции, во-вторых, задано некоторое множество, называемое областью значений функции, и, в-третьих, указано определенное правило, с помощью которого каждому элементу, взятому из области определения, ставится в соответствие некоторый элемент из области значений.

Приведем несколько примеров, иллюстрирующих это общее определение.

Пример 1. Обозначим через А множество всех треугольников на плоскости, а через В - множество всех окружностей, взятых на этой же плоскости. Множество А будем считать областью определения, а множество В - областью значений (той функции, которую мы определяем). Наконец, каждому треугольнику поставим в соответствие окружность, вписанную в этот треугольник. Это есть вполне определенное правило, которое каждому элементу, взятому из области определения (т. е. треугольнику), ставит в соответствие некоторый элемент из области значений (т. е. окружность).

Пример 2. Сохраним те же самые множества А и В , что и в примере 1, т. е. по-прежнему будем считать областью определения множество всех треугольников на плоскости, а областью значений - множество всех окружностей. Далее, каждому треугольнику поставим в соответствие его описанную окружность. Мы получаем функцию с той же областью определения А и той же областью значений В . Но это уже другая функция, так как окружность сопоставляется треугольнику с помощью другого правила.

Пример 3. Обозначим через К множество всех кругов на плоскости, а через D - множество исех действительных чисел. Далее, выберем единицу измерения площадей и каждому элементу множества К .(т. е. кругу) поставим в соответствие число, равное площади этого крута. Мы получаем функцию с областью определения K и областью значений D .

Пример 4. Обозначим через N множество всех натуральных чисел, а через R - множество всех действительных чисел. Далее, выберем два действительных числа a и r и каждому натуральному числу n поставим в соответствие действительное число, равное n -му члену арифметической прогрессии с первым членом а и разностью r (т. е. натуральному числу n поставим в соответствие действительное число а + (n - 1)r. Мы получаем функцию с областью определения N и областью значений R .

Пример 5. Теперь мы примем и в качестве области определения, и в качестве области значений множество R всех действительных чисел. Далее, выберем два действительных числа а и r и каждому действительному числу х поставим в соответствие число а + (х - 1)r . Мы получаем функцию с областью определения R и областью значений R . Заметим, что в примерах 4 и 5 одинакова область значений R и одинаково правило соответствия: формулы a + (n - 1)r и а + (х - 1)r показывают, что в обоих случаях надо над выбранным числом (n или х ) проделать одни и те же действия, чтобы узнать, какое число поставлено ему в соответствие. Однако области определения этих двух функций различны, и потому мы имеем в примерах 4 и 5 разные функции. Таким образом, для задания функции мало указать правило соответствия, а надо еще обязательно указать область определения и область значений.

Для обoзначения функций обычно пользуются буквами. Одна буква (чаще всего х ) используется для обозначения произвольного элемента, взятого из области определения функции. Эта буква называется аргументом. Таким образом, если сказано, что х - аргумент некоторой функции, то вместо х мы можем подставить любой элемент, принадлежащий области определения этой функции. Далее, другая буква (чаще всего у ) используется для обозначения произвольного элемента, взятого из области значений. Эта буква называется функцией (и это второе значение слова «функция»). Наконец, третья буква (чаще всего f используется для обозначения правила соответствия. Это значит, что если а - произвольное значение аргумента (т. е. произвольный элемент, взятый из области определения функции), то элемент, поставленный ему в соответствие, обозначается через f(a) . Элемент у = f(a) называется значением рассматриваемой функции при х = а. Все три буквы х, у, f объединяются одной записью: y = f{x) . («игрек равен эф от икс»), которая и означает, что х - аргумент, y - функция, f -правило соответствия. Иногда букву y или выражение f(х) также называют функцией (и это - уже третье значение слова «функция»).

Пример 6. Обратимся снова к функции, рассмотренной в примере 4. Аргумент обозначим через n , функцию - через у, а правило соответствия - через f . Таким образом, мы запишем эту функцию в виде y = f(n) . Вот несколько значений этой функции:

f(1) = а 1 , f(2) = а 2 , где a 2 = a 1 + r и т. д.

Пример 7. Рассмотрим функцию у = q(х) , у которой областью определения и областью значений является множество R всех действительных чисел, а правило соответствия имеет - следующий вид:

Вот несколько значений этой функции: q(-15) = 0, q(-23) = 0, q(-1) = 0, q(0) = 0, q(1) = 1, q(3) = 3, q(14) = 14, q(107) = 107, ...

Разумеется, вместо букв х, у, f можно использовать и другие буквы. Например, запись s = p(t) означает, что s есть функция аргумента t (или короче: s есть функция от t ), причем правило соответствия обозначается буквой р .

Следует подчеркнуть, что область значений функции представляет собой множество элементов (или чисел), среди которых обязательно содержатся все значения рассматриваемой функции. Однако в области значений могут содержаться и «лишние» элементы, не являющиеся значениями функции. Иными словами, множество значений функции обязательно содержится в области значений, но не обязательно совпадает с ней. Так, в примере 3 значениями функции являются лишь положительные числа, тогда как область значений есть множество всех действительных чисел. Несовпадение множества значений функции и области значений можно видеть также в примерах 4 и 7.

В заключение рассмотрим еще одно (четвертое!) понимание слово «функция», являющееся для школьного курса математики наиболее важным. Именно, функцией называют произвольное выражение, содержащее аргумент х, а также знаки действий и числа.

Например, функциями (в этом смысле) являются

y = x 2 + 2 (2),

(3),

y = | 7x - 3 | (4),

Почему же такие формулы называют «функциями» и не противоречит ли это понимание функции сказанному выше?

Связь со сказанным выше устанавливается следующим соглашением, которого мы всюду в дальнейшем будем придерживаться:

Если функция задана в виде равенства, в левой части которого стоит у (или другая буква, обозначающая функцию), а в правой части стоит некоторое выражение, содержащее аргумент х или другую букву, а также знаки действия и числа (причем область определения не указана), то принято считать:
1) что за область значений принимается все множество R действительных чисел;
2) за область определения принимается множество всех тех действительных чисел, при подстановке которых вместо х выполнимы (в множестве действительных чисел) все действия, указанные в правой части;
3) если число а принадлежит области определения, то значение функции при х = а равно числу, получающемуся, если в правую часть подставить х = а и произвести указанные действия.
Итак, задание функции формулой содержит в себе и указание области определения, и задание правила соответствия.

Пример 8 . y = x 2 + 3.

В выражении, стоящем в правой части равенства, указан действия возведение в степень и сложение, они выполнимы при любом действительном значении х, т. е. областью определения функции является все множество D действительных чисел (или, иначе, бесконечный интервал

Пример 9. Найти область определения функции.

В выражении, стоящем в правой части равенства, указаны действия: возведение в степень, умножение, сложение, извлечение квадратного корня и деление. Первые три действия всегда выполнимы. Извлечь квадратный корень можно лишь тогда, когда x 2 - 90, а деление возможно, если x - 50. Так как x 2 - 90,
при x(-; -3]}