Что молекулы днк. Строение днк

Совсем недавно в микробиологии и генетике произошел существенный прорыв, повлиявший на науку. Почти полностью раскодировали структуру ДНК. Расшифровка информации анализировалась, разрабатывались и вводились новые методы раскодировки молекулы, а знания стали эффективно применять на практике. В статье приводится общая информация о ДНК.

История

Нуклеиновые кислоты начали изучать в девятнадцатом веке. Фридрих Мишер в 1868 году впервые выделил из клеток нуклеин, который позже получил название дезоксирибонуклеиновой кислоты — ДНК. Однако в то время к открытию отнеслись довольно скептически и молекуле не придавалось особого значения. Лишь в середине двадцатого века благодаря опытам на мышах О.Эвери и Ф.Гриффита произошел коренной переворот. При изучении трансформации бактерий выяснилось, что за этот процесс отвечала молекула ДНК.

Позже Р.Франклин случайно использовала рентгеновское излучение для исследования структуры кристаллов, благодаря чему удалось сделать фотографию ДНК. На основании этого в 1953 году был сформулирован принцип саморепликации, а также воспроизводства жизни на Земле.

ДНК — состав

ДНК состоит из дезоксирибонуклеиновых и рибонуклеиновых кислот. Биополимеры состоят, в свою очередь, из мономеров, или нуклеотидов, содержащих три компонента, прочно соединенных между собой химическими связями.

Нуклеотиды ДНК содержат присоединенный к молекуле пятиуглеродный сахар из азотистого основания (аденина, гуанина, цитозина, тимина) с одной стороны и остатка фосфорной кислоты — с другой. Они соединены в длинные цепи.

В структуру ДНК входят две нити, соединяющиеся водородными связями. Они получили название двойной спирали. Такая структура имеется только в молекуле ДНК. В ней против одного основания азота в одной цепи лежит определенное основание в другой. Такие пары называются комплементарными, то есть дополняющими друг друга.

Геном человека

Огромное количество информации содержится всего в одной молекуле ДНК. Формула ее представляет собой строчку из заглавных букв названия пептидов. Это генетический код, то есть последовательность нуклеотидов, присущая определенному человеку.

Геном людей был открыт в 2001 году. Но полную картину представили миру лишь в 2007 году. Проект, начавшийся в 1990 году, затрагивал социальные, этические и даже моральные аспекты жизни человека. К 2003 году код был расшифрован на 99,99%. Поэтому и сегодня еще имеется неполная ясность процесса. Но ученые считают эту долю процента несущественным минусом.

Значение открытия

За наследственность отвечает ДНК. Расшифровка дает возможность изучения развития и жизни любого земного организма, и вмешательство врачей сегодня может немного изменить заложенные в молекуле процессы.

При наличии кода ДНК расшифровка его позволит врачу определить различные болезни, которые могут возникнуть у человека, прогнозировать их течение и подбирать лекарственные средства.

И по сей день еще не произошло полного понимания того, что значит раскодирование молекулы. Благодаря этому, например, стало известно, что неандертальцы умели разговаривать и не болели шизофренией и синдромом Дауна.

Молекулы ДНК у людей фактически одинаковы. Замена азотистых оснований в них может привести к мутациям и болезням. Хотя иногда наблюдается лишь предрасположенность к ним, и если человек не будет подвержен вредным привычкам, он сможет избежать их появления.

Медики знают уже пять тысяч заболеваний (многие из которых приводят к инвалидности), которые передаются посредством ДНК. Расшифровка молекулы позволит предупредить людей о предрасположенности. Тогда человек будет предпринимать профилактические меры, чтобы болезнь не развивалась. Так как генотип человека с возрастом не изменяется, достаточно один раз сдать анализы.

Технологии сегодня помогают выявить способности человека вплоть до вычисления оптимальных физических нагрузок, эффективного наращивания мышц и быстрого сброса лишних килограммов.

Изучение ДНК развивает уровень микробиологии, которая занимается вирусами, грибами и бактериями, вызывающими инфекции у человека. Благодаря этому такие отрасли, как биофармацевтика, пищевое, косметическое производство, экологический мониторинг и другие получают новый толчок для своего развития.

Молекулярная биология является одним из важнейших разделов биологических наук и подразумевает детализированное изучение клеток живых организмов и их составляющих. В сферу ее исследований входит множество жизненно важных процессов, таких как рождение, дыхание, рост, смерть.


Бесценным открытием молекулярной биологии стала расшифровка генетического кода высших существ и определение способности клетки хранить и передавать генетическую информацию. Основная роль в этих процессах принадлежит нуклеиновым кислотам, которых в природе различают два вида – ДНК и РНК. Что представляют собой эти макромолекулы? Из чего они состоят и какие биологические функции выполняют?

Что такое ДНК?

ДНК расшифровывается как дезоксирибонуклеиновая кислота. Она представляет собой одну из трех макромолекул клетки (две другие – белки и рибонуклеиновая кислота), которая обеспечивает сохранение и передачу генетического кода развития и деятельности организмов. Простыми словами, ДНК – носитель генетической информации. В ее составе содержится генотип индивида, который обладает способностью к самовоспроизводству и передает информацию по наследству.

Как химическое вещество кислота была выделена из клеток еще в 1860-х годах, однако вплоть до середины XX столетия никто и не предполагал, что она способна хранить и передавать информацию.


Долгое время считалось, что эти функции выполняют белки, однако в 1953 году группа биологов сумела значительно расширить понимание сути молекулы и доказать первостепенную роль ДНК в сохранении и передаче генотипа. Находка стала открытием века, а ученые получили за свою работу Нобелевскую премию.

Из чего состоит ДНК?

ДНК является крупнейшей из биологических молекул и представляет собой четыре нуклеотида, состоящих из остатка фосфорной кислоты. В структурном отношении кислота достаточно сложная. Ее нуклеотиды соединяются между собой длинными цепями, которые объединяются попарно во вторичные структуры – двойные спирали.

ДНК имеет свойство повреждаться радиацией или различными окисляющими веществами, в силу чего в молекуле происходит процесс мутации. Функционирование кислоты напрямую зависит от ее взаимодействия с еще одной молекулой – белками. Вступая с ними во взаимосвязь в клетке, она образует вещество хроматин, внутри которого осуществляется реализация информации.

Что такое РНК?

РНК – это рибонуклеиновая кислота, содержащая в себе азотистые основания и остатки фосфорных кислот.


Существует гипотеза, что она является первой молекулой, получившей способность к самовоспроизводству еще в эпоху формирования нашей планеты – в добиологических системах. РНК и сегодня входит в геномы отдельных вирусов, выполняя в них ту роль, которую у высших существ играет ДНК.

Рибонуклеиновая кислота состоит из 4-х нуклеотидов, но вместо двойной спирали, как в ДНК, ее цепочки соединяются одинарной кривой. В нуклеотидах содержится рибоза, принимающая активное участие в обмене веществ. В зависимости от способности кодировать белок РНК делятся на матричную и некодирующие.

Первая выступает своего рода посредником в передаче закодированной информации рибосомам. Вторые не могут кодировать белки, но обладают другими возможностями – трансляцией и лигированием молекул.

Чем ДНК отличается от РНК?

По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара. Разница между ними в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.


В отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом. Еще одно отличие между ДНК и РНК заключается в их размерах – более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин, тогда как в РНК вместо тимина присутствует его разновидность – урацил.

Дезоксирибонуклеиновые кислоты (ДНК), высокополимерные природные соединения, содержащиеся в ядрах клеток живых организмов; вместе с белками гистонами образуют вещество хромосом. ДНК - носитель генетической информации, ее отдельные участки соответствуют определенным генам. Молекула ДНК состоит из 2-х полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4-х типов - нуклеотидов, специфичность которых определяется одним из 4-х азотистых оснований (аденин, гуанин, цитозин, тимин). Сочетания трех рядом стоящих нуклеотидов в цепи ДНК (триплеты, или кодоны) составляют код генетический. Нарушения последовательности нуклеотидов в цепи ДНК приводят к наследственным изменениям в организме - мутациям. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Дезоксирибонуклеиновые кислоты (ДНК), нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов. В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) - ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни.

История открытия и изучения ДНК

Уже в середине 19 века было установлено, что способность к наследованию тех или иных признаков организмов связана с материалом, содержащимся в клеточном ядре. В 1868-72 гг. швейцарский биохимик И. Ф. Мишер выделил из клеток гноя (лейкоцитов) и спермы лосося вещество, которое им было названо нуклеином, а впоследствии получило название дезоксирибонуклеиновая кислота.

В конце 19 - начале 20 вв. благодаря работам Л. Кесселя, П. Левена, Э. Фишера и др. было установлено, что молекулы ДНК представляют собой линейные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономеров - дезоксирибонуклеотидов четырех типов. Эти нуклеотиды образованы остатками пятиуглеродного сахара дезоксирибозы, фосфорной кислоты и одним из четырех азотистых оснований: пуринов - аденина и гуанина и пиримидинов - цитозина и тимина. Для обозначения оснований стали использовать начальные буквы их названий на английском или русском (в русскоязычной научной литературе) языке: соответственно A, G (Г), С (Ц) и Т.

Долгое время считалось, что ДНК содержится только в клетках животных, пока в 1930-х гг. российским биохимиком А. Н. Белозерским не было показано, что ДНК является обязательным компонентом всех живых клеток. Первые доказательства генетической роли ДНК (как вещества наследственности) были получены в 1944 группой американских ученых (О. Эйвери и др.), которые в опытах на бактериях однозначно установили, что с ее помощью наследуемый признак может быть перенесен от одной клетки к другой.

К середине 20 в. работами английских ученых (А. Тодд и др.) было окончательно выяснено строение нуклеотидов, которые служат мономерными звеньями в молекуле ДНК, и тип межнуклеотидной связи. Все нуклеотиды соединены между собой 3"-, 5"-фосфодиэфирной связью таким образом, что остаток фосфорной кислоты служит связующим звеном между 3"-углеродным атомом дезоксирибозы одного нуклеотида и 5"-углеродным атомом дезоксирибозы другого нуклеотида. На основании этого в каждой цепи ДНК выделяют 3"-конец и 5"-конец молекулы.

Структура ДНК. Открытие «двойной спирали»

В 1950 американский биохимик Э. Чаргафф обнаружил существенные различия в нуклеотидном составе ДНК из разных источников. Кроме того, оказалось, что состав нуклеотидов в молекуле ДНК подчиняется ряду закономерностей, главные из которых - равенство суммарного количества пуриновых и пиримидиновых оснований и равенство количества аденина и тинина (А-Т) и гуанина и цитозина (Г-Ц). В 1953 американский биохимик Дж.Уотсон и английский физик Ф. Крик на основании рентгеноструктурного анализа кристаллов ДНК (лаборатория М. Уилкинса) и, основываясь на данных Чаргаффа, предложили трехмерную модель ее структуры. Согласно этой модели молекулы ДНК представляют собой две правозакрученные вокруг общей оси полинуклеотидных цепи, или двойную спираль. На один виток спирали приходится примерно 10 нуклеотидных остатков. Цепи в этой двойной спирали антипараллельны, то есть направлены в противоположные стороны, так что 3"-конец одной цепи располагается напротив 5"-конца другой.

Остовы цепей образованы остатками дезоксирибозы и отрицательно заряженными фосфатными группами. Они находятся на внешней стороне двойной спирали (обращены к поверхности молекулы). Плохо растворимые в воде (гидрофобные) пуриновые и пиримидиновые основания обеих цепей ориентированы внутрь и расположены перпендикулярно оси двойной спирали.

Антипараллельные полинуклеотидные цепи двойной спирали ДНК не идентичны ни по последовательности оснований, ни по нуклеотидному составу. Однако они комплементарны друг другу: где бы ни появился в одной цепи аденин, напротив него в другой цепи обязательно будет стоять тимин, а против гуанина в одной цепи обязательно стоит цитозин другой цепи. Это означает, что последовательность оснований в одной цепи однозначно определяет последовательность оснований в другой (комплементарной) цепи молекулы. Более того, эти пары оснований образуют между собой водородные связи (три связи имеется в паре Г-Ц и две - между А-Т). Водородные связи и гидрофобные взаимодействия играют главную роль в стабилизации двойной спирали ДНК.

Нагревание, значительные изменения рH и ряд других факторов вызывают денатурацию молекулы ДНК, приводящую к разделению ее цепей. В определенных условиях возможно полное восстановление исходной (нативной) структуры молекулы ДНК, ее ренатурация. Способность комплементарных цепей ДНК легко разъединяться, а затем вновь восстанавливать исходную структуру лежит в основе самовоспроизведения молекулы ДНК, ее репликации (удвоения): если две комплементарные цепи ДНК разделить, а затем на каждой, как на матрице, построить новые, строго комплементарные им цепи, то две вновь образовавшиеся молекулы будут идентичны исходной. Открытие этого принципа позволило на молекулярном уровне объяснить явление наследственности.

Сходство и различие строения природных ДНК. Размеры

Почти все природные ДНК состоят из двух цепей (исключение составляют одноцепочечные ДНК некоторых вирусов). При этом ДНК может иметь линейную форму или кольцевую (когда концы молекулы ковалентно замкнуты). В клетках прокариот ДНК организована в одну хромосому (нуклеоид) и представлена одной кольцевой макромолекулой с молекулярной массой более 10. Кроме того, в клетках некоторых бактерий имеется одна или несколько плазмид - небольших кольцевых молекул ДНК, не связанных с хромосомой. У эукариот основная масса ДНК находится в ядре клетки в составе хромосом (ядерная ДНК). В каждой хромосоме эукариот имеется только одна линейная молекула ДНК, но так как во всех клетках эукариот (кроме половых) присутствует двойной набор гомологичных хромосом, то и ДНК представлена двумя неидентичными копиями, полученными организмом от отца и матери при слиянии половых клеток. Молекулярная масса эукариотических ДНК выше, чем у ДНК прокариот (например, в одной из хромосом плодовой мушки дрозофилы она достигает 7,9 х 1010). Кроме того, в состав митохондрий и хлоропластов входят кольцевые молекулы ДНК с молекулярной массой 106-107. ДНК этих органелл называют цитоплазматической; она составляет примерно 0,1% всей клеточной ДНК.

Размеры молекул ДНК обычно выражаются числом образующих их нуклеотидов. Эти размеры варьирует от нескольких тысяч пар нуклеотидов у бактериальных плазмид и некоторых вирусов до многих сотен тысяч пар нуклеотидов у высших организмов. Такие гигантские молекулы должны быть чрезвычайно компактно упакованы в клетках и вирусах. Например, длина ДНК нуклеотида кишечной палочки, состоящей примерно из четырех миллионов пар нуклеотидов, равна 1,4 мм, что в 700 раз превышает размеры самой бактериальной клетки. Общая длина всей ДНК в одной единственной клетке человека составляет примерно 2 м. Если же учесть, что организм взрослого человека состоит примерно из 1013 клеток, то общая длина всей ДНК человека должна составлять около 2х1013 м, или 2х1010 км (для сравнения: окружность земного шара - 4х104 км, а расстояние от Земли до Солнца - 1,44х108 км). Каким же образом происходит упаковка гигантских молекул ДНК в малом объеме клетки или вируса? Двойная спираль ДНК не является абсолютно жесткой, что делает возможным образование перегибов, петель, сверхспиральных структур и т. д. В нуклеоиде бактерий такая укладка поддерживается небольшим количеством специальных белков и, возможно, рибонуклеиновыми кислотами. В эукариотических клетках с помощью универсального набора основных белков гистонов и некоторых негистоновых белков ДНК превращается в очень компактное образование - хроматин, который является основным компонентом хромосом. Например, длина ДНК самой большой хромосомы человека равна 8 см, а в составе хромосомы благодаря упаковке она не превышает 8 нм.

Отдельные участки ДНК, кодирующие первичную структуру белка (полипептида) и РНК, называются генами. Наследственная информация записана в линейной последовательности нуклеотидов. У разных организмов она строго индивидуальна и служит важнейшей характеристикой, отличающей одну молекулу ДНК от другой и, соответственно, один ген от другого. Животные разных видов отличаются друг от друга потому, что молекулы ДНК их клеток имеют разную последовательность нуклеотидов, то есть несут разную информацию.

Биосинтез ДНК

Биосинтез ДНК происходит путем репликации, обеспечивающей точное копирование генетической информации и передачу ее от поколения к поколению. Этот процесс происходит при участии фермента ДНК-полимеразы. Матрицей для синтеза ДНК может служить и однонитевая (одноцепочечная) молекула рибонуклеиновой кислоты (РНК), что происходит, например, при заражении клеток ретровирусами (в их числе и вирусом СПИДа). Жизненный цикл этих вирусов включает обратный поток информации - от РНК к ДНК. При этом комплементарное копирование РНК в ДНК осуществляется с помощью фермента обратной транскриптазы. В ходе жизнедеятельности организмов их ДНК под влиянием внешних факторов может подвергаться различным повреждениям (мутациям), связанным с нарушением структуры азотистых оснований. В ходе эволюции клетки выработали защитные механизмы, обеспечивающие восстановление ее исходной структуры - репарацию ДНК.

Разработаны эффективные методы определения последовательности нуклеотидов в молекулах ДНК, благодаря которым накоплена огромная информация о ее первичной структуре в генах многих вирусов, некоторых митохондрий и хлоропластов, а также отдельных генов и фрагментов крупных геномов. Полностью определена нуклеотидная последовательность ДНК дрожжей, червя нематоды (150 млн. пар нуклеотидов). В рамках международной программы «Геном человека» в основном завершено установление нуклеотидной последовательности всей ДНК в геноме человека (3 млрд. пар нуклеотидов).

Знание последовательности чередования нуклеотидов в молекуле ДНК важно при анализе наследственных заболеваний человека, при выделении отдельных генов и других функционально важных участков ДНК; оно позволяет, используя генетический код, безошибочно установить первичную структуру белков, кодируемых определенными генами. Информация о первичной структуре ДНК широко используется в генетической инженерии при создании рекомбинантных ДНК - молекул с заданными свойствами, включающих компоненты ДНК из разных организмов.

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.