Что изучают геологи. Основные принципы геологии

1. РАЗДЕЛЫ ОБЩЕЙ ГЕОЛОГИИ. Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Гидрогеология - раздел геологии, изучающий подземные воды. Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений. Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли. Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр. Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология. Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология. Литология - раздел геологии, изучающий образование осадочных пород. Петрология - раздел геологии, изучающий происхождение горных пород. Петрография - раздел геологии, изучающий происхождение горных пород, образованных при высоких температурах и давлениях. Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород. Земля - «живая», активно меняющаяся планета. В ней происходят движения, различающиеся по масштабу на многие порядки. Структурная геология - раздел геологии, изучающий нарушения земной коры. Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов. Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре. Тектоника - раздел геологии, изучающий движение Земной коры. Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования. Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов. Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения. Геохронология - раздел геологии, определяющий возраст пород и минералов. 2. МЕСТО ИНЖЕНЕРНОЙ ГЕОЛОГИИ И СВЯЗИ С ДРУГИМИ ПРЕДМЕТАМИ. В своем развитии геология опиралась и опирается на различные естественные науки, а по мере накопления фактических материалов сама явилась родоначальницей некоторых естественных наук, которые сейчас уже не причисляются к наукам геологическим. Так, в вопросах строения и изменения вещества, изучения его свойств и законов движения геология тесно связана с физикой и химией и широко использует основные методы этих наук. Ярким выражением этой связи является возникновение геофизики и геохимии. Геофизика объединяет комплекс наук, рассматривающих физические свойства Земли и происходящие на ней физические процессы. Геохимия изучает химический состав Земли и законы распространения, распределения, сочетания и миграции химических элементов в земной коре. Без применения методики и выводов этих наук современная геология не может обойтись, но и их развитие оказалось возможным лишь на прочной геологической основе. Не менее тесная связь объединяет геологию с такими науками, как геодезия, которая изучает размеры и форму Земли, или физическая география, охватывающая обширный комплекс природных условий, определяющих географическую среду (рельеф, климат, почвы и др.). В вопросах происхождения и развития жизни на Земле геология тесно связана с биологическими науками, а для выяснения проблемы происхождения Земли, ее соотношения с другими небесными телами и положения во Вселенной она не может обойтись без выводов астрономии и достижений космонавтики. Следовательно, вся огромная область естествознания тесно связана с геологией. Это особенно остро ощущается в наше время, когда единство окружающей нас природы, взаимосвязь всех природных процессов и явлений становятся все более очевидными. Вместе с тем специализация отдельных областей естествознания растет с каждым годом, и человек не в состоянии охватить в деталях все достижения и методы различных областей науки, которые непрерывно накапливаются в процессе научного творчества и выдвигаются практикой. Это полностью приложимо и к геологии. Геология, с одной стороны, единая наука о Земле, с другой - это ряд наук, взаимно переплетающихся и тесно связанных между собой, изучающих разные стороны и результаты процесса развития и становления Земли, но преследующих разные цели и пользующихся разными методами. В настоящее время среди отраслей геологии обычно выделяют научные дисциплины, преимущественно изучающие: 1) вещественный состав земной коры; 2) геологические процессы; 3) проявления органической жизни и историю ее развития на Земле по остаткам вымерших организмов и следам их жизнедеятельности; 4) историческую последовательность геологических процессов. Исторически выделились в особую группу геологические науки, занимающиеся изучением практических вопросов, хотя по содержанию они тесно связаны с «теоретической геологией», а последняя в свою очередь занимается решением важнейших практических задач. Особую группу геологических дисциплин составляют методические и геолого-экономические науки, изучающие приемы исследования, применяемые в различных отраслях геологии, а также способы наиболее эффективного и экономического решения при помощи геологии различных запросов народного хозяйства, связанных с поисками, добычей и использованием горнорудного сырья и со строительством различных сооружений. Наконец, в самое последнее время выделилась как самостоятельная отрасль «морская геология» -наука, изучающая состав, строение, полезные ископаемые и историю формирования дна морей и океанов, пользующаяся специфическими методами исследований в условиях, резко отличающихся от субаэральных. К числу геологических дисциплин, изучающих преимущественно вещественный состав земной коры, относятся: минералогия, кристаллография, петрография, петрология и литология. Минералогия - наука о минералах (природных химических соединениях), изучающая во взаимной связи их состав и форму, физические свойства, условия образования и изменения. Изучением кристаллической структуры минералов, физических свойств кристаллического вещества, взаимодействия между кристаллами и вмещающей их средой, а также процессов, протекающих в кристаллической среде, занимается кристаллография - наука, граничащая с геологией и физикой. Петрография, петрология и литология - науки о горных породах, рассматривающие с различных точек зрения их строение и состав, закономерности образования, формы залегания и распространение. Комплекс наук, изучающих геологические процессы, объединяет динамическая геология, рассматривающая процессы, вызывающие изменение земной коры, формирующие рельеф земной поверхности и обусловливающие развитие Земли в целом. Большое разнообразие объектов исследования привело к выделению из динамической геологии таких самостоятельных наук, как вулканология, сейсмология, геотектоника. Вулканология изучает процессы вулканических извержений, строение, развитие и причины образования вулканов и состав продуктов, ими выбрасываемых. Сейсмология - наука о геологических условиях возникновения и проявления землетрясений. Геотектоника (тектоника) - наука, изучающая движения и деформации земной коры и особенности ее строения, возникающие в результате этих движений и деформаций. Раздел геотектоники, рассматривающий характер и закономерности размещения и сочетания различных горных пород в земной коре, определяющие ее структуру, называют структурной геологией. Она часто рассматривается как самостоятельная геологическая дисциплина. Науки, изучающие внешние (экзогенные) геологические процессы, происходящие в поверхностных частях земной коры в результате взаимодействия с атмосферой, гидросферой и биосферой, имеют прямое отношение к решению вопросов, воздействующих на общественную жизнь и, следовательно, определяющих географическую среду. Поэтому их относят к физической географии, хотя они и связаны неразрывно с динамической геологией. К числу таких наук принадлежат: 1) геоморфология - наука об образовании и развитии форм рельефа; 2) гидрология суши, исследующая водные пространства (реки, озера, болота, грунтовые воды, снежный покров, ледники и др.) на Земле, т. е. огромный круг вопросов, затрагиваемых также гляциологией - наукой о ледниках и лимнологией - наукой об озерах; 3) климатология и др. К наукам, изучающим развитие живой природы на протяжении геологического времени, относится палеонтология - наука столь же биологическая, как и геологическая. Появление и развитие этой науки тесно связано с геологией, и ее значение для развития геологии огромно. Палеонтология на основе изучения остатков вымерших животных и растений устанавливает относительный возраст горных пород и делает возможным сопоставление разнородных толщ осадочных образований, возникших одновременно. Геологическое летоисчисление и периодизация геологической истории основаны на данных этой науки. Она имеет также большое значение для выяснения физико-географических условий прошлых геологических эпох. Историческая последовательность геологических процессов изучается исторической геологией. Это - геологическая летопись, воспроизводящая всю сложную и многообразную историю развития земной поверхности, проявлений горообразования, вулканизма, наступлений и отступаний моря, изменения физико-географических условий и т. д. Один из основных разделов исторической геологии - стратиграфия - рассматривает последовательность напластования слоистых толщ осадочных горных пород и устанавливает их возраст по данным палеонтологии, а в последнее время - и геофизики. Другие ее разделы - учение о фациях и палеогеография - направлены к выявлению физико-географических условий далекого прошлого и воссозданию характера земной поверхности в разные геологические периоды. К важнейшим из геологических наук, занимающихся изучением практических вопросов, относятся: учение о полезных ископаемых, гидрогеология, инженерная геология. Учение о полезных ископаемых - древнейшая отрасль геологических знаний, которую справедливо считают родоначальницей современной геологии. Она изучает все природные минеральные образования, которые могут или быть непосредственно использованы людьми, или служить объектом для извлечения металлов, минералов и химических элементов, необходимых в народном хозяйстве. Разнообразие полезных ископаемых и огромное, но далеко не равноценное значение их привели к обособлению многих разделов рассматриваемой науки в самостоятельные дисциплины, как, например, учение о рудных и учение о нерудных месторождениях. Впоследствии выделились геология угля, геология нефти, геология радиоактивных элементов и т. д. Наконец, новым важным разделом науки о полезных ископаемых является металлогения, 3. ОБЩИЕ СВЕДЕНИЯ О ЗЕМЛЕ. ГЕОСФЕРЫ И ПРОЦЕССЫ ИХ ВЗАИМОДЕЙСТВИЯ. Внутреннее строение Земли всегда интересовало человечество служило предметом исследований многих ученых от древнейших времен до наших дней. Несмотря на это, достоверных данных о внутреннем строении Земли имеется еще весьма мало. Изучение и точное знание строения Земли имеет важное научное и практическое значение. Тело Земли имеет концентрическое строение и состоит из ядра и ряда оболочек, плотность которых скачкообразно увеличивается от поверхности Земли к ее центру. Концентрические оболочки, слагающие Землю, получили название геосфер. Наружной геосферой Земли является атмосфера, представляющая собой воздушную оболочку, мощность которой примерно равна 20 000 км. Атмосферу, учитывая меняющийся ее состав, разделяют на три оболочки: тропосферу, стратосферу и ионосферу. Тропосфера - приземный слой атмосферы, мощность которого в средних широтах 10-12 км. В тропосфере содержится почти 9/10 всей массы газов, составляющих атмосферу, и почти весь водяной пар. С увеличением высоты (удалением от поверхности Земли) происходит резкое понижение температуры. На высоте 10-12 км в среднем температура равна минус 55° С. В этом слое происходит образование облаков и сосредотачиваются тепловые движения воздуха, включая также все геологические процессы, протекающие над земной поверхностью (например, перенос веществ при извержениях вулканов, эоловые и другие процессы). Стратосфера - следующий за тропосферой слой, достигающий 80-90 км высоты. Благодаря присутствию озона в стратосфере обнаруживается повышение температуры до плюс 50 °С в слоях на высоте 30-55 км. На высоте 80-90 км температура снова понижается до минус 60-90° С. Ионосфера - самая верхняя и наиболее удаленная от поверхности Земли часть атмосферы. На высоте 20 тыс. км она постепенно переходит в межпланетное пространство. Приборами, установленными на искусственных спутниках Земли, выявлено, что плотность верхних слоев атмосферы в 5 - 10 раз выше, чем это предполагалось ранее. Спутниками было зафиксировано повышение температуры в слое ионосферы па высоте 225 км. Гидросфера - представляет собой водную оболочку Земли. Она включает все природные воды морей и океанов, рек, озер, а также материковые льды Арктики и Антарктиды. С водами гидросферы тесно связаны и подземные воды. В отличие от других геосфер гидросфера не образует сплошной оболочки Земли. Она покрывает 70,8% земной поверхности и образует Мировой океан. Средняя глубина гидросферы 3,75 км, наибольшая глубина достигает 11,5 км (Марианская впадина). Наружная твердая геосфера Земли называется литосферой, часто объединяемой с термином земная кора. Твердая оболочка Земли различными методами исследована на глубину 15-20 км. Непосредственному же изучению при помощи буровых скважин подверглась толща лишь до глубины 8 км. Третья часть поверхности земной коры приходится на выступы литосферы, образующие материки. Наиболее высокой точкой материков является гора Эверест в Гималаях, высота которой достигает 8,88 км. Средняя же высота материковых выступов - всего около 0,7 км над уровнем моря. Часто высокие горы располагаются вблизи глубоких океанических впадин. Литосфера состоит из разнообразных пород и минералов, т. е. определенных химических соединений или, реже, самородных химических элементов, отличающихся однородностью состава и физических свойств. Химический состав литосферы до глубины 16 км характеризуется преобладанием следующих элементов (по А. П. Виноградову, в % по массе): кислород 46,8 натрий 2,6 кремний 27,3 калий 2,6 алюминий 8,7 титан 0,6 железо 5,1 водород 0,15 кальций 3,6 фосфор 0,08 магний 2,1 углерод 0,1 Остальные многочисленные химические элементы в сумме составляют около 0,5% состава земной коры. Таким образом, в составе литосферы преобладают кислород, кремний, алюминий, железо и кальций, образующие разнообразные горные породы. Наблюдения в глубоких скважинах, шахтах и тоннелях показали, что по мере углубления в толщу Земли температура повышается в среднем через каждые 33 м на 1° С. Расстояние в глубь Земли, при котором температура повышается от пояса постоянных температур на 1° С, принято называть геотермической ступенью. Геотермическая ступень в различных местах земного шара отклоняется от среднего значения и в отдельных районах достигает 100 м и более. Между атмосферой, гидросферой и литосферой существует постоянное взаимодействие, в результате которого происходят существенные изменения в составе и строении наружной оболочки земной коры. В литосфере под верхним слоем ее, сложенном толщей осадочных пород/в нисходящем порядке выделяют гранитную и базальтовую оболочки. Гранитная оболочка наибольшей мощности (до 50 км) достигает под современными горными хребтами (например, Памира, Альп и др.). Под океаническими впадинами (дно Атлантического и Индийского океанов) эта оболочка местами совершенно отсутствует или имеет малую толщину. Гранитная оболочка имеет плотность 2,6-2,7 г/см3 и сложена породами гранитного состава. Базальтовая оболочка располагается непосредственно под гранитной. Мощность ее достигает 30 км под материковыми равнинами (платформами). Плотность базальтовой оболочки 2,8-2,9 г/см 3, поскольку она сложена основными породами (базальты и др.), бедными кремнекислотой. Вследствие преобладания в гранитной и базальтовой оболочках кремния и алюминия их объединяют в геосферу, называемую сиалической, или с и а л ь (от слова silicium, что означает кремний). Общая мощность литосферы, включая и сиалическую оболочку, в среднем составляет 50-70 км. Под литосферой залегает перидотитовая оболочка, состоящая из пород еще более основных (т. е. с меньшим содержанием кремнекислоты), чем в базальтовой оболочке. Плотность пород этой геосферы, именуемой также симатической оболочкой, в верхней части равна 3,2-3,4 г/см3, в нижних слоях 4,0- 4,5 г/см3. Перидотитовая оболочка распространена до глубины 1200 км и охватывает земной шар сплошь, без перерывов. Ниже располагается промежуточная оболочка до глубины 2900 км. Плотность ее 5,3-6,5 г/см3. Академик А. Е. Ферсман называл эту зону рудной геосферой, считая, что в ней в большом количестве содержатся чистые металлы, такие, как железо и никель. Внутренняя часть земли, или центральное ядро, начинается с глубины 2900 км и доходит до центра Земли, т. е. до глубины 6370 км. Таким образом, радиус центрального ядра составляет 3470 км, а его плотность 9,0-10,0 и 11,0 г/см3 в самом центре. Предполагают, что ядро Земли имеет силикатный состав, и в его составе содержится железа не больше, чем в других внутренних геосферах (оболочках). Большая плотность ядра объясняется тем, что вещество здесь, находясь под весьма высоким давлением, приобрело плотность металлов. По современным представлениям, температура в верхней части центрального ядра Земли не превышает 2,0-2,5 тыс. градусов. Большое давление в сочетании с высокой температурой в ядре Земли обусловливает особое упруго-вязкое состояние слагающего его вещества, которое по физическим свойствам приближается к жидкости. 4. ПОНЯТИЯ О МИНЕРАЛАХ. Горные породы, которые находятся на поверхности или вблизи нее, дают геологам основные сведения, необходимые для изучения геологического прошлого. Горные породы состоят из минералов или обломков более древних пород, в свою очередь также слагающихся минералами. Общим для минералов является их кристаллическая сущность. I. Основной закон кристаллографии. Рождение кристаллографии как науки связывают с именем Николая Стенона, который в 1669 году сформулировал закон постоянства углов: ╚Кристаллы различной формы одного и того же вещества (минерала) имеют неизменные углы между соответствующими гранями╩. Поскольку независимо друг от друга еще двое ученых М. В. Ломоносов (1740) и французский минералог Жан - Б. Роме де Лиль открыли этот закон, то следует называть его законом Стенона - Ломоносова - Роме де Лиля. 2. Свойства природных кристаллических веществ. Одно из основных свойств кристалла - однородность. Однородным должно считаться тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом; т. е. находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве ╚управляет╩ пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла. Анизотропность - это способность кристалла проявлять различные свойства в разных направлениях. Поскольку различные направления в кристаллической структуре вещества, построенного по закону трехмерной периодичности, могут и иметь неодинаковые расстояния между атомами (узлами), а следовательно, и разные по силе химические связи, то и свойства по таким направлениям могут отличаться, а сами кристаллы будут анизотропны относительно этих свойств. Если свойство не изменяется в зависимости от направления, то вещество изотропно. Способность самоограняться, т. е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым. Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. Е. С. Федоров (1901 г.) дал определение симметрии. ╚Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением╩. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (см рисунок). Такие преобразования называются симметрическими операциями. (Подробнее об этом на лабораторных занятиях). 3. Кристаллогенезис. В природе кристаллы образуются при различных геологических процессах из растворов, расплавов, паров, газов или твердой фазы. Из водных растворов значительная часть минеральных видов обязана своим происхождением кристаллизации: выпадение кристаллов солей в замкнутых водоемах при нормальной температуре и атмосферном давлении; рост кристаллов на стенках трещин и полостей при гидротермальных процессах на больших глубинах в условиях давлений и температур; образование отдельных кристаллов вторичных минералов в зонах окисления рудных месторождений. Кристаллы многих минералов образуются из многокомпонентной огненно - жидкой магмы. При этом, если магматический очаг располагается на большой глубине и остывание магмы идет медленно, то она успевает хорошо раскристаллизоваться и кристаллы вырастают достаточно крупными и хорошо ограненными. Если остывание происходит быстро (например, при вулканических извержениях, излияниях лавы на поверхность Земли), наблюдается практически мгновенная кристаллизация с образованием мельчайших кристалликов минералов и даже стеклоподобного вещества. Кристаллы одних и тех же минералов могут образовываться в природе как из водных растворов, так и из магматического расплава. Например: оливин, кварц, слюды и другие. Из газов и паров образуется незначительное количество минералов. Они имеют, главным образом, минералы вулканического происхождения. Например: сера самородная, нашатырь и др. Всем известны снежинки - результат кристаллизации из водных паров. Кристаллы могут образовываться при перекристаллизации твердых веществ. Путем длительного нагревания (отжига) из мелкокристаллических агрегатов можно получить крупнокристаллические и даже монокристаллы. Например: перекристаллизация известняков - образуется крупнокристаллический агрегат мрамор (под действием высоких температур и давления). 4. Причины и условия образования минералов. Материальные частицы (атомы, молекулы, ионы), слагающие газообразные и жидкие (расплавленные) вещества находятся в непрерывном движении. Время от времени они сталкиваются, образуя зародыши - микроскопические фрагменты будущей структуры. Большей частью эти зародыши распадаются. Однако, если они достигают критической величины, т. е. содержат такое количество частиц, при котором присоединение следующей частицы сделало бы разрастание зародыша энергетически более выгодным, чем его распад, то происходит посткристаллизация. Такая возможность для большинства веществ появляется либо с понижением температуры, в результате чего уменьшаются тепловые колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, т. е. к возникновению зародышей. При этом кристаллизация происходит не во всем объеме, а лишь там, где возникнут зародыши. Появлению зародышей способствует присутствие посторонних обломков кристаллов или пылинок, на поверхности которых собираются частицы, облегчая этим начало кристаллизации. Причина кристаллизации газообразного и жидкого вещества заключается в том, что энергетически более выгодно такое состояние, при котором силы, действующие на частицы, окажутся уравновешенными, а это достигается лишь в случае упорядоченного расположения материальных частиц. И, казалось бы, растущий кристалл, стремясь к равновесному состоянию, должен был бы приобретать определенную, единственную для каждого вещества. Физически возможную идеальную равновесную форму, обусловленную лишь составом и структурой. На самом же деле кристаллы одного и того же минерала или соединения встречаются в самых разнообразных формах. Это объясняется тем, что на форму кристалла накладывают отпечаток различные изменяющиеся условия кристаллизации: температура, давление, химизм и динамика кристаллообразующей среды и т. д. 5. Происхождение минералов Происхождение минералов очень интересно. Их образование в ходе кристаллизации обусловлено определенными закономерностями, определяющими три цикла геологических процессов: 1. магматический цикл (от греч. «магма» - месиво), то есть образование минералов из жидких масс глубинного происхождения; 2. седиментационный цикл (осадочный, от лат. «седиментум» - осадок) - образование минералов путем выветривания, переноса, отложения; 3. метаморфический цикл (от греч. «метаморфизис» - превращение, видоизменение) - появление новых минералов в результате преобразования старых, возникших в пер-вых двух циклах. Любые изменения в структуре минералов протекают незаметно, развитие минералов происходит очень медленно. В зависимости от происхождения различают минералы первич­ные и вторичные. К первичным относятся минералы, образовавшиеся впервые в земной коре или на ее поверхности в процессе кристаллизации магмы. К первичным наиболее распространенным минералам относятся кварц, полевой шпат, слюда, из которых состоят гра­нит или сера в кратерах вулканов. Вторичные минералы образовались при обычных условиях из продуктов разрушения первичных минералов вследствие вывет­ривания, при осаждении и кристаллизации солей из водных рас­творов или в результате жизнедеятельности живых организмов. Это - кухонная соль, гипс, сильвин, бурый железняк и другие. Процессов, в результате которых образуются минералы, в при­роде наблюдается много. Различают следующие процессы: магма­тические, гипергенные, или климатические, и метаморфические. Основным процессом является магматический. Он связан с охлаждением, дифференциацией и кристаллизацией расплавлен­ной магмы при различных давлении и температуре. Магма состо­ит преимущественно из таких химических компонентов: Si02, А120з, FeO, CaO, MgO, К2О, содержит она и другие химические соединения, но в меньшем количестве. Минералы при этом образуются преимущественно при темпе­ратуре 1000-1500°С и давлении в несколько тысяч атмосфер. Из минералов магматического происхождения образуются все пер­вичные кристаллические породы. Минералы, происхождение ко­торых связано с магмой и внутренним теплом Земли, называют первичными. К ним относятся полевые шпаты - ортоклаз, альбит, анортит, из ортосиликатов - оливин и другие. Минералы образуются также из газов (газовая фаза магмы). Наиболее распространены из них пегматиты, или жильные мине­ралы, ортоклаз с кварцем, микроклин, апатит, мусковит, биотит и многие другие. Такие минералы называются пнеуматогенными. Из горячей жидкости магмы (жидкая фаза) образуются гидро­термальные минералы - пирит, золото, серебро и много других. Гипергенные процессы происходят на поверхности Земли при обычных условиях под влиянием воды, температуры и других факторов. В результате этого растворяются и перемещаются раз­ные химические соединения, появляются новые (вторичные) ми­нералы, например сильвин, кварц, кальцит, бурый железняк и каолинит. Минералы гипергенного цикла образуются при давлении до 1 атм и температуре ниже 100°С. Качественный состав этих минералов на поверхности Земли в определенной мере зависит от географи­ческих широт. Следует отметить, что преобразование одного и того же минерала при разных условиях может проходить неоди­наково. Например, гидрослюды образуются не только из слюд, но и искусственным путем. Основным материалом для образования минералов гиперген­ного происхождения являются выветрившиеся первичные породы или те, которые уже прошли процесс преобразования. В этом про­цессе принимают участие также живые организмы. Минералы ги­пергенного цикла, образующиеся при действии внешних процес­сов, входят в состав осадочных и почвообразующих пород. Экзогенные процессы минералообразования происходят как на поверхности Земли, так и в коре выветривания. Для образования минералов экзогенного происхождения важное значение имеют процессы физического, химического и биологического выветри­вания. При метаморфическом процессе минералы образуются на боль­ших глубинах от поверхности Земли при изменении физико-хими­ческих условий (температура, давление, концентрация химически активных компонентов). В этих условиях происходит преобразо­вание ранее образованных многих первичных и вторичных мине­ралов. Среди них наиболее распространенными являются гематит, графит, кварц, роговая обманка, тальк и многие другие. 6. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ 1. Оптические свойства Прозрачность - свойство вещества пропускать свет. В зависимости от степени прозрачности все минералы делят на следующие группы: прозрачные - горный хрусталь, исландский шпат, топаз и др.; полупрозрачные - сфалерит, киноварь и др.; непрозрачные - пирит, магнетит, графит и др. Многие минералы, кажущиеся непрозрачными в крупных кристаллах, просвечивают в тонких осколках или краях зерен. Цвет минералов - важнейший диагностический признак. Во многих случаях обусловлен внутренними свойствами минерала (идиохроматические окраски) и связан с вхождением в его состав элементов-хромофоров (Ре, Сг, Мп, N1, Со и др.). Например, присутствие хрома обусловливает зеленую окраску уваровита и изумруда, присутствие марганца - розовую или сиреневую окраску лепидолита, турмалина или воробьевита. Природа окрашивания других минералов (дымчатый кварц, аметист, морион и др.) кроется в нарушении однородности строения их кристаллических решеток, в возникновении в них различных дефектов. В некоторых случаях окраска минерала может быть вызвана присутствием тончайших рассеянных механических примесей (аллохроматические окраски) - яшмы, агаты, авантюрин и др. Для обозначения окраски в минералогии распространен метод сравнения с окраской хорошо известных предметов или веществ, что отражается в названиях цветов: яблочно-зеленый, лазурно-синий, шоколадно-коричневый и т. п. Эталонами можно считать названия цветов следующих минералов: фиолетовый - аметист, синий - азурит, зеленый - малахит, желтый - аурипигмент, красный - киноварь, бурый - лимонит» оло-вянно-белый - арсенопирит, свинцово-серый - молибденит, железо-черный - магнетит, латунно-желтый - халькопирит, металлически-золотистый - золото. Цвет черты - цвет тонкого порошка минерала. Черту минерала можно получить при проведении испытуемым минералом по матовой неглазурованной поверхности фарфоровой пластинки (бисквита) или осколку такой же поверхности фарфоровой химической посуды. Это - признак более постоянный по сравнению с окраской. В ряде случаев цвет черты совпадает с цветом самого минерала, но иногда наблюдается резкое различие: так, стально-серый гематит оставляет вишнево-красную черту, латунно-желтый пирит - черную и т. д. Блеск зависит от показателя преломления минерала, т. е. величины, характеризующей разницу в скорости света при переходе его из воздушной в кристаллическую среду. Практически установлено, что минералы с показателем преломления 1,3-1,9 имеют стеклянный блеск (кварц, флюорит, кальцит, корунд, гранат и др.), с показателем 1,9-2,6 - алмазный блеск (циркон, касситерит, сфалерит, алмаз, рутил и др). Полиметаллический блеск отвечает минералам с показателем преломления 2,6-3,0 (куприт, киноварь, гематит) и металлический - выше 3 (молибденит, антимонит, пирит, галенит, арсенопирит и др.). Блеск минерала зависит и от характера поверхности. Так, у минералов с параллельно-волокнистым строением наблюдается типичный шелковистый блеск (асбест), полупрозрачные «слоистые» и пластинчатые минералы часто имеют перламутровый отлив (кальцит, альбит), непрозрачные или просвечивающие минералы, аморфные или характеризующиеся нарушенной структурой кристаллической решетки (метамиктные минералы) отличаются смолистым блеском (пирохлор, настуран и др.). 2. Механические свойства Спайность - свойство кристаллов раскалываться в определенных кристаллографических направлениях, обусловленное строением их кристаллических решеток. Так, кристаллы кальцита независимо от их внешней формы раскалываются всегда по спайности на ромбоэдры, а кубические кристаллы флюорита - на октаэдры. Степень совершенства спайности различается в соответствии со следующей принятой шкалой: Спайность весьма совершенная - кристалл легко расщепляется на тонкие листочки (слюда, хлорит, молибденит и др.). Спайность совершенная - при ударе молотком получаются выколки по спайности; получить излом по другим направлениям трудно (кальцит, галенит, флюорит). Спайность средняя - излом можно получить по всем направлениям, но на обломках минерала наряду с неровным изломом отчетливо наблюдаются и гладкие блестящие плоскости спайности (пироксены, скаполит). Спайность несовершенная или отсутствует. Зерна подобных минералов ограничены неправильными поверхностями, за исключением граней их кристаллов. Нередко разно ориентированные плоскости спайности в одном и том же минерале различаются по степени совершенства. Так, у гипса имеется три направления спайности: по одному - спайность весьма совершенная, по другому - средняя и по третьему - несовершенная. Трещины отдельности, в отличие от спайности, являются более грубыми и не вполне плоскими; чаще всего ориентированы поперек удлинения минералов. Излом. У минералов с несовершенной спайностью существенную роль в диагностике играет излом - раковистый (кварц, пирохлор), занозистый (у самородных металлов), мелкорако-. вистый (пирит, халькопирит, борнит), неровный и др. Твердость, или степень сопротивления минерала внешнему механическому воздействию. Наиболее простой способ ее определения - царапание одного минерала другим. Для оценки относительной твердости принята шкала Мооса, представленная 10 минералами, из которых каждый последующий царапает все предыдущие. За эталоны твердости приняты.следующие минералы: тальк -1, гипс - 2, кальцит - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10. При диагностике весьма удобно также употреблять для царапания такие предметы, как медная (тв. 3-3,5) и стальная (5,5-6) игла, нож (5,5-6), стекло (~5); мягкие минералы можно пробовать царапать ногтем (тв. 2,5). Хрупкость, ковкость, упругость. Под хрупкостью в минералогической практике подразумевается свойство минерала крошиться при проведении черты ножом или иглой. Противоположное свойство - гладкий блестящий след от иглы (ножа) - свидетельствует о свойстве минерала деформироваться пластически. Ковкие минералы расплющиваются под ударом молотка в тонкую пластинку, упругие способны восстанавливать форму после снятия нагрузки (слюды, асбест). 3. Прочие свойства Удельный вес может быть точно замерен в лабораторных условиях различными методами; приблизительное суждение об удельном весе минерала можно получить путем сопоставления его с распространенными минералами, удельный вес которых принимается за эталон. Все минералы можно разделить по удельному весу на три группы: легкие - с уд. весом меньше 3 (галит, гипс, кварц и др.); средние - с уд. весом порядка 3-5 (апатит, корунд, сфалерит, пирит и др.); тяжелые - с уд. весом больше 5 (киноварь, галенит, золото, касситерит, серебро и др.). Магнитность. Некоторые минералы характеризуются ярко выраженными ферромагнитными свойствами , т. е. притягивают к себе мелкие железные предметы - опилки, булавки (магнетит, никелистое железо). Менее магнитные минералы {парамагнитные) притягиваются магнитом (пирротин) или электромагнитом; наконец, имеются минералы, которые отталкиваются магнитом,- диамагнитные (самородный висмут). Испытание на магнитность производится с помощью свободно вращающейся магнитной стрелки, к концам которой подносится испытуемый образец. Так как число минералов, обладающих отчетливыми магнитными свойствами, невелико, то этот признак имеет важное диагностическое значение для некоторых минералов (например, магнетита). Радиоактивность. Способностью к самопроизвольному альфа, бета- и гамма излучению характеризуются все минералы, содержащие в своем составе радиоактивные элементы - уран или торий. В породе радиоактивные минералы часто бывают окружены красными или бурыми каемками, и от зерен таких минералов, включенных в кварц, полевой шпат и др., расходятся радиальные трещинки. Радиоактивное излучение действует на фотобумагу. Другие свойства. Для диагностики в полевых условиях имеют значение растворимость минералов в воде (хлориды) или кислотах и щелочах, частные химические реакции на отдельные элементы (Реакция с HCl важна для диагностики карбонатов, с молибденово-кислым аммонием - для фосфатов, с KOH - для талька и пирофиллита и т. д. (см. рубрику «Диагностика» в описаниях конкретных минералов), окрашивание пламени (например, минералы, содержащие стронций, окрашивают пламя в красный цвет, натрий - в желтый). Некоторые минералы при ударе или разломе издают запах (так, арсенопирит и самородный мышьяк испускают характерный чесночный запах) и т. д. Отдельные минералы определяются на ощупь (например, тальк на ощупь жирный). Поваренная соль и другие солевые минералы легко узнаются на вкус.

Геология , наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом, установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании - опускается и затапливается.

Однако значительно более содержательная информация об этих изменениях заключается в самих горных породах, представляющих собой не просто совокупность минералов, а страницы биографии Земли, которые можно прочесть, если владеть языком, которым они написаны.

Такая летопись Земли весьма продолжительна. История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

Геологические дисциплины

Геология выделилась в самостоятельную науку в 18 в. Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.

Природа земли

Кора, мантия и ядро

Бoльшая часть сведений о внутреннем строении Земли получена косвенно на основании интерпретации поведения сейсмических волн, которые регистрируются сейсмографами.

В недрах Земли установлены два основных рубежа, на которых происходит резкая смена характера распространения сейсмических волн. Один из них, с сильной отражающей и преломляющей способностью, расположен на глубине 13-90 км от поверхности под материками и 4-13 км - под океанами. Он называется границей Мохоровичича, или поверхностью Мохо (М), и считается геохимической границей и зоной фазового перехода минералов под влиянием высокого давления. Эта граница разделяет земную кору и мантию. Второй рубеж находится на глубине 2900 км от поверхности Земли и соответствует границе мантии и ядра.

Температуры

На основании того, что из вулканов извергается расплавленная лава, сложилось представление, что недра Земли раскалены. По результатам температурных измерений в шахтах и нефтяных скважинах установлено, что с глубиной температура земной коры непрерывно повышается. Если бы такая тенденция сохранялась вплоть до ядра Земли, то его температура составила бы ок. 2925° С, т.е. значительно превышала бы точки плавления обычно встречающихся на земной поверхности пород. Однако на основании данных о распространении сейсмических волн считается, что бoльшая часть недр Земли находится в твердом состоянии.

Решение вопроса о температуре земных недр, тесно связанной с ранней историей Земли, имеет большое значение, но до сих пор он остается дискуссионным. Согласно одним теориям, Земля первоначально была раскаленной, а затем остыла, согласно другим - первоначально была холодной, а затем разогрелась под действием тепла, генерируемого в процессе распада радиоактивных элементов и высокого давления на глубине.

Земной магнетизм

Обычно считается, что магнитное поле создается внутри Земли, однако механизм его возникновения недостаточно ясен. Магнитное поле не может быть результатом постоянной намагниченности железного ядра Земли, поскольку температура уже на глубине нескольких десятков километров значительно ниже точки Кюри - температуры, при которой вещество утрачивает свои магнитные свойства. Кроме того, гипотеза постоянного магнита в фиксированном положении противоречит отмечаемым изменениям магнитного поля в настоящее время и в прошлом.

Остаточная намагниченность сохраняется в осадочных и вулканических породах. Частички магнетита, осаждающиеся в спокойных водоемах, а также магнитные минералы в лавовых потоках при температуре ниже точки Кюри остывают и ориентируются по направлению силовых линий локального магнитного поля, существовавшего во время образования пород. Палеомагнитные исследования горных пород позволяют установить положение магнитных полюсов, которые существовали во время осадконакопления и оказывали воздействие на ориентировку магнитных частиц. Полученные результаты свидетельствуют о том, что либо магнитные полюса, либо участки земной коры со временем существенно меняли свое положение по отношению к оси вращения Земли (первое представляется маловероятным). Имеются также веские доказательства того, что материки перемещались относительно друг друга. Например, положения магнитного полюса, определенные по палеомагнитным данным для пород одного и того же возраста в Северной Америке, Европе и Австралии, пространственно не совпадают. Эти факты подтверждают гипотезу, согласно которой материки образовались из единого праматерика в результате его деления на отдельные части и последующего их раздвижения.

Гравитационное поле Земли

Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы бoльшая сила притяжения, чем на равнинах или в морях. Однако примерно с середины 18 в. было замечено, что гравитационное притяжение в горах и вблизи них меньше предполагаемого (если допустить, что горы представляют собой просто дополнительную массу земной коры). Этот факт объяснялся наличием "пустот", которые интерпретировались как разуплотнившиеся при нагревании породы или как соляное ядро гор. Такие объяснения оказались несостоятельными, и в 1850-х годах были предложены две новые гипотезы. земля тектоника магматический кремнезем

В соответствии с первой гипотезой, земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны - высокой (при одинаковой общей массе тех и других).

Согласно второй гипотезе, плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях.

Изостазия

Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Этот компенсационный процесс, известный как изостазия, вероятно, реализуется посредством горизонтального переноса масс в пределах мантии, где может происходить периодическое расплавление материала. Установлено, что некоторые участки побережья Швеции и Финляндии за последние 9000 лет поднялись более чем на 240 м, главным образом вследствие таяния ледникового покрова. Поднятые побережья Великих озер в Северной Америке сформировались также в результате изостазии. Несмотря на действие таких компенсационных механизмов, крупные океанические впадины и некоторые дельты обнаруживают значительный дефицит массы, в то время как некоторые районы Индии и Кипр - существенный ее избыток.

Вулканизм

Происхождение лавы

В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.

Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.

Однако неясно, почему в одних районах из мантийного вещества образуются и андезиты, и базальты, а в других - только базальты. Если, как теперь полагают, мантия действительно является ультраосновной породой (т.е. обогащена железом и магнием), то лавы, произошедшие из мантии, должны иметь базальтовый, а не андезитовый состав, поскольку минералы андезитов отсутствуют в ультраосновных породах. Это противоречие разрешает теория тектоники плит, согласно которой океаническая кора подвигается под островные дуги и на определенной глубине плавится. Эти расплавленные породы и изливаются в виде андезитовых лав.

Источники тепла

Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р. Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км 3; такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). В настоящее время существуют три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными; другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Существует еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.

Геохимия и состав Земли

Определение химического состава Земли является трудной задачей, поскольку ядро, мантия и бoльшая часть коры недоступны для непосредственного опробования и наблюдений и делать выводы приходится на основе интерпретации косвенных данных и аналогий.

Земля как гигантский метеорит

Предполагают, что метеориты представляют собой обломки ранее существовавших планет, по своему составу и строению имевших сходство с Землей. Существует несколько типов метеоритов. Наиболее известны и довольно часто встречаются железные метеориты, состоящие из металлического железа и железоникелевых сплавов, которые, как полагают, составляли ядра существовавших планет и по аналогии должны быть идентичны земному ядру по плотности, составу и магнитным свойствам.

В процессе развития и углубления специализации в геологии сформировался ряд научных направлений (разделов).

  • - Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки.
  • - Гидрогеология - раздел геологии, изучающий подземные воды.
  • - Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.
  • - Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • - Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • - Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.
  • - Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных сатмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • - Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • - Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.
  • - Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.
  • - Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • - Структурная геология - раздел геологии, изучающий нарушения земной коры.
  • - Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • - Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • - Тектоника - раздел геологии, изучающий движение Земной коры.
  • - Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембриявыделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • - Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • - Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.
  • - Геохронология - раздел геологии, определяющий возраст пород и минералов.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой "Настоящее - ключ к прошлому".

Утверждение не совсем точное. Понятие "сила" - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

"Принцип актуализма" (или метод актуализма) являются синонимом метода "аналогии". Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

Геология — это наука о составе, строении и закономерностях развития Земли, других планет Солнечной системы и их естественных спутников.

Существует три основных направления геологических исследований: описательная, динамическая и историческая геология. У каждого направления существуют свои основные принципы и методы исследования. Описательная геология занимается изучением размещения и состава геологических тел, в том числе их форма, размер, взаимоотношение, последовательность залегания, а также описанием различных минералов и горных пород. Динамическая геология рассматривает эволюцию геологических процессов, таких как разрушение горных пород, перенос их ветром, ледниками, наземными или подземными водами, накопление осадков (внешние по отношению к земной коре) или движение земной коры, землетрясения, извержения вулканов (внутренние). Историческая геология занимается изучением последовательности геологических процессов прошлого.

Происхождение названия

Первоначально слово «геология» являлось противоположностью к слову «теология». Науке о духовной жизни противопоставлялась наука о закономерностях и правилах земного бытия. В таком контексте это слово использовал епископ Р. де Бьюри в своей книге «Philobiblon» («Любовь к книгам»), которая вышла в свет в 1473 году в Кёльне. Слово происходит от греческого γῆ, означающее «Земля» и λόγος, означающее «учение».

Мнения о первом использовании слова «геология» в современном понимании расходятся. По одним источникам, включая БСЭ, этот термин впервые использовал норвежский учёный Миккель Педерсон Эсхолт (М. П. Эшольт, Mikkel Pedersøn Escholt, 1600-1699) в своей книге «Geologica Norvegica» (1657). По другим источникам, слово «геология» было впервые использовано Улиссе Альдрованди в 1603 году, затем Жан Андре Делюк в 1778 году, закрепил термин Орасом Бенедиктом де Соссюром в 1779 году.

Исторически использовался также термин «геогнозия» (или геогностика). Такое название для науки o минералах, рудах, и горных породах было предложено немецкими геологами Г. Фюкселем (в 1761) и A. Г. Bернером (в 1780). Авторы термина обозначили им практические области геологии, изучавщие объекты, которые можно было наблюдать на поверхности, в отличие от чисто теоретической тогда геологии, которая занималась происхождением и историей Земли, её корой и внутренним строением. Термин использовался в специальной литературе в XVIII и начале XIX векa, но начал выходить из употребления уже во второй половине XIX века. В России термин сохранялся до конца XIX века в названиях учёного звания и степени «доктор минералогии и геогнозии» и «профессор минералогии и геогнозии».

Разделы геологии

Геологические дисциплины работают во всех трёх направлениях геологии и точного деления на группы не существует. Новые дисциплины появляются на стыке геологии с другими областями знаний. В БСЭ приводится следующая классификация: науки о земной коре, науки о современных геологических процессах, науки о исторической последовательности геологических процессов, прикладные дисциплины, а также региональная геология.

Минералы образуются в результате природных физико-химических процессов и обладающее определённым химическим составом и физическими свойствами.

Науки о земной коре:

  • Минералогия - раздел геологии, изучающий минералы, вопросы их генезиса, квалификации. Изучением пород, образованных в процессах, связанных с атмосферой, биосферой и гидросферой Земли, занимается литология. Эти породы не совсем точно называются ещё осадочными горными породами. Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей, изучением которых занимается геокриология.
  • Петрография - раздел геологии, изучающий магматические и метоморфические породы преимущественно с описательной стороны - их генезис, состав, текстурно-структурные особенности, а также классификацию.
  • Структурная геология - раздел геологии, изучающий формы залегания геологических тел и нарушения земной коры.
  • Кристаллография - первоначально одно из напралений минералогии, в настоящее время скорее физическая дисциплина.

Науки о современных геологических процессах (динамическая геология):

  • Тектоника - раздел геологии, изучающий движение земной коры (геотектоника, неотектоника и экспериментальная тектоника).
  • Вулканология — раздел геологии, изучающий вулканизм.
  • Сейсмология — раздел геологии, изучающий геологические процессы при землетрясениях, сейсморайонирование.
  • Геокриология — раздел геологии, изучающий многолетнемёрзлые породы.
  • Петрология - раздел геологии, изучающий генезис и условия происхождения магматических и метаморфических горных пород.

Науки о исторической последовательности геологических процессов (историческая геология):

  • Историческая геология - отрасль геологии, изучающая данные о последовательности важнейших событий в истории Земли. Все геологические науки в той или иной степени имеют исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. История Земли делится на два крупнейших этапа - эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих по данным палеонтологии провести определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой - время открытой жизни, а до этого был криптозой или докембрий - время скрытой жизни. Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.
  • Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности организмов.
  • Стратиграфия - наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Прикладные дисциплины:

  • Геология полезных ископаемых изучает типы месторождений, методы их поисков и разведки. Делится на геологию нефти газа, геологию угля, металлогению.
  • Гидрогеология - раздел геологии, изучающий подземные воды.
  • Инженерная геология - раздел геологии, изучающий взаимодействия геологической среды и инженерных сооружений.

Внизу перечислены остальные разделы геологии, в основном стоящие на стыке с другими науками:

  • Геохимия - раздел геологии, изучающий химический состав Земли, процессы, концентрирующие и рассеивающие химические элементы в различных сферах Земли.
  • Геофизика - раздел геологии, изучающий физические свойства Земли, включающая также комплекс разведочных методов: гравиразведка, сейсморазведка, магниторазведка, электроразведка различных модификаций и пр.
  • Геобаротермометрия - наука, изучающая комплекс методов определения давления и температур образования минералов и горных пород.
  • Микроструктурная геология - раздел геологии, изучающий деформацию пород на микроуровне, в масштабе зёрен минералов и агрегатов.
  • Геодинамика - наука, изучающая процессы самого планетарного масштаба в результате эволюции Земли. Она изучает связь процессов в ядре, мантии и земной коре.
  • Геохронология - раздел геологии, определяющий возраст пород и минералов.
  • Литология (Петрография осадочных пород) - раздел геологии, изучающий Осадочные породы.

Изучением Солнечной системы занимаются следующие разделы геологии: космохимия, космология, космическая геология и планетология.

Основные принципы геологии

Геология - наука историческая, и важнейшей её задачей является определение последовательности геологических событий. Для выполнения этой задачи с давних времён разработан ряд простых и интуитивно очевидных признаков временных соотношений пород.

Интрузивные взаимоотношения представлены контактами интрузивных пород и вмещающих их толщ. Обнаружение признаков таких взаимоотношений (зоны закалки, даек и т. п.) однозначно указывает на то, что интрузия образовалась позже, чем вмещающие породы.

Секущие взаимоотношения также позволяют определить относительный возраст. Если разлом рвёт горные породы, значит он образовался позже, чем они.

Ксенолиты и обломки попадают в породы в результате разрушения своего источника, соответственно они образовались раньше вмещающих их пород, и могут быть использованы для определения относительного возраста.

Принцип актуализма постулирует, что геологические силы, действующие в наше время, аналогично работали и в прежние времена. Джеймс Хаттон сформулировал принцип актуализма фразой «Настоящее - ключ к прошлому».

Утверждение не совсем точное. Понятие «сила» - понятие не геологическое, а физическое, к геологии имеющее опосредованное отношение. Правильнее говорить о геологических процессах. Выявление сил, сопровождающих эти процессы, могло бы стать главной задачей геологии, чего, к сожалению, нет.

«Принцип актуализма» (или метод актуализма) являются синонимом метода «аналогии». Но метод аналогии не является методом доказательства, он является методом формулирования гипотез и, следовательно, все закономерности, полученные методом актуализма, должны были бы пройти процедуру доказательства их объективности.

В настоящее время принцип актуализма стал тормозом в развитии представлений о геологических процессах.

Принцип первичной горизонтальности утверждает, что морские осадки при образовании залегают горизонтально.

Принцип суперпозиции заключается в том, что породы находящиеся в не нарушенном складчатостью и разломами залегании, следуют в порядке их образования, породы залегающие выше моложе, а те которые находятся ниже по разрезу - древнее.

Принцип финальной сукцессии постулирует, что в одно и то же время в океане распространены одни и те же организмы. Из этого следует, что палеонтолог, определив набор ископаемых остатков в породе, может найти одновременно образовавшиеся породы.

История геологии

Первые геологические наблюдения относятся к динамической геологии - это информация о землетрясениях, извержениях вулканов, размывании гор, перемещении береговых линий. Подобные высказывания встречаются в работах таких учёных как Пифагор, Аристотель, Плиний Старший, Страбон. Изучение физических материалов (минералов) Земли восходит по крайней мере к древней Греции, когда Теофраст (372-287 до н. э.) написал работу «Peri Lithon» («О камнях»). В римский период Плиний Старший подробно описал многие минералы и металлы, и их практическое использование, а также правильно определил происхождение янтаря.

Описание минералов и попытки классификации геологических тел встречаются у Аль-Бируни и Ибн Сины (Авиценны) в X-XI веках. В работах Аль-Бируни содержится раннее описание геологии Индии, он предполагал, что индийский субконтинент был когда-то морем. Авиценна предложил подробное объяснение формирования гор, происхождение землетрясений и другие темы, которые являются центральными в современной геологии, и в котором содержится необходимый фундамент для дальнейшего развития науки. Некоторые современные ученые, такие как Филдинг Х. Гаррисон, считают, что современная геология началась в средневековом исламском мире.

В Китае энциклопедист Shen Kuo (1031-1095) сформулировал гипотезу о процессе формирования земли: на основе наблюдений над ископаемыми раковин животных в геологическом слое в горах в сотнях километров от океана он сделал вывод, что суша была сформирована в результате эрозии гор и осаждения ила.

В эпоху Возрождения геологические исследования проводили учёные Леонардо да Винчи и Джироламо Фракасторо. Они впервые предположили, что ископаемые раковины являются остатками вымерших организмов, а также, что история Земли длиннее библейских представлений. Нильс Стенсен дал анализ геологическому разрезу в Тоскане, он объяснил последовательность геологических событий. Ему приписывают три определяющих принципа стратиграфии: принцип суперпозиции (англ.), принцип первичной горизонтальности слоёв (англ.) и принцип последовательности образования геологических тел (англ.).

В конце XVII - начале XVIII века появилась общая теория Земли, которая получила название дилювианизма. По мнению учёных того времени осадочные породы и окаменелости в них образовались в результате всемирного потопа. Эти воззрения разделяли Роберт Гук (1688), Джон Рэй (1692), Джоэнн Вудворд (1695), И. Я. Шёйкцер (1708) и другие.

Во второй половине XVIII века резко возросли потребности в полезных ископаемых, что привело к изучению недр, в частности накоплению фактического материала, описанию свойств горных пород и услови их залегания, разработке приёмов наблюдения. В 1785 году Джеймс Хаттон представил для Королевского общества Эдинбурга документ, озаглавленный «Теория Земли». В этой статье он объяснил свою теорию о том, что Земля должна быть намного старше, чем ранее предполагалось, для того, чтобы обеспечить достаточное время для эрозии гор, и чтобы седименты (отложения) образовали новые породы на дне моря, которые, в свою очередь, были подняты чтобы стать сушей. В 1795 Хаттон опубликовал двухтомный труд, описывающий эти идеи (Vol. 1, Vol. 2). Джеймс Хаттон часто рассматривается как первый современный геолог. Последователи Хаттона были известны как плутонисты, из-за того что они считали, что некоторые породы (базальты и граниты) были сформированы в результате вулканической деятельности и являются результатом осаждения лавы из вулкана. Другой точки зрения придерживались нептунисты, во главе с Абраамом Вернером, который считал, что все породы осели из большого океана, уровень которого с течением времени постепенно снизился, а вулканическую деятельность объяснял подземным горением каменного угля. В то же время в России увидели свет геологические труды Ломоносова «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он признавал влияние и внешних, и внутрених сил на развитие Земли.

Уильям Смит (1769-1839) нарисовал одни из первых геологических карт и начал процесс упорядочивания горных пластов, изучая содержащиеся в них окаменелости. Смит составил «шкалу осадочных образований Англии». Работы по разделению пластов продолжились учёными Жоржем Кювье и А. Броньяру. В 1822 была выделена каменноугольная и меловая системы, что положило начало стратиграфической систематике. Основные подразделения современной стратиграфической шкалы были приняты официально в 1881 году в Болонье на 2-м Международном геологическом конгрессе. Первыми геологическими картами в России были работы Д. Лебедева и М. Иванова (карта Восточного Забайкалья, 1789-1794), Н. И. Кокшарова (Европейская Россия, 1840), Г. П. Гельмерсена («Генеральная карта горных формаций Европейской России», 1841). На картах Кокшарова уже были отмечены силурийская, девонская, нижне карбонская, лиасовая и третичная формации.

Вместе с тем, методологические основы такого деления ещё уточнялись в рамках нескольких теорий. Ж. Кювье разработал теорию катастроф, утверждающую, что особенности Земли формируются в одном, катастрофическом событии и остаются неизменными в дальнейшем. Л.Бух объяснял движения земной коры вулканизмом (теория «кратеров поднятия»), Л. Эли де Бомон связывал дислокацию слоёв со сжатием земной коры при остывании центрального ядра. В 1830 году Чарлз Лайель впервые опубликовал свою знаменитую книгу «Основы геологии». Книга, которая повлияла на идеи Чарльза Дарвина, успешно способствовала распространению актуализма. Эта теория утверждает, что медленные геологические процессы имели место на протяжении истории Земли и все еще происходят сегодня. Хотя Хаттона верил в актуализм, идея не была широко принята в то время.

Большую часть XIX века геология вращалась вокруг вопроса о точном возрасте Земли. Оценки варьировались от 100 000 до нескольких миллиардов лет. В начале XX века радиометрическое датирование позволило определить возраст Земли, оценка составила два миллиарда лет. Осознание этого огромного промежутка времени открыло двери для новых теорий о процессах, которые сформировали планету. Самым значительным достижением геологии в XX веке было развитие теории тектоники плит в 1960 году и уточнение возраста планеты. Теория тектоники плит возникла из двух отдельных геологических наблюдений: спрединга морского дна и континентального дрейфа. Теория революционизировала науки о Земле. В настоящее время известно, что возраст Земли составляет около 4,5 миллиардов лет.

В конце XIX века экономические потребности стран в отношении недр привели к изменению статуса науки. Появилось множество геологических служб, в частности геологическая служба США (1879) и геологический комитет России (1882). Была введена подготовка специалистов-геологов.

С целью пробудить интерес к геологии Организацией Объединённых Наций 2008 год провозглашён «Международным годом планеты Земля».

(Visited 150 times, 1 visits today)

Геология – это комплекс наук о составе, строение, и истории развития земной коры и Земли в целом.

Геология:

    Прямые методы - Образец горной породы, исследуются в лабораторных условиях, ставятся эксперименты, измерение; бурение земной коры. (Самое большое бурение на Кольском полуострове 80-90гг, 1500 м, 12,5км)

    Косвенные методы - Изучение загрязнения атмосферы с помощью растений, изучение атмосферного воздуха, рентген,

Объект геологии - является твердая оболочка земли «литосфера» - камень.

Предмет геологии – система геологических процессов в литосфере.

Методы изучения геологии:

    Геохимические – изучение горных пород с помощью химического анализа (макроскопические)

    Геофизические – изучение структур нашей планеты по средством физических параметров.

    Палеонтологические – изучение относительного возраста осадочных толщ земной коры.

    Аэрокосмические

    Компьютерное моделирование и другие информационные методы

    Метод актуализма ил метод мышления.

Суть метода мышления : в сходных условиях геологические процессы идут сходным процессом. Поэтому, изучая современные процессы можно судить о том, как шли аналогические процессы в далеком прошлом. Современные процессы можно наблюдать в природе (извержение вулканов, либо создавать искусственные, подвергая образцы горных пород давлению высоких температур и давлению). Однако геологическая и географическая обстановка на историческом пути менялась необратимо и мы не всегда можем иметь полностью объективное представление о тех условиях, которые были на нашей планете в прошлом. Поэтому чем древнее изучение толщи, тем ограниченнее применения метода актуальности.

    Структура и состав геологической науки.

Структура геологической науки:

    Описательная (статистические)

    Динамическая (динамические)

    Исторические (ретроспективные)

Состав геологической науки:

      Геофизика - комплекс наук, исследующих физическими методами строение Земли, ее физические свойства и процессы, происходящих в ее оболочках.

      Геохимия - наука, изучающая химический состав Земли, распространенность в ней химических элементов и их изотопов, закономерность распределения химических элементов в различных геосферах, законы поведения, сочетание и миграции элементов в природных процессах.

      Геодинамика – отрасль геологии, изучающая силы и процессы в коре, мантии и ядре Земли, обуславливающие глубинные и поверхностные массы во времени и пространстве.

      Тектоника - отрасль геологии, изучающая развития структур земной коры, ее изменения под влиянием тектонических движений и деформации, связанных с развитием Земли в целом.

      Минералогия – наука о минералах, их составе, свойствах, особенностях и закономерностях физического строения, условиях образования, нахождения и изучения в природе.

      Петрография (петрология) – наука о горных породах их минералогическом составе, химическом составе, структуре и текстуре условиях залегания закономерностях распространения, происхождения и изучения в земной коре и на ее поверхности.

      Литология – наука об осадочных горных породах и современных осадках, их вещественном составе, строении, закономерностях в условиях образования и изменения.

      Палеонтология – наука о вымерших живых организмах, сохранившихся в виде ископаемых остатков, отпечатков и следов жизнедеятельности, о смене их и пространстве и времени, обо всех доступных изучению проявления в жизни в геологическом прошлом.

      Гидрогеология – наука о подземных водах, изучающая их состав, свойства, происхождение закономерности распространения и движения, а так же взаимодействия с горными породами.

      Инженерная геология – процессы и явления, свойства грунтов, на которых возводятся инженерные сооружения.

      Геокриология – наука, изучающая состав и строение, свойства, происхождения распространения и историю развития мерзлых толщ в земной коре, а также процессы, связанные с их промерзанием и оттаиванием.

    Место геологии в системе естественных наук.

В ряду наук естественноисторических геология занимает видное и тесно с другими естественноисторическими науками связанное положение. При изучении минеральных изменений Земли геология соприкасается с химией, физикой, минералогией и даже астрономией, в особенности при разборе вопроса о происхождении Земли. При изучении ископаемых организованных остатков геология вступает в тесные соотношения с ботаникой и зоологией. При изучении бывших изменений на земной поверхности она вступает в тесную связь с физической географией, и, изучая современные геологические явления, она не столько интересуется причинностью их, сколько теми результатами, которые оставляют эти явления на земной поверхности. Геология не только в область естественных наук, но и в обширную область человеческих знаний внесла новый элемент. Минералог, ботаник или зоолог, изучая готовые продукты природы, т. е. минерал, растение или животное, может относиться безразлично к тому времени, когда появился на Земле этот продукт природы. Но геолог открывает возможность при последовательном разборе памятников жизни Земли отмечать те страницы, на которых более или менее отчетливо запечатлено нахождение данного минерала или организма. Проследить за его пребыванием на земной поверхности можно на следующих страницах памятников жизни Земли и, наконец, можно отметить момент, когда данный организм или совершенно исчезает с лица Земли, или заменяется новым.

Геология ввела в науки новый элемент - время, который дает возможность обнять более широким духовным взором экономию природы и показать, как длинен и последователен был путь, которым выработалась окружающая нас природа. Здесь, конечно, можно провести параллель с науками гуманитарными, для которых история человечества составляет такой же краеугольный камень, какой геология - для наук естественноисторических. Геология, кроме того, доставила массу материала, совершенно нового с точки зрения классификации. Для примера можно взять зоологию. Долгое время однокопытные животные состояли совершенно изолированными среди других млекопитающих, и генетическая связь их являлась, таким образом, утерянной. Только благодаря геологическим находкам можно было с достаточной наглядностью и последовательностью доказать, что однокопытные животные тесно генетически связаны с другими непарнопалыми, в современной своей организации, представляющими так мало общего с однокопытными. Если принять во внимание, какую массу ископаемых организмов, как водных, так и наземных, уже исчезнувших с лица Земли, открыла геология, и если обратить внимание на так называемые эмбриональные и сборные типы, то сделается вполне понятным, что этой науке обязана ботаника и зоология современными своими классификациями.

При разборе новейших страниц жизни Земли геология соприкасается и с историей человечества. При выработке торфа из болот Дании уже давно извлекались изделия, приготовленные из камня грубой или более или менее совершенной обивкой, изделия из бронзы и железа. Последовательный геологический разбор наслоения торфа обнаружил, что эти остатки распределены в нем с известной последовательностью: каменные изделия распределены в нижних слоях, бронзовые - в средних и железные - в верхних. Это и подало повод установить в ходе культуры доисторического человека Западной Европы века: каменный, бронзовый и железный. Но этим не удовольствовались и попробовали при помощи остатков растений в торфе восстановить природу того времени. Оказалось, что господствующей древесной породой времени жизни человека каменного века были сосна, бронзового - дуб и железного - бук. Такое вертикальное распределение древесной растительности дает возможность из сравнения с современным распределением на Земле растений прийти к заключению, что со времени жизни на Земле человека каменного века произошли значительные климатические изменения и что в то время в Дании климат был значительно суровее, чем ныне. О Дании известно из древних римских известий: постоянно там упоминается как господствующая древесная порода - бук; следовательно, еще римляне застали в этой стране бук; a когда здесь были леса дубовые или им предшествующие сосновые - это теряется во временах глубокой древности, конечно, не только не захваченной историей человеческой, но и задолго до времени эпоса. Наконец, находки еще более древних остатков человека - современника мамонта и сибирского носорога - должны теряться в еще более отдаленных от нас временах.

    Строение Земли и картина природы в представлении мыслителей древности.

    Основные этапы развития геологических знаний.

Истоки геологических знаний относятся к глубокой древности и связаны с первыми сведениями о горных породах, минералах и рудах. Еще в древности умение находить, добывать и использовать ценные материалы в земной коре, в том числе различные металлы чрезвычайно высоко ценилось. Таким образом, первоначальные геологические сведения, полученные людьми, были теснейшим образом взаимосвязаны с процессом использованием земной коры.

Древние греческие мыслители: Фалес Милетский , Ксенофан Колофонский , Гераклит Эфесский , Аристотель , Теофраст (или Феофраст , или Тиртамос , или Тиртам ) за сотни лет до начала новой эры в своих сочинениях пытались объяснить земные процессы реальными процессами.

Гераклит Эфесский (530-470 до н.э.) утверждал, что мир вечен, что он непрерывно изменяется и в нем процессы созидания периодическими сменяются процессами разрушения.

Аристотель (384-322 до н.э.) обратил внимание на окаменелости как на остатки исчезнувших организмов. Уже в древней Греции наметились 2 основных толкования природы геологических явлений позже получивших название плутонизм и нептунизм.

Плиний Старший (23-79 н.э.) в древнем Риме написал около 70 книг в значительной части которых в той или иной мере раскрывал начало истории Земли.

Абу Али Хусейн ибн Абдаллах ибн Сина Абу , илиАвиценна (980-1037) в своем энциклопедическом сочинении Китаб аль-Шифа (книга исцеления души) он изложил весьма передовые средневековые взгляды. По его мнению горы и долины произошли как в результате действия внутренних сил земли в частности сильных землетрясений, так и под, воздействием внешних причин, воды и ветра. Он считал, что мир вечен.

В 15веке широкую известность получили труды итальянского художника и ученого Леонардо Давинчи (1452-1519). Он полагал, что очертание суши и океанов начали изменяться далеком прошлом, что этот процесс происходит медленно этот, процесс постоянен, и является праобразом библейской легенде о Всемирном потопе, утверждал, что Земля существует гораздо дольше, чем сказано в священном писании.

Сам термин геология ввел норвежский ученый Эшольт М.П. в 1657г.

Самостоятельно ветвь естественной геологии выделилась в 18в. - начало 19века. Это связанно с деятельностью: Уильям Смит, Абраам Готлоб Вернер, Джеймс Хаттон, Чарлз Лайелл или Лайель, Михаил Васильевич Ломоносов, Василий Михайлович Севергин .

Уильям Смит (1769-1839) английский инженер, один из основоположников биостратиграфии, работая по строительным каналам установил что возраст осадочно-горных пород по заключенным в них остаткам ископаемых организмов. Составил первую геологическую карту Англии с распределением горных пород по их возрасту.

    Биостратиграфия – это раздел стратиграфии, изучающий распределение в осадочных отложениях ископаемых остатков организмов с целью выяснения относительного возраста этих отложений.

Абраам Готлоб Вернер (1749-1817) немецкий геолог и минералог, основатель немецкой научной школы минералогии. Разработал классификацию горных пород и минералов. Основатель нептунизма.

    Нептунизм – это геологическая концепция (к 18 – началу 19 вв.), основанная на представлениях о происхождении всех горных пород из вод мирового океана.

Джеймс Хаттон (1726-1797) шотландский геолог представлял геологическую историю Земли, как разрушение и возникновение (одних континентов в другие). Указал на сходство современных и древних геологических процессов. Основоположник плутонизма.

    Плутонизм – это геологическая концепция (к 18 – началу 19 вв.), о ведущей роли в геологическом прошлом внутренних сил Земли вызывающих вулканизм, землетрясения, тектонические движения.

Чарлз Лайелл или Лайель (1797-1875) английский естествоиспытатель, один из основоположников актуализма и эволюционизмов в геологии. В своих главных трудах под названием «Основы геологии в противовес теории катастроф» развил учение о медном и непрерывном изменении поверхности Земли под влиянием поставленных геологических факторов.

Михаил Васильевич Ломоносов (1711-1765) первый ученый естествоиспытатель мирового значения. Открыл атмосферу на Венере, описал строение Земли, объяснил происхождение многих полезных ископаемых и минералов, опубликовал руководство по металлургии. Металлургически рассматривал все явления природы.

Василий Михайлович Севергин (1765-1826) русский минералог и химик. Один из основоположников русской минералогической школы. Автор обширных сведений о минералогии. Ввел понятие о парагенезисе минералов. Автор трудов по химической технологии, также разрабатывал русскую научную терминологию.

Владимир Иванович Вернадский (1863-1945) русский естествоиспытатель, мыслитель и общественный деятель. Основоположник целого комплекса современной наук о Земле. Геохимия, биогеохимия, радиогеология, гидрогеология и др. Ввел существенный вклад в минералогию и кристаллографию. Он разработал генетическую минералогию, установил связь между формой кристаллических минералов, его химическим составом, генезисом и условиями образования. Сформулировал основные идеи и проблемы геохимии. С 1907 он вел геологические исследования радиогеологии. 1916-1940гг. он сформулировал главные принципы и проблемы биогеохимии, также создал учение о биосфере и ее эволюции, им были. Им были схематично очерчены главные тенденции в эволюции биосферы:

    экспансия жизни на поверхности Земли усиление ее преобразующего влияния на абиотическую среду.

    возрастание масштабов и интенсивности биогенных миграций атомов. Появление качественных геохимических функций живого вещества, завоевание жизнью новых минералогических и энергетических ресурсов.

    переход биосферы в ноосферу

    Ноосфера – новая эволюционное состояние биосферы, при котором разумная деятельность человека, становиться решающим фактором ее развития.

Качественный скачек в истории геологии, а именно превращение ее в комплекс наук, (на рубеже 19-20 вв.). Он связан с ведением физико-химических и математических методов исследования.

Современный этап развития геологии связан с ведением в геологии информационных методов исследования (геологические базы данных, комплексные моделирование), а также с появлением современной технических средств позволяющих глубже и шире понимать объект геологии и геологических процессов (ЭВМ, аэрокосмические средства, геофизические установки).

    Строение Солнечной Системы.

В солнечную систему входят: звезда; Солнце, которое является, желтым карликом, 2 или 3 поколения; планеты, в порядке удаления от солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Планеты подразделяются на 2 группы: 1.Земной группы, 2.Внешней группы (планеты гиганты).

    Характеристика планет земной группы.

Располагаются ближе к Солнцу, имеют небольшие размеры, высокую плотность, относительно небольшую массу, имеют несколько спутников, либо не имеют их вовсе. Если имеют атмосферу, которая состоит из тяжелых газов: оксида углерода, азота, озона, криптона, кислорода и др. их атмосфера имеет эндогенное происхождение, то есть газы атмосферы появились из недр планет в процессе их эволюции. Эти планеты в основном твердое вещество, масса – оксид кремния и различные металлы внешние оболочки (кора) в основном представленная силикатами, самые внутренние оболочки – сплавами тяжелых металлов железо никель.

    Характеристика планет-гигантов

Большие размеры и масса, относительно невысокая плотность, расположены дальше от Солнца. Все она имеют большое количество спутников, имеют кольца, состоящие из пылевых частиц, кристаллов льда и больших обломков горных пород. В состав планет газовых гигантов в основном входят легкие газы,

    Гипотезы происхождения Солнечной Системы и их классификация.

Первая теория образования Солнечной системы, предложенная в 1644 г. Декартом. По представлениям Декарта, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли (монистическая теория). В 1745 г. Бюффон предложил дуалистическую теорию; согласно его версии, вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или другой звездой. Если бы Бюффон оказался прав, то появление такой планеты, как наша, было бы событием чрезвычайно редким. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты. Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию "гипотезой Канта-Лапласа". Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая. Исходная материя, из которой потом образовались планеты, была выброшена Солнца (которое к тому времени было уже достаточно "старым" и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам. Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов, сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжении миллиардов лет.

    Общая характеристика Земли. Основные физические параметры планеты.

    Физические поля Земли.

Физическое поле – форма материи, осуществляющая определенные взаимодействия между макроскопическими телами ли частицами, входящими в состав вещества. Представлены гравитационным, магнитным, геометрическим и электрическим полями и изучаются соответствующими отраслями наук. Стр.59 в землеведении http://www.russika.ru/pavlov/glava4.pdf

    Общая характеристика геосфер.

К настоящему времени человечеством получено множество данных, позволивших с высокой степенью достоверности установить характеристики основных геосфер земли.

Ядро Земли – занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра около 3500 км, располагается оно глубже 2900 км. Состоит из двух частей – большого внешнего и малого внутреннего ядра. Природа внутреннего ядра Земли с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа и никеля и имеет температуру плавления порядка 4500 °С. Внешнее ядро представляет собой жидкость – расплавленное железо с примесью никеля и серы. Давление в этом слое меньше. Внешнее ядро – шаровой слой толщиной 2200 км.

Мантия – наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев – нижней и верхней мантии. Толщина нижней части мантии – 2000 км, верхней – 900 км. Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии составляет около 2500 ° С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанная температура привела бы к его расплавлению. В расплавленном состоянии находится астеносфера – нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. В целом же верхняя мантия обладает интересной особенностью: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный.

Литосфера – этоземная корас частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но и большой хрупкостью. В верхней части она слагается гранитами, в нижней – базальтами. Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – трех самых внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. На поверхности литосферы в результате совокупной деятельности ряда факторов возникает почва – это сложнейшая система, стремящаяся к равновесному взаимодействию с окружающей средой.

Гидросфера – водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд. км 3 . Из этого количества 97 % приходится на соленую морскую воду, 2 % составляет замерзшая вода ледников и 1 % – пресная вода. Гидросфера – это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого составляет 100 тыс. км 3 .Воде свойственны высокая теплоемкость, теплота плавления и испарения. Вода является хорошим растворителем, поэтому в ней содержится множество химическим элементов и соедине­ний, необходимых для поддержания жизни. Большую часть поверхности Земли занимает Мировой океан (71 % поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Антарктиду) и острова. Океан делится материками на четыре части: Тихий (50 % площади Мирового океана), Атлантический (25 %), Индийский (21 %) и Северный Ледовитый (4 %) океаны. Важной частью гидросферы Земли являются реки – водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока с их бассейнов.

Озера, болота, подземные воды также часть гидросферы Земли.

Ледники, образующие ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают 1/10 часть поверхности Земли. Именно в них содержатся основные запасы пресной воды (3/4).

Атмосфера – это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. Она состоит из воздуха – смеси газов (азота, кислорода, инертных газов, водорода, углекислого газа, паров воды). Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности планеты.

Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера – это нижний слой атмосферы, определяющий погоду на нашей планете. Имеет постоянную температуру. Его толщина – 10–18 км. С высотой падают давление и температура. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.

Толщина стратосферы доходит до 50 км. Наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера – эта часть атмосферы, начинающаяся с высоты 50 км и состоящая из ионов (электрически заряженных частиц воздуха). Ионизация воздуха происходит под действием Солнца.

С высоты 80 км начинается мезосфера , роль которой состоит в поглощении ультрафиолетовой радиации Солнца озоном, водяным паром и углекислым газом.

На высоте 90–400 км находится термосфера . В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений.

Выделяются четыре группы наук в геологии:

1. Науки, изучающие вещественный состав Земли = ГЕОХИМИЯ.

2. Науки, изучающие процессы, протекающие в Земле = ДИНАМИЧЕСКАЯ ГЕОЛОГИЯ или ГЕОДИНАМИКА

3. Науки, изучающие историю развития Земли = ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ.

4. Науки, направленные на практическое использование недр Земли = ПРАКТИЧЕСКАЯ ГЕОЛОГИЯ.

К первой группе относятся следующие науки:

Геохимия – изучает химические элементы, их распределение и миграцию. Это элементный уровень (на уровне атомов) изучения вещества.

Петрохимия – наука о химическом составе горных пород в оксидах. Это более высокий уровень изучения вещества (сочетание атомов - молекулярный уровень)

Минералогия (от фр. «минера» – руда) наука о минералах. Минерал представляет собой естественное химически однородное тело, обладающее определенным химическим составом и физическими свойствами, возникшее в результате различных процессов, протекающих в Земле. Это еще более высокий уровень изучения вещества, где атомы сочетаются в определенном порядке.

Петрология (раньше называлась петрография, «петра» – скала, камень - греч.) - наука о магматических и метаморфических горных породах. Горные породы уже рассматриваются как сочетания нескольких минералов, хотя есть и породы, состоящие из одного минерала. Петрология изучает минералогический и химический состав горных пород, их свойства, отношения между различными породами, изменения, которые они претерпевают с течением времени, их происхождение и закономерности их образования. Это следующий уровень изучения вещества – породный уровень.

Литология (ранее петрография осадочных пород, «литос» – камень - греч.) – наука о третьей (и последней) группе горных пород – осадочных породах. Это также породный уровень изучения вещества.

Кристаллография («кристаллос» - горный хрусталь, греч.) – наука о кристаллах, их внешней форме и внутренней структуре. Природные минералы в большинстве случаев тела кристаллические, поэтому изучение их форм и законов, управляющих их образованием, имеет большое значение.

Кристаллохимия – наука о связи между формой минерала и его химическим составом.

Петрофизика – наука о физических свойствах горных пород (плотность, магнитность, упругость, радиоактивность, электропроводность и др.)

Вторая группа наук о Земле, изучающая процессы, делится на науки, изучающие процессы эндогенные (рожденные внутренними причинами) и экзогенные (рожденные внешними причинами).

Науки, изучающие эндогенные процессы:

Геотектоника («тектоник» - строитель, греч.) – наука об условиях залегания горных пород, о движениях земной коры и вызванных ими деформациях.


Тектонофизика – отрасль геотектоники, занимающаяся изучением физических условий возникновения тектонических нарушений.

Учение о магматизме – наука о составе магмы и процессах в ней протекающих.

Вулканология – наука о вулканах и процессах, связанных с изливанием магмы на поверхность.

Сейсмология («сейсмо» –сотрясение, греч.) – наука о землетрясениях.

Учение о метаморфизме (метаморфоза – превращение) – наука об изменениях, которые претерпевают горные породы при погружении в недра Земли под воздействием высокой температуры и большого давления.

Науки, изучающие экзогенные процессы:

Учение о выветривании – наука о процессах изменения горных пород под воздействием физических, химических и органических агентов на поверхности Земли.

Гидрология – наука о геологической деятельности поверхностных текучих вод.

Гидрогеология - наука о геологической деятельности подземных вод.

Океанология – наука о геологической деятельности океанов и морей.

Гляциология («гляцио» – лед, греч) – наука о геологической деятельности ледников.

Криология – наука о геологических процессах в зонах вечной мезлоты.

Лимнология («лимнос» –озеро, греч.) – учение о геологической деятельности озер и болот.

Это основные науки, есть и другие, например, о геологической деятельности ветра и т.д.

Третья группа наук (историческая геология) включает следующие науки:

Историческая геология – рассматривает историю земной коры и всей нашей планеты, включая органическую жизнь.

Стратиграфия («страта» слой, греч.) –наука о слоях осадочных пород и последовательности их образования.

Учение о фациях – наука о свойствах осадочных пород и условиях их образования.

Палеонтология – учение об ископаемых остатках организмов, как животных так и растительных (палеоботаника, палеозоология, палеоэкология)

Палеогеография – учение о физико-географической обстановке в прошлом.

Палеотектоника – учение о тектонической обстановке в прошлом.

К четвертой группе наук о Земле (практической геологии) относятся три основных направления:

Региональная геология,

Учение о полезных ископаемых (геолого-разведочное дело),

Учение об инженерных условиях строительства зданий и сооружений (инженерная геология).

Задача региональной геологии заключается в описании геологического строения (съемка) – возрастной последовательности горных пород, образуемых ими структурных форм, а также истории развития отдельных участков (регионов) земной коры. Обычно это строение изображается на геологических картах разного масштаба. Геологические карты и производные от них (тектонические и другие карты) служат основой для поисков и разведки полезных ископаемых и строительства различных сооружений.

Учение о полезных ископаемых включает в себя поиски и разведку полезных ископаемых. Поиски заключаются в нахождении какого-либо конкретного полезного ископаемого, а разведка – в определении качества, количества и промышленно-экономических характеристик месторождения (дороги, транспорт, энергия, трудовые ресурсы и т.д.).

Инженерная геология изучает свойства грунтов и условий строительства в данной геологической обстановке.