Что означает понятие лимитирующий фактор. Понятие о лимитирующем факторе

Разные экологические факторы имеют для живых организмов неодинаковую значимость.

Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма.

Лимитирующие (ограничивающие) факторы – это

1)любые факторы, тормозящие рост популяции в экосистеме; 2)факторы среды, значение которых сильно отклоняется от оптимума.

При наличии оптимальных сочетаний множества факторов один лимитирующий фактор может привести к угнетению и гибели организмов. Например, теплолюбивые растения погибают при отрицательной температуре воздуха, несмотря на оптимальное содержание элементов питания в почве, оптимальную влажность, освещенность и так далее. Лимитирующие факторы являются незаменимыми в том случае, если они не взаимодействуют с другими факторами. Например, недостаток минерального азота в почве нельзя скомпенсировать избытком калия или фосфора.

Лимитирующие факторы для наземных экосистем:

Температура;

Питательные вещества в почве.

Лимитирующие факторы для водных экосистем:

Температура;

Солнечный свет;

Соленость.

Обычно эти факторы взаимодействуют таким образом, что один процесс ограничен одновременно несколькими факторами, и изменение любого из них приводит к новому равновесию. Например, увеличение доступности пищи, и уменьшение давления хищников могут привести к возрастанию численности популяции.

Примерами ограничивающих факторов являются: выходы неразмываемых пород, базис эрозии, борта долины и др.

Так, фактором, ограничивающим распространение оленей, является глубина снежного покрова; бабочки озимой совки (вредителя овощных и зерновых культур) — зимняя температура и т. д.

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.


В середине 19 века немецкий ученый химик-органик Либих, изучая влияние различных микроэлементов на рост растений, первый установилследующее: рост растений ограничивается элементом, концентрация и значение которого лежит в минимуме, т. е присутствует в минимальном количестве. Образно закон минимума помогает представить так называемая «бочка Либиха».

Это бочка, деревянные рейки у которой разной высоты, как показано на рисунке. Понятно, что какой бы высоты ни были остальные рейки, налить воды в бочку можно ровно столько, какова высота самой короткой рейки. Так и лимитирующий фактор ограничивает жизнедеятельность организмов, несмотря на уровень (дозу) остальных факторов. Например, если дрожжи
поместить в холодную воду, низкая температура станет лимитирующим фактором их размножения. Это знает каждая хозяйка, а потому оставляет дрожжи «набухать» (а на самом деле размножаться) в теплой воде с достаточным количеством сахара. Остается только "подменить" некоторые термины: высота налитой воды пусть будет какой-либо биологической или экологической функцией (например, урожайностью), а высота реек будет указывать на степень отклонения дозы того или иного фактора от оптимума.

В настоящее время закон минимума Либиха трактуется более широко. Лимитирующим фактором может быть фактор, находящийся не только в недостатке, но и в избытке.

Экологический фактор играет роль ЛИМИТИРУЮЩЕГО ФАКТОРА, если данный фактор находится ниже критического уровня или превосходит максимально выносимый уровень.

Лимитирующий фактор обуславливает ареал распространения вида или (при менее суровых условиях) сказывается на общем уровне обмена веществ. Например, содержание фосфатов в морской воде является лимитирующим фактором, определяющим развитие планктона и в целом продуктивность сообществ.

Понятие "лимитирующий фактор" применимо не только к различным элементам, но и ко всем экологическим факторам. Не редко в качестве лимитирующего фактора выступают конкурентные отношения.

У каждого организма в отношении различных экологических факторов существуют пределы выносливости. В зависимости от того, насколько широки или узки эти пределы, различают эврибионтные и стенобионтные организмы. Эврибионты способны выносить широкую амплитуду интенсивности различных экологических факторов. Скажем, ареал обитания лисицы - от лесотундры до степей. Стенобионты , напротив, переносят лишь очень узкие колебания интенсивности экологического фактора. Например, практически все растения влажных тропических лесов - стенобионты.

Закон толерантности

Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет в 1913 г. после Либиха, американский зоолог В.Шелфорд. Он обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом, и сформулировал закон толерантности: «лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору)»


Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения или пессимума . Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно. Предел толерантности описывает амплитуду колебаний факторов, которая обеспечивает наиболее полноценное существование популяции. Отдельные особи могут иметь несколько иные диапазоны толерантности.


В середине XIX в. немецкий ученый-агрохимик Ю. Либих изучал процессы питания растений и влияние разнообразных факторов и элементов питания на их рост. Он установил, что урожай культур зачастую ограничивается (лимитируется) не теми элементами питания, которые требуются в больших количествах, например углекислым газом и водой (обычно эти вещества присутствуют в среде в изобилии), а теми, которые необходимы в минимальных количествах, но которых и в почве очень мало (например, цинк). Либих писал: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени».

В простейшем виде, применительно к конкретным опытам ученого, закон минимума Либиха гласит: рост растения зависит от того элемента питания, который присутствует в минимальном количестве (минимуме). В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей .

Закон минимума Либиха можно пояснить на таком примере. Пусть в почве содержатся все элементы минерального питания, необходимые для данного вида растений, кроме одного из них, например бора или цинка. Рост растений на такой почве будет угнетен. Если добавить в почву нужное количество бора (цинка), то это приведет к увеличению урожая. Но если вносить любые другие химические соединения (например, азот, фосфор, калий) и даже удастся добиться того, что все они будут содержаться в оптимальных количествах, а бор (цинк) будет отсутствовать, это не даст никакого эффекта.

Изучая лимитирующее действие экологических факторов на насекомых, американский зоолог В. Шелфорд пришел к выводу, что лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия. В экологии такое положение носит название закона толерантности Шелфорда, сформулированного им в 1913 г. Диапазон между минимумом и максимумом определяет величину выносливости организма, который можно характеризовать экологическим минимумом и экологическим максимумом (рис. 2). В этих пределах и может существовать данный организм.

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора — это критические точки, за пределами которых существование организма или популяции уже невозможно.

Рис. 2. Схема действия экологического фактора на растение: 1 — точка минимума; 2- точка оптимума; 3- точка максимума

Чтобы подчеркнуть отношение организма к конкретному фактору, используют термины, первая часть которых образована приставками стено- или эври-, а вторая содержит указание на конкретный фактор, например: эвритермные организмы — имеющие широкий температурный интервал (многие насекомые); стенотермные организмы — приспособившиеся к узкой амплитуде температур (для растений тропических лесов колебания температуры в пределах 5...8 °С могут быть губительными) (рис. 3).

Рис. 3. Диапазон активности эвритермных и стенотермных организмов

Смысл закона толерантности вполне понятен. Упрощенно он может быть сформулирован так: плохо как недокормить, так и перекормить растение либо животное. Из этого закона вытекает следствие: любой избыток вещества или энергии является загрязняющим среду компонентом. Например, в засушливых областях избыток воды вреден, и вода может рассматриваться как загрязнитель.

Итак, для каждого вида существуют пределы значений жизненно необходимых факторов абиотической среды, которые ограничивают зону его толерантности (устойчивости). Живой организм может существовать в определенном интервале значений факторов. Чем шире этот интервал, тем выше устойчивость организма. Закон толерантности является одним из основополагающих в современной экологии.

Лимитирующие фактор – это факторы, которые ограничивают развитие организмов из-за их недостатка или их избытка по сравнению с потребностью.

Закон минимума (Юстус Либих)

Урожай (продукция) зависит от факторов находящихся в минимуме (закон касается химических элементов). Факторы могут быть лимитирующими находится и в максимуме.

Закон Митчерлих:

урожай зависит от совокупного действия всех факторов жизни растений (температура, влажность и т.д.)

Закон независимости факторов Вильямса: условия жизни равнозначны, не один из факторов не может быть заменен другим.

Закон толерантности Шелфорда:

Толерантность - степень устойчивости величина выносливости тех или иных факторов. Формулировка закона: «отсутствие или невозможность процветания, определяется недостатком (в качественном или количественном смысле) или избытком любого из ряда факторов, уровень которого может оказаться близким к пределам переносимого данным организмом.»

3-й учебный вопрос:

Общий характер действия экологических факторов

При небольших значениях или чрезмерном воздействии фактора жизненная активность организма заметно угнетается. Наиболее эффективно действие фактора при минимальных или максимальных его значениях, а при некотором его значении, оптимальном для данного организма. Диапазон действия или зона толерантности (выносливости) экологического фактора ограничен соответствующими крайними пороговыми значениями (точки минимума(1), максимума(2)) данного фактора, при которых возможно существование организма (рис.1).

Зона выносливости(толерантности)

л Зона нормальной

ь жизнедеятельности зона пессимума(угнитения)

интенсивность фактора РИС.1

Точка на оси абсцисс, которая соответствует наилучшему показателю жизнедеятельности организма, означает оптимальную величину фактора это точка оптимума(2). Так как определить оптимальное значение фактора с высокой с высокой точностью бывает трудно, говорят о диапазоне значении последнего – о зоне оптимума или зоне комфорта. Таким образом, три точки (оптимума, минимума и максимума) составляют три кардинальные точки которые определяют возможные реакции организма на данный фактор. Крайние участки кривой выражающие состояние угнетения при недостатке или избытке фактора называются зонами пессимума. Рядом с критическими точками лежат сублетальные величины фактора, а за пределами зоны толерантности – летальные значения фактора, при которых наступает гибель организма.

Условия среды, в которых какой – либо фактор (или совокупность факторов) выходит за пределы зоны комфорта и оказывает угнетающее действие, в экологии часто называют экстремальными.

Организмы для жизни которым требуются условия, ограниченные узким диапазоном толерантности по величине температуры, называются стенотермными, а способные жить в широком диапазоне температуры эвритермные.

Организмы называются соответственно стенобионты и эврибионты.

Стенос от латинского узкий, и эврий от латинского широкий.

Исходя из описанных ранее закономерностей действия факторов среды на организм, можно предвидеть реакцию организма на определенную силу воздействия фактора. Однако в природе все факторы среды воздействуют на организм одновременно и с разной силой. Причем сила воздействия отдельного фактора в значительной степени зависит от сочетания и количественного значения силы воздействия других факторов.

В среде обитания экологические факторы не только влияют на организмы, но и взаимодействуют друг с другом. При этом наблюдается усиление или ослабление силы воздействия одного фактора под влиянием другого. В результате абсолютная сила воздействия фактора, измеряемая с помощью соответствующего прибора, не равна силе воздействия фактора, воспринимаемой организмом. Например, высокую температуру легче переносить при низкой, а не высокой влажности воздуха. А угроза обморожения выше на морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие на организм. И наоборот, один и тот же экологический эффект для организма может быть достигнут разными путями. Например, недостаток влаги для растений может быть компенсирован поливом или снижением температуры среды; скорость фотосинтеза при слабой освещенности может быть увеличена дополнительным источником света или повышением концентрации углекислого газа в воздухе.

Эти примеры служат доказательством комплексного воздействия факторов на организм и частичной взаимозаменяемости действия одного экологического фактора другим. Взаимная компенсация факторов имеет пределы и полностью заменить один из необходимых организму факторов другим невозможно.

Например, зеленое растение нельзя вырастить в полной темноте даже при самой высокой концентрации углекислого газа. Оно не будет расти на дистиллированной (не содержащей минеральных веществ) воде при самом оптимальном световом и тепловом режиме. Эта закономерность получила название принципа незаменимости факторов : действие одного фактора может быть изменено другим, но не заменено им.

В природной среде в результате взаимодействия различных факторов их действие на организм может компенсироваться, суммироваться и взаимно усиливаться.

Компенсация факторов для организма наблюдается в основном в пределах экосистемы. Именно в экосистеме на организм воздействуют экологические факторы среды. И здесь усиление или ослабление силы воздействия одного фактора может компенсировать недостаток или избыток силы воздействия другого фактора. Например, для растений снижение температуры может частично компенсировать недостаток влаги в почве. Это происходит в результате ослабления транспирации и уменьшения расходования растениями воды при низкой температуре.

Примером простого суммирования факторов является одновременное неблагоприятное действие на человека и животных высокой температуры и недостатка воды. При недостаточном поступлении воды в организм высокая температура, повышающая потоотделение, будет ускорять процесс обезвоживания организма.

Экологические факторы могут взаимно усиливать свое действие на организм. Примером может служить одновременное неблагоприятное воздействие на человека радиоактивного излучения и повышенного содержания нитратов в питьевой воде. В этом случае в несколько раз увеличивается угроза здоровью по сравнению с суммарным действием каждого из этих факторов в отдельности.

В условиях комплексного воздействия факторов среды на организм встает вопрос: какой из факторов играет главную роль в жизни организма в данной среде?

Лимитирующий фактор

Факторы среды, воздействующие на организм, обладают разной силой воздействия. Но организм в один и тот же момент не может проявлять разный уровень жизнедеятельности в ответ на действие каждого из этих факторов. Например, если для растения температура находится в зоне оптимума, освещенность — в зоне нормальной жизнедеятельности, а влажность — в зоне пессимума, то данное растение не будет расти и развиваться, хотя света и тепла достаточно. Его жизнедеятельность будет ограничивать недостаток или избыток влаги. Если произвести полив растения при недостатке влаги, то оно вновь начнет расти. А при избытке влаги, наоборот, нужно прекратить полив, чтобы возобновился рост растения. Следовательно, жизнедеятельность организма лимитирует (ограничивает) фактор, который больше всего отклонился от зоны оптимума. Если этот фактор выйдет за пределы толерантности, то организм погибнет.

Лимитирующий (ограничивающий) фактор — фактор, наиболее отклонившийся от своего оптимального значения по сравнению с другими факторами. Он определяет уровень жизнедеятельности организма в данной среде.

Если изменить силу воздействия лимитирующего фактора, то жизнедеятельность организма изменится. Значит, выявление лимитирующих факторов имеет большое практическое значение, поскольку позволяет управлять жизнедеятельностью организмов.

Это дает человеку отправную точку при исследовании сложных ситуаций в хозяйственной деятельности, а также помогает понять многие явления и принципы распределения организмов в природе. Основное внимание следует уделять тем факторам, которые наиболее важны для организма на данном этапе его жизненного цикла. Тогда удастся довольно точно предсказать результат изменений среды.

Чтобы сохранить исчезающий вид в определенном регионе, нужно выяснить, не выходят ли лимитирующие факторы среды за пределы экологической пластичности его организмов. Особенно это важно в период размножения и развития. Изменяя силу воздействия факторов, ограничивающих размножение особей, можно добиться повышения их численности. Таким способом удастся сохранить исчезающий вид. Выявление лимитирующих факторов очень важно и в практике сельского хозяйства. Так, направив основные усилия на их устранение, можно быстро и эффективно повысить урожайность культурных растений или продуктивность домашних животных.

В природе все факторы среды воздействуют на организм как единый комплекс. Действие отдельного фактора зависит от сочетания и количественного значения силы воздействия других факторов. При этом жизнедеятельность организма определяет лимитирующий фактор. Им является фактор, который наиболее отклонился от своего оптимального значения по сравнению с другими факторами среды. Изменяя силу воздействия этого фактора, можно управлять жизнедеятельностью организмов в природе и хозяйстве.

Помимо климата на облик экосистем и биогеоценозов влияет целый ряд дополнительных факторов, некоторые из которых носят глобальный, а другие - сугубо локальный характер.

Атмосферные газы

Над большей частью поверхности Земли состав атмосферы почти постоянен, если не считать резких колебаний содержания водяных паров. Интересно, что концентрации двуокиси углерода (примерно 0,03 % по объему) и кислорода (21 % по объему) в современной атмосфере являются до какой-то степени лимитирующими для многих высших растений. Известно и легко объяснимо, что интенсивность фотосинтеза у многих растений повышается с ростом концентрации С0 2 , однако снижение концентрации кислорода также может приводить к увеличению фотосинтеза. В опытах на бобовых и многих других растениях показано, что понижение содержания кислорода в воздухе до 5 % повышает интенсивность фотосинтеза на 50 %, и, наоборот, рост концентрации 0 2 подавляет фотосинтез. У некоторых злаков, возделываемых в тропических районах, в том числе у кукурузы и сахарного тростника, подобного подавляющего действия кислорода на фотосинтез не отмечается; скорее всего, они используют несколько иной способ фиксации двуокиси углерода, чем бобовые. Быть может, это объясняется тем, что широколиственные растения появились и развились в то время, когда концентрация С0 2 в атмосфере была выше, а концентрация 0 2 - ниже, чем сейчас.

В более глубоких слоях почвы и отложений (а также в тканях и органах крупных животных, например в рубце жвачных, где существуют анаэробные условия) наблюдается повышенное содержание С0 2 , а кислород становится лимитирующим фактором для аэробных бактерий. В результате замедляется процесс разложения растительных остатков.

В водных местообитаниях количество кислорода, двуокиси углерода и других атмосферных газов, растворённых в воде и потому доступных организмам, сильно меняется во времени и в пространстве. В озёрах и в водоёмах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Хотя кислород лучше растворяется в воде, чем азот, даже в самом благоприятном случае в воде содержится значительно меньше кислорода, чем в атмосферном воздухе. В 1 л воздуха содержится 210 см 3 кислорода, в воде же содержание кислорода не превышает 10 см 3 на 1 л. Количество растворённых солей и температура сильно влияют на способность воды удерживать кислород: растворимость кислорода повышается с понижением температуры и снижается с повышением солёности. Запас кислорода в воде пополняется главным образом из двух источников: путём диффузии из воздуха и благодаря фотосинтезу водных растений. Кислород диффундирует в воду очень медленно; диффузии способствуют ветер и движение воды; важнейшим фактором, обеспечивающим фотосинтез кислорода растениями, является свет, проникающий в толщу воды. Поэтому содержание кислорода в водных биотопах сильно меняется в зависимости от времени суток, времени года и географической широты.

Содержание диоксида углерода в воде также сильно варьирует, но по своему «поведению» он сильно отличается от кислорода. Хотя в воздухе содержание диоксида углерода невелико, он прекрасно растворяется в воде; кроме того, в воду поступает диоксид углерода, освобождающийся при дыхании и разложении, а также из почвы или подземных источников. Поэтому «минимальный предел» содержания С0 2 в воде не имеет такого значения, как в случае 0 2 . Рост содержания С0 2 в воде ускоряет фотосинтез и стимулирует развитие многих организмов. Следовательно, обогащение С0 2 может быть причиной зарастания водоёмов синезелёными водорослями. Высокие концентрации С0 2 определённо могут быть лимитирующим фактором для животных, особенно потому, что высокое содержание двуокиси углерода обычно связано с низким содержанием кислорода. Рыбы весьма чувствительны к повышению концентрации С0 2: при слишком высоком содержании свободного С0 2 в воде многие рыбы погибают.

Количество света и его спектральный состав сильно влияют на биоту. Поток световой энергии, приходящийся на единицу площади поверхности Земли, зависит от широты и времени года и тесно связан с температурой. Однако, для фотосинтеза важно получение именно «высококачественной» энергии квантов света, а не температура как таковая. Растение, лишенное света, погибнет даже при самом благоприятном сочетании других факторов. Роль спектрального состава в фотосинтезе сравнительно мало изучена. Скорее всего, более энергичные кванты синего и фиолетового света лучше для фотосинтеза.

В процессе эволюции различные виды растений приспособились к различной интенсивности света, причём эта адаптация может отличаться у организмов разного возраста. Например, молодые ели прекрасно себя чувствуют в тени старых деревьев и гибнут под прямыми солнечными лучами. Многие растения могут процветать только под густой сенью деревьев (например, ландыши и фиалки), поэтому так сильно отличается видовой состав травы и кустарников в густом лесу и, совсем рядом, на открытой поляне. Такие распространённые кустарники бореальных лесов как черника и брусника процветают в полутени соснового леса, но «не любят» луговых пространств. Таким образом, уровень освещённости у многих видов растений имеет достаточно явно выраженный оптимум, и диапазон толерантности к нему ограничен и сверху, и снизу.

С уровнем освещённости тесно связаны и жизненные циклы большинства животных, в том числе и человека. Наиболее ярко эта особенность выражена у птиц и насекомых.

В водных экосистемах свет оказывается одним из самых дефицитных и мощных лимитирующих факторов. Даже в очень чистых и прозрачных водах фотосинтез оказывается невозможен на глубине свыше 200 м именно из-за отсутствия света. Широко известен по существу варварский способ ночной ловли рыбы с фонарём. Свет привлекает рыбу не сам по себе, а как сигнал, говорящий о скоплении пищи.

Кислотность среды

Кислотность среды (обычно говорят о водных растворах, в том числе и о почвенной воде) определяется концентрацией свободных ионов водорода Н + . В химически чистой воде при 20 °С концентрация Н + составляет КГ 7 моль/л . В химии концентрацию Н + принято выражать в виде водородного показателя :

рН = -1 §10 С,

где С есть мольная концентрация водородных ионов и ^ |() - десятичный логарифм. Таким образом, для чистой («нейтральной») воды pH = 7. Если pH 7, то - щелочной. В природной среде всегда присутствует углекислый газ, образующий при растворении в воде слабую угольную кислоту Н 2 С0 3 , частично диссоциирующую в воде:

Н 2 С0 3 НС0 3 + Н + ; НС0 3 С0 3 " + Н + .

Вследствие этого для незагрязнённых осадков pH = 5,6, то есть чистые природные дожди имеют слабо кислотный характер. Поверхностные природные воды благодаря растворённым в них веществам, как правило, нейтральны или имеют слабо щелочную реакцию; в частности, для вод Мирового океана характерное значение pH *8,1. Реакцию, близкую к нейтральной, имеют и незагрязнённые почвы. Ионы НС0 3 и С0 3 “ всегда соединяются с катионом какого-либо металла или с катионом аммония 1ЧН4, образуя соли угольной кислоты - карбонаты. Концентрация водородных ионов во многом зависит от карбонатной системы; pH сравнительно легко измерить как в воде, так и в почве. В начале XX в. было установлено, что pH - мощный лимитирующий

фактор и очень важен для регуляции дыхания и ферментных систем организма, и что даже весьма незначительные колебания pH могут оказаться для организма критическими. Если величина pH не приближается к критическому значению, то обычно сообщества способны компенсировать изменения этого фактора. Однако, высокие уровни кислотности убийственны для многих организмов. Кроме того, в почвах и водах с низкими значениями pH (то есть в кислых) часто мало питательных веществ, и их продуктивность мала.

Биогенные соли: макроэлементы и микроэлементы

Растворённые соли, жизненно необходимые организмам, можно назвать биогенными солями. Действительно, впервые формулируя свой «закон минимума», Либих имел в виду главным образом лимитирующее действие жизненно важных веществ, присутствующих в среде в небольших и непостоянных количествах. Конечно, первостепенное значение имеют соли, содержащие фосфор и азот. Роль фосфора как лимитирующего фактора особенно велика, так как его содержание в организмах обычно гораздо выше, чем содержание в источниках, откуда организмы черпают необходимые им элементы. Таким образом, недостаток фосфора обычно в большей степени ограничивает продуктивность экосистемы, чем недостаток любого другого вещества, за исключением воды.

Значение калия, кальция, серы и магния немногим меньше значения азота и фосфора. Кальций потребляется в особенно больших количествах моллюсками и позвоночными, а магний - необходимая часть молекулы хлорофилла растений, без которого не может существовать никакая экосистема. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макроэлементами (макротрофными биогенными веществами).

Хотя некоторые элементы и их соединения требуются в крайне малых количествах, они необходимы биологическим системам и часто входят в состав жизненно важных ферментов. Эти элементы называют обычно следовыми или микроэлементами (микротрофными биогенными веществами). При небольшой потребности в микроэлементах их обычно столь же мало (или даже ещё меньше) содержится в среде обитания, микроэлементы нередко бывают лимитирующими факторами (пример с телятами и медью обсуждался в главе первой).

Болезни, связанные с нехваткой следовых элементов, по крайней мере, внешние проявления этих болезней, известны людям издавна. Соответствующие патологические симптомы наблюдались у людей, лабораторных, домашних и диких животных и у растений. В природных условиях такие симптомы недостаточности иногда связаны с необычной геологической историей местности, а иногда с теми или иными нарушениями в окружающей среде, часто в результате необдуманной деятельности человека.

Можно указать как минимум следующие 10 микроэлементов, заведомо необходимых для растений: железо, марганец, медь, цинк, бор, кремний, молибден, хлор, ванадий и кобальт. С физиологической точки зрения их можно разделить на три группы:

  • необходимые для фотосинтеза - Мп, Бе, С1, Тп, V;
  • необходимые для азотистого обмена - Мо, В, Со, Бе;
  • необходимые для других метаболических функций - Мп, В, Со, Си и Бь

Большинство из них требуется также животным; некоторые другие элементы нужны лишь определённым животным, например, йод необходим позвоночным. Б1онятно, что между макро- и микроэлементами нельзя провести резкую границу; мало того, в потребностях разных групп организмов имеются весьма существенные различия. Например, натрия и хлора позвоночным требуется значительно больше, чем растениям; натрий часто вносят в список микроэлементов для растений. Многие из микроэлементов сходны с витаминами; подобно витаминам, они действуют как катализаторы. Следовые металлы часто входят в состав органических соединений; так кобальт - необходимая составная часть витамина В 12 . Как и в случае макроэлементов, излишек микроэлементов тоже может оказать лимитирующее действие.

Течения, ветер и давление

В атмосфере и гидросфере никогда не бывает полного покоя. В воде течения не только сильно влияют на концентрацию газов и питательных веществ, но и прямо действуют как лимитирующие факторы. Различия между сообществами реки и пруда во многом объясняются наличием и отсутствием течения. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определённые пределы толерантности к фактору течения. На суше аналогичное лимитирующее действие на активность и даже на распределение организмов оказывает ветер. Например, в ветреные дни многие птицы не покидают своих укрытий (следовательно, нет смысла проводить учёт популяции птиц в ветреный день). Ветер способен вызвать изменение морфологии растений, особенно при наличии других лимитирующих факторов, как, например, в альпийских зонах. Было экспериментально показано, что в горах ветер ограничивает рост растений; защитив растительность от ветра, удаётся добиться усиления роста. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы (как и обычные ветры) способны переносить животных и растения на большие расстояния и таким образом изменять на много лет состав лесных сообществ. Энтомологи заметили, что там, где, казалось бы, возможности расселения вида по всем направлениям одинаковы, насекомые быстрее расселяются в направлении преобладающих ветров. В сухих районах ветер является важным лимитирующим фактором для растений, так как он увеличивает потери воды за счёт испарения.

Барометрическое давление, по-видимому, не является лимитирующим фактором непосредственного действия, хотя люди и некоторые животные, несомненно, реагируют на его изменение. Однако барометрическое давление имеет прямое отношение к погоде и климату, которые оказывают прямое лимитирующее действие на организм. В океане и глубоких озёрах (например, Байкале) гидростатическое давление имеет большое значение. С погружением в воду на Юм давление возрастает на 1000 гПа = 1 атм. В самой глубокой части океана давление достигает 1000 атм. Многие животные способны переносить резкие колебания давления, особенно если в их теле нет свободного воздуха или газа. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Для изучения влияния комбинаций физических и химических факторов на живые организмы применяются климатические камеры. Существуют разнообразные модели - от простых камер с регулируемой влажностью и температурой, какие есть во многих лабораториях, до больших оранжерей с управляемыми условиями, наподобие «фитотрона», в котором можно поддерживать любую желаемую комбинацию температуры, влажности и света. Эти камеры часто служат для создания контролируемых условий в генетических и физиологических исследованиях культурных растений или подопытных животных. Однако такие камеры можно использовать и для экологических исследований, особенно если конструкция позволяет воспроизводить естественные ритмы температуры и влажности. Подобные эксперименты позволяют выделить «функционально важные факторы», но надо учитывать, что многие существенные аспекты функционирования экосистем невозможно воспроизвести в лаборатории; для их понимания необходимы полевые исследования.

Почвы

В наземной среде отчётливо выражены два основных яруса, присущие любой полной экосистеме: автотрофный и гетеротрофный, а говоря обычным языком - это растительность и почва.

В определённом смысле целесообразно подразделять биосферу на атмосферу, гидросферу и педосферу, или почву. Свойства каждой из них во многом определяются экологическими реакциями и взаимодействием между организмами, а также взаимодействием экосистем с основными круговоротами веществ. Если бы на Земле не было жизни, то воздух, вода и особенно «почва» радикально отличались бы от тех, что существуют сейчас. Все слои биосферы состоят из живого и неживого компонентов, которые, впрочем, легче разграничить в теории, чем на практике. Наиболее тесно эти компоненты связаны в почве. Почва - не только «фактор» среды, окружающей организмы, но и продукт их жизнедеятельности, результат совместного действия климатических факторов и организмов, особенно растений, на материнскую породу. По определению почва является смесью частиц выветренных горных пород с живыми организмами и продуктами их разложения и жизнедеятельности. Пространство между частицами заполнено газами и водой. Структура и пористость почвы - чрезвычайно важные её характеристики; они во многом определяют доступность питательных веществ растениям и почвенным животным.

  • Моль - количество граммов вещества, численно равное его атомному весу. Для ионов водорода 1 моль « 1 г.