Чем отличаются проводники полупроводники и диэлектрики. Примеры полупроводников

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.
Все проводники обладают такими свойствами, как сопротивление и проводимость . Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R ).
Величина, обратная сопротивлению, называется проводимостью (G ).

G = 1/ R

То есть, проводимость это свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость . Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет бо льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников , в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся , в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы , изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру , все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить , что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Полупроводники

Существуют вещества , которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками . Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников , у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости - уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры

Величина электрического тока I через образец, например в виде параллелепипеда, определяется в зависимости от напряжения U и сопротивления образца R:

I = U/R = US/rl = gUS/l = gSE (1)

Где I – ток; l - длина образца; S - площадь; R - сопротивление; r- удельное объемное сопротивление; g - проводимость материала.

Из этого соотношения видно, что проводимость связана с величиной напряженности электрического поля Е = U/l и плотностью тока j = I/S:

g = j/E или j = gE (2)

Величина g полупроводников и металлов существенно зависит от температуры кристаллов.

Электрический ток в твердом теле обусловлен передвижением свободных заряженных частиц. В металлах электрический ток возникает вследствие перемещения свободных электронов, в полупроводниках – свободных электронов и дырок.

Величина g зависит от концентрации n и р и подвижности m n и m р. Величина подвижности определяется как отношение дрейфовой скорости v др к напряженности поля

m = v др /Е; [m] = м 2 /В×с (3)

Допустим, что в образце имеется определенная концентрация носителей – электронов n. Приложение к образцу напряжения U Создает напряженность Е = U/l, и вцепи протекает ток I n , обусловленный передвижением электронов с дрейфовой скоростью v n .

Анализ показывает, что через поперечное сечение образца протекает ток, равный

I n = Q n /t = env n tS/t = env n S = enm n ES (4)

Где Q n – заряд, прошедший через поперечное сечение S за время t ; е – заряд электрона.

С учетом соотношения (2) имеем

В общем случае при наличии носителей n- и р-типа

g = g n + g p = enm n + epm p (6)

Из соотношений (2) и (6) видно, что плотность тока j в цепи определяется величинами проводимости g и напряженности электрического поля, при фиксированной напряженности электрического поля (постоянном напряжении на образце) плотность тока определяется только величиной проводимости. Величина g в свою очередь зависит от значений n,p и m n , m р, определяемых температурой, типом материала и примесей.

Зависимость концентрации носителей заряда

В полупроводниках и металлах от температуры.

Металлы.

При образовании кристаллической решетки металлов каждый атом решетки отдает один валентный электрон в «электронный газ» металла. Вследствие этого при любой температуре число электронов, способных участвовать в процессе проводимости, остается практически неизменным и равно плотности узлов решетки: n @ 10 28 м -3 .

Зонная диаграмма металла приведена на рис.5.а. В металле при любой температуре электроны находятся в зоне проводимости, физически это означает, что они свободны и могут передвигаться по кристаллу. При Т = 0 о К все электроны имеют нижние значения энергии (скорость носителей ограничена при этой температуре значением v ф, энергия ограничена значением Е ф = mv 2 ф /2, (Е ф – энергия уровня Ферми). При увеличении температуры (Т > 0оК)ьбэлектроны могут увеличивать свою скорость (энергию), поэтому значения энергии некоторых носителей будут больше значения Е ф, на зонной диаграмме увеличение энергии электрона изображается переходом 1 (рис. 4.а).

Полупроводники.

Количество носителей заряда в полупроводниках существенно зависит от температуры и типа материала. Зонные диаграммы полупроводников различных типов представлены на рис. 4.б-г.

При температуре 0 о К свободные носители отсутствуют; в собственном полупроводнике все носители связаны с собственными атомами материала (на языке зонной диаграммы это означает, что носители находятся в валентной зоне). Собственный полупроводник имеет уровень Ферми Е ф посередине запрещенной зоны.


В донорном полупроводнике при Т=0 все свободные носители также отсутствуют, они связаны с собственными атомами материала (находятся в валентной зоне) и с атомами примеси (находятся на уровне Е д).

Уровень энергии Е ф n для примесного донорного полупроводнтка при низких температурах находится вблизи дна зоны проводимости (рис.4.в).

В акцепторном полупроводнике при Т=0 все свободные носители также отсутствуют; электроны связаны с собственными атомами материала (находятся в валентной зоне), атомы примеси (акцепторы) не ионизованы. При увеличении температуры собственные атомы начинают ионизоваться, электрон захватывается акцептором (электрон находится на уровне акцептора Е а) и появляется дырка (в валентной зоне). Уровень энергии Е фр для примесного акцепторного полупроводника находится вблизи потолка валентной зоны (рис. 4.г)

В собственных полупроводниках носители заряда (электроны и дырки) появляются вследствие ионизации собственных атомов. Концентрация собственных носителей увеличиваетс с повышением температуры согласно выражению:

где N c , N v – плотности состояний (уровней) в зоне проводимости и валентной зоне; Т – температура кристалла,К; DЕ з – ширина запрещенной зоны; к – постоянная Больцмана.

Логарифмируя выражение (7), получаем

(8)

Если пренебречь зависимостью N c , N v от температуры, то n(T) описывается прямой линией в координатах ln n от (1/T, К) (рис 5.а)

В примесных полупроводниках образование носителей обусловлено генерацией как из собственных атомов, так и с примесных центров.



Поскольку энергия ионизации, например донорной примеси DЕ д гораздо меньше ширины запрещенной зоны DЕ з, то при увеличении температуры от 0 о К в первую очередь начнут ионизоваться примесные центры – доноры.

В диапазоне температур 0 – 150 о К зависимость n(T) представляется в виде

(9)

где Ед – энергия ионизации доноров; Nд – концентрация доноров.

В координатах ln n(T) = f(1/T) зависимость n(T) представляется отрезком прямой линии (рис 5.б, участок 1).

Увеличение температуры выше температуры ионизации примесей Т и приводит к полной ионизации доноров, поэтому дальнейшее возрастание температуры не влияет на ионизацию. Это приводит к тому, что в диапазоне Т кр < Т < Т и концентрацция носителей остается постоянной (Т кр – температура, при которой концентрация генерируемых собственных носителей становится сравнимой с концентрацией доноров).

Таким образом в области температур Т=300 – 400 о К доноры ионизованы полностью, концентрация электронов примесного происхождения намного превышает концентрацию электронов собственного происхождения даже при ничтожном количестве примеси. Например, кремний, легированный примесью в количестве 0,001%, считается химически чистым. В то же время, это соответствует концентрации примесей 10 23 м -3 (концентрация атомов кремния 10 28 м -3).

Поскольку при Т=300 – 400 о К все атомы примеси ионизованы, концентрация свободных электронов примесного происхождения будет равна 10 23 м -3 , что намного больше концентрации свободных электронов и дырок собственного происхождения (при 300 о К n i = 10 16 м -3). Следовательно, введение ничтожного количества примеси повысило концентрацию электронов по сравнению с концентрацией электронов собственного происхождения на семь порядков. Поэтому при Т=300 – 400 о К концентрацией электронов собственного происхождения можно пренебречь и считать, что в донорном полупроводнике концентрация основных носителей определяется только электронами примесного происхождения, т.е. n n = N д.

При температурах Т > Т кр генерация носителей собственного происхождения создает количество носителей (электронов и дырок), превышающее количество электронов примесного происхождения, в этом диапазоне зависимость n(T) описывается соотношением (7).

Методические указания .

Статическая вольт-амперная характеристика кристалла снимается путем исследования зависимости тока в кристалле от напряжения I(U n). Сопротивление кристалла определяется графически по зависимости I(U n):

Значение удельного сопротивления r и электропроводности определяется с учетом соотношения (1) и (2).

(1),

где I – ток, l – длина образца, S – площадь, R – сопротивление, r - удельное объемное сопротивление, g- проводимость материала. Параметры кристалла (длина и площадь сечения) указаны на стенде.

Из соотношения (1) имеем, что проводимость связана с величиной напряженности электрического поля и плотностью тока :

Величина s полупроводников и металлов существенно зависит от температуры кристаллов.

Нагрев кристалла производится косвенным образом с помощью нагревателя. Температура кристалла фиксируется в процессе нагрева с помощью термопары.

В процессе нагрева образца снимается зависимость тока от температуры, после чего рассчитывается и строится зависимость .

С учетом соотношения (3),

где DE 3 – энергия активации собственных носителей (ширина запрещенной зоны), s¢ 0 (Т) – параметр, мало зависящий от температуры, имеем

(4).

Таким образом, в координатах ln g(1/T) зависимость проводимости от температуры представляется прямой линией с наклоном, равным

Где DE 3 - ширина запрещенной зоны полупроводника, k – постоянная Больцмана (k = 8,625 × 10 -5 эВ/K=1,38×10 -23 Дж/K).

На графике по оси абсцисс откладываются значения 1/T (Т 0 К) по оси ординат – значение натурального логарифма проводимости материала (g).

С учетом температурной зависимости электропроводности полупроводников, описываемой соотношением (3), сопротивление полупроводникового резистора изменяется с температурой

(5),

где - коэффициент температурной чувствительности, зависящий от типа примеси, ширины запрещенной зоны, энергии активации примеси и т.п.; R ¥ - постоянная, зависящая от материала и размеров полупроводника, Т – температура в градусах Кельвина.

На практике широко используются сопротивления, у которых ширина запрещенной зоны весьма мала (0,1 – 0,3 эВ), вследствие чего при возрастании температуры значение сопротивления резко уменьшается (термисторы). Сопротивление термисторов имеет значение от нескольких Ом до нескольких сотен килоом.

Коэффициент температурной чувствительности В () имеет значение от 700 до 15000 К и практически одинаков для данного термистора в рабочем диапазоне температур.

Температурный коэффициент сопротивления термистора показывает относительное изменение сопротивления термистора при изменении тепрературы на 1 Кельвин

Температурный коэффициент зависит от температуры, поэтому его необходимо записывать с индексом, указывающим температуру, при которой имеет место данное значение. С учетом (5) имеем

(7).

Значение TKR при комнатной температуре различных термисторов находятся в пределах –(0,8 – 6,0)×10 -2 К -1 . Обратим внимание на то, что термисторы имеют отрицательный температурный коэффициент сопротивления.

В качестве рабочего элемента термистора выбираются полупроводники на основе окислов металлов, например, цинка, титана.

Работа полупроводниковых приборов, позисторов, основана на возрастании сопротивления материала при увеличении температуры. Это обусловлено уменьшением подвижности носителей заряда в области высоких температур, вследствие чего проводимость полупроводника начинает уменьшаться. В итоге, сопротивление позистора возрастает при увеличении температуры кристалла. Отметим, что позистор, в частности, при большом увеличении температуры полупроводник переходит в область собственной проводимости, и его сопротивление начнет уменьшаться.

Рабочим элементом позисторов является специальная керамика на основе соединений титана бария.

Термисторы и позисторы используются в электронных схемах для регистрации температуры окружающей среды, оценки потоков различных излучений, например, оптического излучения лазеров, ядерного, рентгеновского и т.п., в схемах сигнализации и т.д.

Измерения и обработка результатов

1. Произвести анализ схемы (рис.1).

2. По разрешению преподавателя включить питание схемы: подать напряжение на полупроводник.

I. Снятие вольтамперной характеристики полупроводника при комнатной температуре Т 0 (значение Т 0 определяется в лаборатории) .

1. Увеличивая потенциометром напряжение от 0 до 60 В через каждые 10 В снимите зависимость силы тока, протекающего через проводник, от напряжения. Данные занесите в таблицу 1.

Таблица 1.

2. По полученным данным постройте график зависимости I = f(U) при комнатной температуре (график прямой строить по методу наименьших квадратов) .

3. Вычислите сопротивление полупроводника для каждого измерения по формуле .

6. Вычислите среднее значение удельного сопротивления r и среднее значение удельной проводимости g с учетом его параметров (кристалл имеет форму цилиндра: длина l = 10 мм, диаметр d = 1мм). Значение удельного сопротивления r и электропроводность g определяются по соотношениям:

где l – длина кристалла, S – площадь сечения кристалла.

Результаты занесите в таблицу 1.

II. Исследование температурной зависимости электропроводности полупроводника.

1. Установить по указанию преподавателя напряжение на кристалле. Определить значение тока при комнатной температуре.

2. Включить нагрев полупроводника. Нагрев кристалла производится с помощью нагревателя включаемого тумблером «Вкл. нагревателя». Температура кристалла регистрируется в процессе нагрева. В процессе нагрева изменится сопротивление и, следовательно, ток через кристалл. Зафиксировать значение тока образца при разных температурах в диапазоне до 90 0 С. Данные занесите в таблицу 2.

Таблица 2.

U = … В
№ пп Т 0 , С Т, К 1/Т, К -1 I(Т), мА R, Ом s, См/м lns
1.
2.
3.
4.

3. Отключите установку от сети.

4. В процессе нагрева образца снимается зависимость тока от напряжения и по полученным данным находится значение

.

,

В координатах lng (1/Т) зависимость проводимости от температуры представляется прямой линией с наклоном равным , где DЕ 3 – ширина запрещенной зоны, k = 1,38×10 23 Дж/К=8,625×10 -5 эВ/K ‑ постоянная Больцмана; Т – термодинамическая температура;

.

Вопросы для защиты работы.

1. Нарисуйте зонную диаграмму собственного и примесного (акцепторного и донорного полупроводника.

2. В каких полупроводниках (собственных или примесных) при комнатной температуре больше свободных носителей зарядов?

3. Может ли энергия свободного носителя иметь значение Е в < Е < Е пр?

4. Как изменяется концентрация основных носителей заряда в примесном полупроводнике при возрастании концентрации примесей?

5. Как изменяется концентрация неосновных носителей заряда в примесном полупроводнике при возрастании концентрации примесей?

6. Германий и кремний имеют одинаковое количество примесных центров. В каком полупроводнике концентрация неосновных носителей при комнатной температуре больше?

7. Нарисуйте зависимость ln n(1/T) для собственных и примесных полупроводников.

8. Может ли проводимость полупроводников уменьшаться с ростом температуры?

9. Как определить ширину запрещенной зоны полупроводников?

ЛАБОРАТОРНАЯ РАБОТА 16

ИЗУЧЕНИЕ ФОТОРЕЗИСТОРОВ

Ц е л ь р а б о т ы: Исследовать характеристики сернисто-кадмиевого фотосопротивления

О б о р у д о в а н и е : Фоторезистор, источник монохроматического света, микроамперметр, вольтметр, амперметр, реостаты, источники питания.

Теоретические сведения

Фотопроводимость – это возникновение проводимости вещества под действием света. Увеличение электропроводимости при освещении, как показывает опыт, связано с увеличением концентрации носителей тока.

Существует три пути увеличения концентрации под действием света:

1. Кванты света вырывают электрон из заполненной зоны и забрасывают его в зону проводимости (Рис.1), одновременно возрастает число дырок и электронов. Энергия фотона при этом должна быть несколько больше ширины запрещенной зоны полупроводника:

2. Электроны под действием света вырываются из заполненной (валентной) зоны и забрасываются на свободные примесные уровни, при этом возрастает дырочная проводимость (Рис.2), энергия кванта немного больше больше энергии активации акцепторов:

3. Электроны под действием света забрасываются с примесных уровней в свободную зону и увеличивается электронная проводимость (рис.3). Энергия квантов света при этом немного больше энергии донорных примесей:

Процесс внутреннего освобождения электронов под действием света является внутренним фотоэффектом.

На рис.1 представлена схема образования фотоносителей в полупроводнике: а – собственном, б – донорном, в – акцепторном.

Минимальную частоту n 0 (или максимальную длину волны l 0) при котором свт может еще образовывать фотоносители, т.е. является фотоэлектрически активным, называют красной границей фотопроводимости. Из формул (1 – 2) можно определить красную границу фотопроводимости:

Для собственных полупроводников ;

Для примесных полупроводников ,

Где с – скорость распространения света в вакууме, h – постоянная Планка.

Для собственных полупроводников, ширина запрещенной зоны которых 2¸3 эВ, красная граница фотороводимости приходится на видимую часть спектра. Многие примесные полупроводники имеют энергию активации примесей порядка десятых долей электрон-вольта. Красная граница фотопроводимости для них лежит в инфракрасной области спектра.

В собственном полупроводнике фотопроводимость связана с перебросами электрона из валентной зоны в зону проводимости. Красная граница определяется наименьшей энергией, необходимой для такого переброса, т.е., на первый взгляд, должна определяться соотношением:

Однако это не вполне точно. Дело в том, что поглощении света должен соблюдаться не только закон сохранения энергии, но и закон сохранения импульса. Электрон “проглотивший” фотон, получает не только энергию, но и импульс:

В общем случае, когда электрон вырывается светом с произвольного уровня валентной зоны, на котором он имел скорость V 1 , выбрасывается в зону проводимости на уровень, где его скорость станет V 2 , закон сохранения энергии и импульса имеет вид:

(4)

.

Если учесть, что импульс фотона относительно мал (так как скорость света очень велика), то и формулы (3) и (4) дают близкие значения. Поэтому для приближенной оценки ширины запрещенной зоны полупроводника можно пользоваться формулой (3).

При коэффициент поглощения очень велик; практически весь свет поглощается в очень тонком поверхностном слое полупроводника. При этом концентрация фотоэлектронов оказывается очень большой и увеличивает вероятность рекомбинации (т.е. их обратного перехода в валентную зону с уменьшением времени жизни носителей). Кроме того, в поверхностном слое всегда имеется большое количество дефектов и примесей, затрудняющих дрейф свободных электронов.

В силу этих причин свет с частотой поглощается поверхностным слоем и не вызывает заметного фотоэффекта.

Законы сохранения энергии и импульса в случае примесного полупроводника имеют более сложную форму и в данной работе не рассматриваются.

Наряду с ионизацией атома основной решетки возможно и другое возбуждкенное состояние основного атома, при котором электрон не отрывается от него, а лишь переходит на один из незаполненных уровней. Иначе говоря, электрон не разрывает связи с дыркой, а образует с ней единую систему. Такая система называется экситонной. Уровни энергии экситонов располагаются у дна зоны проводимости (рис.2).

Движение экситона можно представить как совместное перемещение электрона и дырки. Грубо это выглядит так: экситон на данном этапе “захлопывается”, т.е. электрон переходит в нормальное состояние. Выделившийся при этом экситон передается соседнему атому. Так как экситон является электрически нейтральной системой, то их возникновение в полупроводнике не приводит к увеличению проводимости. В настоящее время предполагается, что экситоны возникают при фотоэлектрически активном поглощении света. Возникнув, они некоторое время блуждают по объему полупроводника. При столкновении с примесными атомами или другими дефектами решетки экситоны или рекомбинируют или “разрываются”. В первом случае возбужденный атом переходит в нормальное состояние, а энергия излучается в виде квантов света. Во втором случае образуется пара носителей – электрон-“дырка”, которая вносит вклад в фотопроводимость полупроводника.

На фотопроводимость полупроводника существенное влияние оказывает температура. С понижением температуры понижается число носителей тока. Это приводит, во-первых, к увеличению относительной доли фотопроводимости в общей проводимости полупроводника, во-вторых, к увеличению абсолютной величины фотопроводимости, т.к. с уменьшением концентрации носителей тока уменьшается вероятность рекомбинации фотоносителей.

Изменение температуры называет изменение красной границы фотопроводимости, т.к. изменяется величина ширины запрещенной зоны.

Полупроводниковые фоторезисторы широко применяются на практике. Они являются световыми реле. Фоторезисторы имеют одинаковую проводимость в обоих направлениях.

В отличие от фотоэлементов в фоторезисторах под действием света фото э.д.с. не возникает. Фоторезисторы имеют различную чувствительность к разным длинам волн. Например, ФС-А1 наиболее чувствительны к инфракрасной области спектра (l max =2,2 мкм), ФСК – к видимой области спектра (l max =0,38 – 0,78 мкм), а ФС-Б – на границе видимой и инфракрасной областей (l max = 0,7 мкм).

Конструктивно фоторезисторы представляют собой обычные омические резисторы, состоящие из пластмассового корпуса 1, полупроводникового слоя 2, заключенного между токопроводящими электродами 3 и изолирующей прокладки 4 (рис.3).

Измерение и обработка результатов

Схема установки

1. Установите ток накала нити лампы в пределах 3 -3,5 А.

2. Снимите вольтамперную характеристику фоторезистора меняя напряжение с помощью потенциометра через каждые 5 В. При этом (задается преподавателем). Данные измерений занесите в таблицу 1.

Таблица 1.

№ пп l=const U, В I, мкА
1.
2.
3.
4.
5.

3. Освещая фоторезистор светом различной длины волны, снимите зависимость , при этом (U а - задается преподавателем). Отсчеты снимайте через 25 нм в интервале от 300 до 900 нм. Данные измерений занесите в таблицу 2.

Таблица 2.

Полученные результаты изобразите графически.

4. По графику определите - длину волны, к которой фоторезистор наиболее чувствителен.

Контрольные вопросы

1. Чем объясняется увеличение проводимости полупроводников при их освещении?

2. Почему при не выполняется заметный фотоэффект?

3. Что такое экситоны?

4. Как изменяется фотопроводимость полупроводников с изменением температуры?


Похожая информация.


Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются :

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая - дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p иn областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φ к и электрическое поле Е к , которое препятствует диффузии свободных носителей заряда из глубины р- иn- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера . Она равна контактной разности потенциалов φ к . Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; N а и N Д – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; р р и р n – концентрации дырок в р- и n- областях соответственно; n i – собственная концентрация носителей заряда в нелигированном полупроводнике,  т =кТ/е - температурный потенциал. При температуре Т =27 0 С  т =0.025В, для германиевого перехода  к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: l p-n = l p + l n :

Отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε 0 - диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

I др + I диф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δ м . Если δ м << l p-n , то p-n -переход называют резким. Если δ м >>l p-n , то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода . Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения  к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины  к - U . Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. l p-n ≈ ( к – U) 1/2 . Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

I р-n =I пр =I диф +I др I диф .

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией , а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение , возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно  к . Оно: увеличивает высоту потенциального барьера до величины  к + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. l p-n ≈( к + U) 1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I 0 , т.е.

I р-n =I обр =I диф +I др I др = I 0 .

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией . Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с  к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: I E = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = L p 2 .

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При V G = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях V G < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной L n со скоростью L n /τ p . Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей n p0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: N A >> N D . В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

Плотность тока насыщения J s равна:

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов Q B и заряд инжектированных носителей в базу из эмиттера Q p . При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость C B и диффузионную емкость C D .

Барьерная емкость C B - это емкость p-n перехода при обратном смещении V G < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

Величина заряда ионизованных доноров и акцепторов Q B на единицу площади для несимметричного p-n перехода равна:

Дифференцируя выражение (2.65), получаем:

Из уравнения (2.66) следует, что барьерная емкость C B представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения V G , то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость C D - это емкость p-n перехода при прямом смещении V G > 0, обусловленная изменением заряда Q p инжектированных носителей в базу из эмиттера Q p .

Зависимость барьерной емкости С B от приложенного обратного напряжения V G используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении V G . При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения V G . Задавая профиль легирования в базе варикапа N D (x), можно получить различные зависимости емкости варикапа от напряжения C(V G) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.

Дискретным уровням атома в твердом теле соответствует всегда дискретная система разрешенных зон, разделенных запретными зонами. Как правило, если электроны образуют в атоме или молекуле законченную группу, то при объединении их в твердое или жидкое тело создаются зоны, все уровни которых заполнены, поэтому такие вещества будут обладать при абсолютном нуле свойствами изоляторов. Сюда относятся решетки благородных газов, молекулярные и ионные решетки соединений с насыщенными связями. В решетках алмаза, кремния, германия, a-олова, соединений типа AIIIBV, AIIBVI, CSi каждый атом связан единичными валентными связями с четырьмя ближайшими соседями, так что вокруг него образуется законченная группа электронов s 2p 6, и валентная зона оказывается заполненной.

Не вдаваясь в подробности строения зон, подчеркнем, что полупроводники и диэлектрики отличаются от металлов тем, что валентная зона у них при T » 0°К всегда полностью заполнена электронами, а ближайшая свободная зона (зона проводимости) отделена от валентной зоной запрещенных состояний Ширина запрещенной зоны DЕ у полупроводников - от десятых долей электрон-вольт до 3 эв (условно), а у диэлектриков - от 3 до 5 эв (условно). Если между полупроводниками и диэлектриками существует только количественное различие, то отличие их от металлов качественное. Чтобы проходил ток в металле, не требуется никакого другого воздействия, кроме наложения электрического поля, так как валентная зона в металле не заполнена или перекрывается с зоной проводимости (рис. 20, а).

На рис. 20 изображены схемы появления дырки в атомной решетке элементарного полупроводника и возникновение электрона проводимости.

Рис. 20. Схема энергетических зон: а - в металле; б - в полупроводнике; в - в диэлектрике; DE - ширина запрещенной зоны

Для возбуждения проводимости в полупроводнике (Рис. 20, б) необходимо к электрону, находящемуся в заполненной валентной зоне, подвести энергию, достаточную для преодоления зоны запрещенных состояний. Только при поглощении энергии не меньше, чем DЕ, электрон будет переброшен из верхнего края валентной зоны в свободную зону (зону проводимости). Если этот энергетический порог преодолен, то чистый (собственно) полупроводник имеет электронную проводимость. Чем меньше ширина запрещенной зоны DЕ , тем больше проводимость при данной температуре. Так как у диэлектриков DЕ очень велика, то проводимость их очень мала (рис. 20, б).

При приближении к абсолютному нулю термическое возбуждение оказывается недостаточным, и полупроводники становятся диэлектриками, а металлы - сверхпроводниками. Чем выше температура и чем более интенсивно полупроводник облучается квантами с энергией hv не меньше DЕ, тем больше проводимость собственно полупроводника, так как увеличивается число электронов, перебрасываемых из валентной зоны в зону проводимости.

Для чистых полупроводников при убывании частоты падающего света коэффициент поглощения при некотором значении v резко падает, и материал становится прозрачным для лучей с меньшими частотами. Этот участок быстрого спада поглощения называется краем собственного поглощения. Длина волны X и частота v , отвечающая краю собственного поглощения, приближенно определяются условиями:

где DЕ называется оптической шириной запрещенной зоны.

Энергия квантов видимого света лежит в пределах 1,5-3,0 эв , т.е. обычно превышает энергию возбуждения проводимости (АЕ). Если в полупроводнике есть некоторое количество примесей, он становится непрозрачным в широкой области частот - от ультрафиолетовой вплоть до радиочастот.

Металлы при облучении светом практически не изменяют проводимость, так как число электронов проводимости в них не изменяется. Дальше мы остановимся на причинах большой чувствительности полупроводников к дефектам строения кристаллов и к нарушению состава, чем они также сильно отличаются от металлов.

Уход электрона из валентной зоны полупроводника в зону проводимости оставляет свободное место (дырку) в валентной зоне с положительным зарядом, численно равным заряду электрона. Таким образом, дыркой называется освобожденное от электрона место в области нарушенной ковалентной связи, соединяющей соседние атомы собственно полупроводника, имеющее единичный положительный заряд.

Электрон, появившийся в междоузлии, является подвижным носителем заряда. Такие электроны, как и дырки, могут свободно перемещаться по кристаллу (диффундировать). Если поместить кристалл в электрическое поле с напряжением, падающим справа налево, то «свободный» электрон приобретает направленное движение против поля (вправо). Кроме того, на место образовавшейся дырки (+) перейдет электрон из какого-либо места соседней связи левее дырки. Таким образом, образуется новая дырка вместо прежней. Следовательно, дырка перемещается по направлению поля (влево) при скачках электронов в валентной зоне, совершающихся слева направо, как показано на рис. 21 (стрелками). Перенос заряда электронами валентной зоны называют дырочным. Таким образом, в собственных полупроводниках бывает двоякий механизм проводимости: электронный и дырочный. Удельная электропроводность полупроводника в общем случае выражается уравнением:

где: ип и ир - подвижности соответственно электронов и дырок; n и p - их концентрации.

Рис. 21. Схема разрыва валентной связи и появление свободного электрона и дырки как носителей заряда: а - в плоском изображении; б - в зонной энергетической диаграмме; А - атомы кремния или германия; (:) - валентные электроны, осуществляющие связь соседних атомов; (+) - дырка; (-) - свободный электрон; ЕС - нижний уровень свободной зоны; ЕВ - верхний уровень валентной зоны

В собственном полупроводнике

где: k - константа Больцмана, равная 1,38 × 10-16 эрг/град, или 0,863 × 10-4 эв /град; А для полупроводников с ковалентными связями (например, кремния и германия) пропорциональна Т 1,5, а подвижности носителей заряда пропорциональны Т -1,5, поэтому без большой погрешности можно написать

считая s0 - постоянной величиной для данного полупроводника. Логарифмируя, получим:

Это уравнение прямой линии In s = f с угловым коэффициентом tg j = . Отсюда:

где j - угол между прямой и положительным направлением оси 1/Т.

Так как этот угол всегда тупой, то tgj < 0, а DЕ > 0. Здесь DЕ называют термической шириной запрещенной зоны, т. е. вычисленной из температурного хода проводимости.

Возникновение пары электрон - дырка за счет нарушения нормально заполненной связи (НЗ) можно записать в виде уравнения обратимой реакции НЗ + DЕ ↔ + (где - электрон проводимости, - дырка). При заданной температуре устанавливается динамическое равновесие. Процесс, идущий слева направо, является генерацией электронов и дырок, а обратный процесс называется рекомбинацией электронов и дырок. При повышении температуры в соответствии с принципом Ле Шателье это равновесие сдвигается вправо. При данной температуре по закону действия масс можно записать константу равновесия так: К. = пр / [НЗ].Из того что практически очень большая величина [НЗ] постоянна, следует

Нормально заполненных связей практически столько, сколько связей в 1 см3. Например, в 1 см3 германия связей (6,02 × 1023 × 5,32/72,59) × 2 = 9,0 × 1022 (здесь 5,32 - плотность германия, г /см3; 72,59 - его атомная масса). Дробь, представляющая собой число атомов германия в 1 см3, умножается на 2 потому, что каждый атом имеет 4 связи с соседними атомами, но каждая связь соединяет два атома.

Для беспримесного полупроводника п = р = п i (п i - от слова intrinsic - собственный); поэтому предыдущее уравнение можно представить:

Это значит: произведение концентраций электронов проводимости и дырок в полупроводнике при постоянной температуре постоянное, равное произведению концентраций их в собственном полупроводнике при той же температуре и не зависит от характера и количества содержащихся в нем примесей. Для германия при 300o К пр - 6,25 × 1026. Отсюда концентрация электронов и дырок в беспримесном германии п = р = п i = 2,5 × 113 см -3.Для кремния ni примерно на три порядка меньше.

Кикоин А.К. Диэлектрики, полупроводники, полуметаллы, металлы //Квант. - 1984. - № 2. - С. 25-29.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В классической физике было принято все вещества по их электрическим свойствам разделять на проводники и диэлектрики («Физика 9», §§44 и 46). Современная физика различает еще два промежуточных состояния - полупроводники («Физика 9», § 78) и полуметаллы. Лишь с появлением квантовой механики стало ясно, в чем различия между всеми этими типами веществ. В этой заметке мы постараемся вкратце описать суть современной квантово-механической теории, объясняющей электрические свойства твердых тел.

Твердое тело состоит из атомов, образующих кристаллическую решетку. Атомы удерживаются в решетке силами взаимодействия электрически заряженных атомных частиц - положительно заряженных ядер и отрицательно заряженных электронов. Электрический ток в кристалле - это движение электронов, которое подчиняется законам квантовой механики. Согласно этим законам, электроны и в отдельном атоме, и в кристалле могут обладать лишь определенными (разрешенными) значениями энергии, или, иными словами, находиться на определенных энергетических уровнях . Чем выше уровень, тем большей энергии он соответствует.

В атоме эти уровни расположены довольно далеко один от другого - принято говорить, что уровни образуют дискретный энергетический спектр (рис. 1). При определенных условиях электроны могут переходить с одного уровня на другой, разрешенный, уровень. Электрон с данной энергией может двигаться только по замкнутой траектории - орбите - вокруг ядра .

Когда атомы объединяются в кристалл, часть электронов по-прежнему остается на своих атомных орбитах, но наиболее удаленные от ядра электроны получают возможность двигаться по всему кристаллу благодаря тому, что внешние орбиты соседних атомов перекрываются. А это значит, что и энергетические уровни, раньше принадлежавшие отдельным атомам, становятся «общими» для всего кристалла. Вместо дискретных уровней в кристалле образуются энергетические зоны , состоящие из очень близко расположенных уровней. Электроны, которые находятся на этих «обобществленных» уровнях, называются валентными электронами .

Валентные электроны движутся по орбитам, охватывающим весь кристалл, и, казалось бы, могут проводить электрический ток. Однако если бы все было так просто, все твердые тела были бы хорошими проводниками (металлами). Законы квантовой механики делают картину гораздо более сложной и разнообразной.

Во-первых, энергетические зоны разделены промежутками, в которых нет ни одного энергетического уровня. Эти промежутки называются запрещенными зонами . Во-вторых, электроны подчиняются так называемому принципу Паули, согласно которому на каждом уровне в данном состоянии может находиться только один электрон. При наинизшей возможной температуре (равной абсолютному нулю) энергетические уровни последовательно снизу вверх (то есть начиная с наименьших значений энергии) заполняются электронами в соответствии с принципом Паули, а уровни с более высокими энергиями остаются свободными. Различная степень заполнения энергетических зон, а также различия в их относительном расположении и позволяют разделить все твердые тела на диэлектрики, полупроводчики, полуметаллы и металлы.

Диэлектрики.

При T = 0 валентные электроны целиком заполняют наинизшую зону, называемую валентной зоной (рис. 2). Свободных уровней в ней нет, а следующая разрешенная зона - зона проводимости - отделена от нее широкой запрещенной зоной. Если к такому образцу приложить электрическое поле, оно не сможет ускорить электроны, то есть создать электрический ток, так как ускорить электрон - значит сообщить ему дополнительную энергию, а, согласно законам квантовой механики, это можно сделать, только переведя его на более высокий энергетический уровень. Но принцип Паули запрещает электронам занимать уже занятые уровни, а попасть в следующую разрешенную зону, которая совершенно пуста, они не могут, потому что энергия, полученная от электрического поля, много меньше ширины Δ запрещенной зоны.

При температуре, отличной от нуля, электроны, в принципе, могут перейти в зону проводимости и стать носителями электрического тока. Однако для того чтобы число электронов, перешедших в эту зону, было достаточно большим, нужно диэлектрик нагреть до такой высокой температуры, что он расплавится, прежде чем ток достигнет измеримой величины. При комнатной температуре ток в диэлектрике практически не течет.

Полупроводники.

От диэлектрика полупроводник отличается только тем, что ширина Δ запрещенной зоны, отделяющей валентную зону от зоны проводимости, у него много меньше (в десятки раз). При T = 0 валентная зона в полупроводнике, как и в диэлектрике, целиком заполнена, и ток по образцу течь не может. Но благодаря тому, что энергия Δ невелика, уже при незначительном повышении температуры часть электронов может перейти в зону проводимости (рис. 3). Тогда электрический ток в веществе станет возможным, причем сразу по двум «каналам».

Во-первых, в зоне проводимости электроны, приобретая энергию в электрическом поле, переходят на более высокие энергетические уровни. Во-вторых, вклад в электрический ток дают... пустые уровни, оставленные в валентной зоне электронами, ушедшими в зону проводимости. Действительно, принцип Паули разрешает любому электрону занять освободившийся уровень в валентной зоне. Но, заняв этот уровень, он оставляет свободным свой собственный уровень и т. д. Если следить не за движением электронов по уровням в валентной зоне, а за движением самих пустых уровней, то оказывается, что эти уровни, имеющие научное название дырки , тоже становятся носителями тока. Число дырок, очевидно, равно числу электронов, ушедших в зону проводимости (так называемых электронов проводимости ), но дырки обладают положительным зарядом, потому что дырка - это отсутствующий электрон.

Таким образом, в полупроводнике электрический ток - это ток электронов в зоне проводимости и дырок в валентной зоне. Такая проводимость полупроводника называется собственной .

Электроны и дырки при движении по кристаллу взаимодействуют с атомами кристаллической решетки, теряя при этом свою энергию. С этими потерями связано электрическое сопротивление вещества. При увеличении температуры потери энергии возрастают, так что сопротивление полупроводника должно было бы с ростом температуры тоже увеличиваться. Но при повышении температуры растет число электронов , переходящих в зону проводимости, а следовательно, и число дырок r валентной зоне. Это значит, что растет (и очень быстро) общее число носителей тока. Из-за этого сопротивление полупроводника с повышением температуры не растет, а падает. Полупроводник и можно определить как вещество, практически не проводящее ток при абсолютном нуле температур, но сопротивление которого с ростом температуры резко падает .

В природе, однако, полупроводников с собственной проводимостью не существует: в них всегда имеются примеси других веществ, которые и определяют их электрические свойства. Наличие примесей приводит к тому, что в запрещенной зоне полупроводника появляются дополнительные энергетические уровни, с которых или на которые тоже возможны электронные переходы. Широкое применение полупроводников в технике стало возможным только после того, как технологи научились управлять содержанием примесей в полупроводниках и по своему усмотрению делать их проводимость (примесную проводимость ) почти чисто электронной или чисто дырочной.

Оказывается, можно подобрать такие примеси, атомы которых легко отдают электроны. Освободившиеся при этом дополнительные уровни энергии располагаются внутри запрещенной зоны полупроводника вблизи ее верхнего края (рис. 4, а). Такие примеси называются донорными примесями , а уровни - донорными уровнями. Из рисунка 4, а видно, что при одной и той же температуре электронам с таких уровней гораздо легче перейти в зону проводимости, чем электронам из валентной зоны, поэтому примесные уровни и станут основными поставщиками электронов в зону проводимости. Но при этом в валентной зоне дырок появляться не будет, и проводимость полупроводника станет почти чисто электронной. Такие полупроводники называются полупроводниками n -типа.

Существуют и такие примеси, атомы которых легко присоединяют к себе электроны (акцепторные примеси ). Дополнительные уровни их электронов (акцепторные уровни) тоже располагаются внутри запрещенной зоны полупроводника, но вблизи ее дна (рис. 4, б). В этом случае электронам из валентной зоны легче перейти на акцепторные уровни примеси, чем в зону проводимости. Тогда в валентной зоне появятся дырки без того, чтобы в зоне проводимости появились электроны. Получится полупроводник с почти чисто дырочной проводимостью, или полупроводник p -типа.

Электроны в металлах окончательно «забывают» свое атомное происхождение, их уровни образуют одну очень широкую зону. Она всегда заполнена лишь частично (число электронов меньше числа уровней) и потому может называться зоной проводимости (рис. 6). Ясно, что в металлах ток может течь и при нулевой температуре . Более того, с помощью квантовой механики можно доказать, что в идеальном металле (решетка которого не имеет дефектов) при T = 0 ток должен течь без сопротивления !

К сожалению, идеальных кристаллов не бывает, а нулевой температуры достичь невозможно. В действительности электроны теряют энергию, взаимодействуя с колеблющимися атомами решетки, так что сопротивление реального металла растет с температурой (в отличие от сопротивления полупроводника). Но самое главное - это то, что при любой температуре электропроводность металла значительно выше электропроводности полупроводника потому, что в металле гораздо больше электронов, способных проводить электрический ток.