Беседа шестая. полупроводники и полупроводниковые приборы

Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu 2 O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.

Характеристика полупроводников

Из 104 элементов таблицы Менделеева 79 являются металлами, 25 - неметаллами, из которых 13 обладают полупроводниковыми свойствами и 12 - диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.

Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.

Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие полиацетилен (СН) n, - полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd 1-x Mn x Te) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO 3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La 2 CuO 4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La 1-x Sr x) 2 CuO 4 .

Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10 -4 до 10 7 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника - от 0 до 3 эВ. Металлы и полуметаллы - это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs - 1,5 эВ. GaN, материал для в синей области, имеет запрещённую зону шириной 3,5 эВ.

Энергетический зазор

Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней - свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.

Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01-3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.

Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом - участком запрещённых энергий электронов.

В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.

Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.

В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно - энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.

Примесная и собственная проводимость полупроводников

Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.

Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости. Примесные полупроводники - это проводники, обладающие примесной проводимостью.

Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут - это донорные примеси кремния.

Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.

Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь - основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.

Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий - акцепторные примеси для кремния.

Характеристики полупроводника находятся в зависимости от дефектов его кристаллической структуры. Это является причиной необходимости выращивания предельно чистых кристаллов. Параметрами проводимости полупроводника управляют путем добавления легирующих присадок. Кристаллы кремния легируют фосфором (элемент V подгруппы), который является донором, чтобы создать кристалл кремния n-типа. Для получения кристалла с дырочной проводимостью в кремний вводят акцептор бор. Полупроводники с компенсированным уровнем Ферми для перемещения его в середину запрещённой зоны создают подобным образом.

Одноэлементные полупроводники

Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.

Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа - фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).

Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва - dE = 5,47 эВ.

Кремний - полупроводник, используемый в солнечных батареях, а в аморфной форме - в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.

Германий - полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.

Селен - полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.

Двухэлементные соединения

Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают 4 группы. Переход от 4 группы элементов к соединениям 3-4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа - антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.

Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути - полупроводник без энергетического зазора, полуметалл, подобно α-олову.

Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2- 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1-7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Рост энергии сцепления кристалла по причине кулоновского межионного взаимодействия способствует структурированию атомов с шестикратной, а не квадратичной координацией. Соединения 4-6 групп - сульфид и теллурид свинца, сульфид олова - также полупроводники. Степень ионности данных веществ тоже содействует образованию шестикратной координации. Значительная ионность не препятствует наличию у них очень узких запрещённых зон, что позволяет использовать их для приёма ИК-излучения. Нитрид галлия - соединение 3-5 групп с широким энергетическим зазором, нашёл применение в и светодиодах, работающих в голубой части спектра.

GaAs, арсенид галлия - второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.

ZnS, сульфид цинка - цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.

SnS, сульфид олова - полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.

Оксиды

Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа - оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.

Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La 2 CuO 4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La 2 CuO 4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa 2 Cu 3 O 8 . При высоком давлении её значение составляет 134 К.

ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.

Слоистые кристаллы

Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым В слоях действуют значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов - интеркаляцией.

MoS 2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.

Органические полупроводники

Примеры полупроводников на основе органических соединений - нафталин, полиацетилен (CH 2) n , антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида -С=С-С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки - тоже полупроводниками.

Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С 60 щелочным металлом превращает его в сверхпроводник.

Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью

Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.

Магнитные полупроводники

Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа - сульфид европия, селенид европия и твёрдые растворы, подобные Cd 1-x- Mn x Te. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники - это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.

Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn 0,7 Ca 0,3 O 3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.

Полупроводниковые сегнетоэлектрики

Этот тип кристаллов отличается наличием в них электрических моментов и возникновением спонтанной поляризации. Например, такими свойствами обладают полупроводники титанат свинца PbTiO 3 , титанат бария BaTiO 3 , теллурид германия GeTe, теллурид олова SnTe, которые при низких температурах имеют свойства сегнетоэлектрика. Эти материалы применяются в нелинейно-оптических, запоминающих устройствах и пьезодатчиках.

Разнообразие полупроводниковых материалов

Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-5 2 (AgGaS 2) и 2-4-5 2 (ZnSiP 2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3-5 и 2-6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As 2 Se 3), - полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.

Полупроводники - это вещества, в которых электрический ток образуется движением электронов, а величина удельного сопротивления находится в пределах между проводниками и диэлектриками. Полупроводниками являются химические элементы IV, У и VI групп периодической системы Д. И. Менделеева - графит, кремний, германий, селен и другие, а также многие окислы и другие соединения различных металлов. Количество подвижных носителей зарядов в полупроводниках в обычных условиях невелико, однако оно возрастает в сотни и тысячи раз при некоторых внешних воздействиях (нагревание, действие света и т. д.), а также при наличии в полупроводнике определенных примесей.

Полупроводники делятся на электронные (типа n ) и дырочные (типа p ). В полупроводниках типа n в качестве носителей зарядов рассматриваются электроны, которые при образовании тока перемещаются по всему полупроводнику подобно свободным электронам в металлах. В полупроводниках типа p в качестве носителей зарядов рассматриваются так называемые дырки (под дырками понимается свободное место у атома, которое может быть занято посторонним ему электроном). Дырки считаются эквивалентом положительного заряда, равного электрону. При образовании тока в полупроводнике типа p электроны совершают только направленные перескоки между соседними атомами; при перескоке электрона из одной дырки в другую дырка перемещается в противоположном направлении, что и рассматривается как образование тока.

Основные области применения полупроводников. Полупроводники, сопротивление которых при нагревании вследствие освобождения носителей зарядов значительно снижается, применяются в качестве электротермометров, или термисторов; по сравнению с ртутными термометрами они отличаются значительно более высокой чувствительностью и отсутствием тепловой инерции. Термистор (рис. 1, а) обычно имеет форму шарика 1, в который заделаны выводы 2 из тонкой проволоки. Термистор окружен тонкой пластмассовой изоляцией 3 и укреплен на конце измерительной ручки 1 (рис. 1,6). Провода от термистора включаются в одно плечо измерительной схемы (мостик Уитстона), в другое плечо которой включен микроамперметр 2 (рис. 1, б). Шкала прибора градуируется в градусах Цельсия. В одном корпусе с прибором помещаются сухие элементы и другие детали измерительной схемы. Благодаря малой величине термистор может применяться для измерения кожной, полостной и даже внутритканевой температуры; в последнем случае он заделывается внутрь иглы, которая вкалывается в ткань.


Рис. 1. Схема устройства термистора.

Если нагревать один конец стержня из полупроводника, то освобождающиеся в нем носители зарядов с высокой кинетической энергией (электроны или дырки) будут диффундировать к другому концу стержня, образуя на нем избыток заряда соответствующего знака. Между горячим и холодным концами полупроводника образуется разность потенциалов, прямо пропорциональная разности температур этих концов. Обычно составляют пару из электронного и дырочного полупроводника. При нагревании их спая между холодными концами образуется термоэлектродвижущая сила, равная сумме разностей потенциалов, образующейся в каждом из полупроводников. Она в сотни раз превышает термоэлектродвижущую силу металлических термопар.

Термоэлектрические явления обратимы: если через спай электронного и дырочного полупроводника пропускать в определенном направлении ток от постороннего источника, то спай будет охлаждаться по отношению к температуре свободных концов полупроводника. Это явление используется при устройстве холодильных элементов. На рис. 2 показан полупроводниковый лабораторный холодильник. Холодильные элементы расположены в форме кольца, спаями внутрь. В это кольцо вставляется сосуд с охлаждаемой жидкостью. Противоположные концы элементов снабжены радиаторами, при помощи которых у них поддерживается температура окружающей среды. Постоянный ток от аккумулятора подводится к клеммам.


Рис. 2. Полупроводниковый лабораторный холодильник.

При тесном соприкосновении полупроводника с электронной и дырочной проводимостью (такой контакт называется электронно-дырочным переходом) происходит диффузия электронов из электронного полупроводника в дырочный и дырок из дырочного полупроводника в электронный. При этом в прилежащих к контакту слоях полупроводника количество основных носителей зарядов уменьшается, и электропроводность их снижается. Если к электронно-дырочному переходу приложена внешняя разность потенциалов, вызывающая движение основных носителей зарядов в полупроводнике навстречу друг другу, то пограничные слои обогащаются ими, электропроводность их повышается и ток в этом направлении образуется беспрепятственно. Если внешняя разность потенциалов вызывает движение основных носителей зарядов в полупроводнике в противоположные стороны от контакта, то электропроводность пограничных слоев снижается до минимума. Ток в этом направлении не образуется. В связи с этим электронно-дырочный переход называется «запирающим слоем» и применяется для выпрямления переменного тока. Купроксные или селеновые выпрямительные элементы состоят из опорной шайбы со слоем полупроводника, в котором образован запирающий слой. Необходимое (в зависимости от величины выпрямляемого напряжения) число элементов собирается на стержне в форме столбика (рис.3). Площадь элементов сообразуется с силой выпрямляемого тока.


Рис. 3. Купроксный выпрямительный элемент.


Рис. 4. Схема устройства фотоэлемента.

Фотоэлементы - это полупроводниковые приборы, в которых под действием света образуется самостоятельная разность потенциалов. Селеновый фотоэлемент (рис. 4) состоит из слоя полупроводника, расположенного между двумя электродами: опорным 1 и вторым 3 в виде тонкого прозрачного для света слоя металла. Внутри полупроводника образован запирающий слой 2.

При действии света в полупроводниках происходит освобождение электронов и дырок, которые стремятся распределиться по всему полупроводнику. Однако через запирающий слой могут проходить заряды только одного какого-нибудь знака. В результате этого в полупроводнике происходит разделение зарядов и между прилегающими к нему электродами образуется разность потенциалов. Кривая спектральной чувствительности селенового фотоэлемента близка к аналогичной кривой для глаза. В связи с этим он широко применяется в приборах для объективной фотометрии (люксметрах) и колориметрии (фотоколориметрах).

Электронно-дырочный переход используется также при устройстве кристаллических диодов и триодов - приборов, аналогичных по свойствам электронным лампам и во многих случаях применяющихся вместо них.

Свойства полупроводников — свойство янтаря после натирания шерстью притягивать к себе мелкие предметы, было подмечено очень давно. Но электрические явления, непостоянные и преходящие, долго находились в тени магнитных явлений, более стабильных во времени.

В 17-18 веках электрические опыты оказались широко доступными, и был сделан ряд новых открытий. В 1729 году англичанин Стефан Грей обнаружил, что все вещества делятся на 2 класса: неспособные переносить электрический заряд изоляторы (называемые «электрическими телами», поскольку их можно было электризовать трением), и способные переносить заряд проводники (называемые «неэлектрическими телами»).

Современные представления об электрических свойствах веществ

С развитием дальнейших представлений свойства веществ проводить электрический ток стали характеризовать количественно – значением удельной электрической проводимости, измеряемой в сименсах на метр (См/м). При комнатной температуре проводимость проводников лежит в диапазоне от 10 6 до 10 8 См/м, а у диэлектриков (изоляторов) меньше 10 -8 См/м.

Вещества, по проводимости занимающие промежуточное положение, логично назвать полупроводниками или полуизоляторами. Исторически закрепилось первое название. Проводимость полупроводников лежит в пределах от 10 -8 до 10 6 См/м. Между этими 3 видами веществ не существует резких границ, качественные отличия определяются разницей количественных свойств.

Из физики известно, что электрон в твердом теле не может обладать произвольной энергией, эта энергия может принимать лишь определенные значения, называемые энергетическими уровнями. Чем ближе электрон в атоме к ядру, тем ниже его энергия. Наибольшей энергией обладает удаленный электрон. В электрических и химических процессах участвуют лишь электроны внешней оболочки атома (электроны т.н. валентной зоны).

Электроны с более высокой энергией, чем электроны валентной зоны, относятся к электронам зоны проводимости. Эти электроны не связаны с отдельными атомами, и они беспорядочно движутся внутри тела, обеспечивая проводимость.

Атомы вещества, отдавшего электрон в зону проводимости, рассматриваются как заряженные положительно ионы, они неподвижны и образуют кристаллическую решетку вещества, внутри которой движутся электроны проводимости. У проводников (металлов) зона проводимости примыкает к валентной зоне, и каждый атом металла без помех отдает в зону проводимости один или большее число электронов, что и обеспечивает металлам свойство электропроводности.

Свойства полупроводников определяются шириной запрещенной зоны

У полупроводников и диэлектриков между валентной зоной и зоной проводимости существует т.н. запрещенная зона. Электроны не могут обладать энергией, соответствующей энергии уровней этой зоны. Деление веществ на диэлектрики и полупроводники производится в зависимости от ширины запрещенной зоны. При ширине запрещенной зоны в несколько электрон-вольт (эВ), у электронов валентной зоны мало шансов попасть в зону проводимости, что и делает эти вещества непроводящими. Так, у алмаза ширина запрещенной зоны 5,6 эВ. Однако, с повышением температуры, электроны валентной зоны увеличивают свою энергию, и некоторая часть попадает в зону проводимости, что ухудшает изолирующие свойства диэлектриков.

Если же ширина запрещенной зоны порядка одного электрон-вольта, вещество приобретает заметную проводимость уже при комнатной температуре, становясь еще более проводящим с повышением температуры. Подобные вещества мы и относим к полупроводникам, и свойства полупроводников определяются шириной запрещенной зоны.

При комнатной температуре ширина запрещенной зоны у полупроводников менее 2,5-3 эВ. В качестве примера, ширина запрещенной зоны германия 0,72 эВ, а кремния 1,12 эВ. К широкозонным полупроводникам относятся полупроводники с шириной запрещенной зоны более 2 эВ. Обычно, чем выше у полупроводника ширина запрещенной зоны, тем выше его температура плавления. Так, у германия температура плавления 936 °С, а у кремния 1414 °С.

Два вида проводимости полупроводников – электронная и дырочная

При температуре абсолютного нуля (-273 °С), в чистом полупроводнике (собственном полупроводнике, или полупроводнике i -типа) все электроны находятся в составе атомов, и полупроводник является диэлектриком. При повышении температуры часть электронов валентной зоны попадает в зону проводимости, и возникает электронная проводимость. Но когда атом теряет электрон, он становится заряженным положительно.

Перемещаться под действием электрического поля атом, занимающий место в кристаллической решетке, не может, но он способен притянуть электрон из соседнего атома, заполнив «дырку» в своей валентной зоне. Потерявший электрон атом, в свою очередь, также будет искать возможность заполнить образовавшуюся во внешней оболочке «дырку». Дырка обладает всем и свойствами положительного заряда, и можно считать, что в полупроводнике существуют 2 вида носителей – отрицательно заряженные электроны и положительно заряженные дырки.

Электроны проводимости могут занимать свободные места в валентной зоне, т.е. объединяться с дырками. Такой процесс называется рекомбинацией, и, поскольку генерация и рекомбинация носителей происходит одновременно, при данной температуре количество пар носителей находится в состоянии динамического равновесия – количество возникающих пар сравнивается с количеством рекомбинирующих.

Собственная проводимость полупроводника i -типа складывается из электронной и дырочной проводимости, при этом преобладает электронная проводимость, поскольку электроны подвижнее дырок. Удельная электрическая проводимость металлов или полупроводников зависит от числа носителей заряда в 1 куб. см, или от концентрации электронов и дырок.

Если число атомов в 1 куб. см вещества порядка 10 22 , то при комнатной температуре в металлах число электронов проводимости не меньше числа атомов, т.е. также порядка 10 22 , при этом в чистом германии концентрация носителей заряда порядка 10 13 см -3 , а в кремнии 10 10 см -3 , что значительно меньше, чем у металла, оттого проводимость полупроводников в миллионы и миллиарды раз хуже, чем у металлов.

Все дело в примесях

При приложении к полупроводнику напряжения возникающее в нем электрическое поле ускоряет электроны и дырки, их движение становится упорядоченным, и возникает электрический ток – ток проводимости. Помимо собственной проводимости, в полупроводниках существует еще и примесная проводимость, обязанная, как можно догадаться по названию, наличию в полупроводнике примесей.

Если к 4-валентному германию добавить ничтожное количество 5-валентной сурьмы, мышьяка или фосфора, на связь с атомами германия атомы примеси задействуют 4 электрона, а пятый окажется в зоне проводимости, что резко улучшает проводимость полупроводника. Такие примеси, атомы которых отдают электроны, называются донорами. Поскольку в таких полупроводниках преобладает электронная проводимость, они называются полупроводниками n -типа (от английского слова negative — отрицательный). Чтобы все атомы донора отдавали по электрону в зону проводимости, энергетическая зона атомов донора должна располагаться как можно ближе к зоне проводимости полупроводника, несколько ниже ее.

При добавлении к 4-валентному германию примеси 3-валентного бора, индия или алюминия, атомы примеси отнимают электроны от атомов германия, и германий приобретает дырочную проводимость, становится полупроводником p -типа (от английского слова positive – положительный). Примеси, создающие дырочную проводимость, называются акцепторами.

Чтобы акцепторы могли легко захватывать электроны, энергетические уровни атомов акцептора должны примыкать к уровням валентной зоны полупроводника, располагаясь чуть выше ее.

Примесная проводимость обычно значительно превышает собственную, поскольку концентрация атомов донора или акцептора значительно превышает концентрацию собственных носителей. Получить полупроводник со строго дозированным количеством примеси очень сложно, при этом и исходный полупроводник должен быть очень чистым. Так, для германия допускается не более одного атома посторонней примеси (т.е. не донора и не акцептора) на 10 миллиардов атомов германия, а для кремния требования по чистоте еще в 1000 раз выше.

Переход металл-полупроводник

В полупроводниковых приборах возникает необходимость применения контактов полупроводника с металлом. Вещество (металл или полупроводник) характеризуется энергией, требуемой электрону для выхода из вещества – работой выхода. Обозначим работу выхода из металла A м, а из полупроводника A п.

Омические контакты

При необходимости создания омического контакта (т.е. невыпрямляющего, когда сопротивление контакта мало при любой полярности приложенного напряжения) достаточно обеспечить контакт металла с полупроводником при создании следующих условий:

  • При контакте с n-полупроводником: A м < A п;
  • При контакте с p-полупроводником: A м > A п .

Подобные свойства полупроводников объясняется тем, что в приграничном слое полупроводника накапливаются основные носители, что и обеспечивает его малое сопротивление. Накопление основных носителей обеспечивается тем, что электроны всегда переходят из вещества с меньшей работой выхода в вещество с большей работой выхода.

Выпрямляющие контакты

А вот если с полупроводником n -типа в контакте находится металл с A м > A п, то электроны перейдут из полупроводника в металл, и в приграничном слое образуется обедненная основными носителями область, обладающая малой проводимостью. Для того, чтобы преодолеть создавшийся барьер, к контакту необходимо приложить напряжение определенной полярности и достаточной величины. При приложении обратной полярности проводимость контакта еще более ухудшится – такой контакт обладает выпрямляющими свойствами. Нетрудно видеть, что аналогичные свойства полупроводников односторонней проводимости обладает контакт металла с полупроводником p -типа при A м < A п.

История полупроводникового детектора

Подобные свойства полупроводников металл-полупроводник были открыты еще немецким физиком Фердинандом Брауном в 1874 году. Самые первые диоды на основе контакта металл-полупроводник появились около 1900 года, когда в радиоприемниках стали использоваться детекторы, состоящие из вольфрамовой проволоки, прижатой к поверхности кристалла галенита (сульфида свинца). Радиолюбители делали детекторы самостоятельно, сплавляя свинец с серой.

В 1906 году французский ученый Г. Пикар сконструировал детектор из кремниевого кристалла и спиральной контактной пружины с острием, и получил на него патент. Электронные приборы на основе контакта металл-полупроводник называют диодами Шоттки по имени исследовавших подобные контакты немецкого физика Вальтера Шоттки.

В 1926 году появились мощные купроксные выпрямительные элементы, представляющие собой медную пластину с нанесенным слоем закиси меди, получившие широкое применение в силовых блоках.

Электронно-дырочный переход

Электронно-дырочный переход, или n-p -переход – это область на границе двух полупроводников разного типа проводимости, и работа полупроводниковых приборов основывается на использовании свойств подобных переходов. При отсутствии приложенного к переходу напряжения носители заряда перемещаются из областей с более высокой концентрацией в области с более низкой концентрацией — из полупроводника n -типа в полупроводник p -типа перемещаются электроны, а в обратном направлении дырки.

В результате этих перемещений по обе стороны границы раздела возникают области с объемным зарядом, а между этими областями возникает контактная разность потенциалов. Эта разность потенциалов образует потенциальный барьер, что препятствует дальнейшему переходу носителей через барьер. Высота барьера (контактная разность потенциалов) зависит от концентрации примесей, и для германия составляет обычно 0,3-0.4 В, доходя до 0,7 В. В установившемся режиме ток через переход отсутствует, поскольку p-n -переход обладает большим сопротивлением в сравнении с остальными областями полупроводников, и образовавшийся слой называют запирающим.

Если к n-p -переходу приложить внешнее напряжение, то, в зависимости от его полярности, переход поведет себя по-разному.

Протекание через переход прямого тока

Если к полупроводнику p -типа приложить «плюс» источника напряжения, то создаваемое источником поле действует противоположно полю контактной разности потенциалов, суммарное поле уменьшается, снижается высота потенциального барьера, и его преодолевает большее число носителей. Через переход начинает протекать ток, называемый прямым. Одновременно уменьшается толщина защитного слоя и его электрическое сопротивление.

Для возникновения существенного прямого тока к переходу достаточно приложить напряжение, сравнимое с высотой барьера в отсутствие приложенного напряжения, т.е. в десятые доли вольта, а при еще большем напряжении сопротивление запирающего слоя станет близким к нулю.

Протекание через переход обратного тока

Если же внешнее напряжение «переполюсовать», т.е. приложить к p -полупроводнику «минус» источника напряжения, поле внешнего напряжения будет складываться с полем контактной разности потенциалов. Высота потенциального барьера увеличивается, что затруднит диффузию основных носителей через переход, и ток через переход, называемый «обратным», окажется небольшим. Запирающий слой становится толще, его электрическое сопротивление возрастает.

Выпрямляющие свойства электронно-дырочных переходов используются в диодах разной мощности и назначения — для выпрямления переменного тока в силовых блоках питания и слабых сигналов в устройствах различного назначения.

Иные применения свойства полупроводников

Электронно-дырочный переход при обратном напряжении ведет себя аналогично заряженному электрическому конденсатору емкостью от единиц до сотен пикофарад. Эта емкость зависит от приложенного к переходу напряжения, что позволяет использовать некоторые виды полупроводниковых приборов в качестве конденсаторов переменной емкости, управляемых приложенным напряжением.

Свойства n-p -перехода также значительно зависят от температуры среды, что позволяет применять отдельные виды полупроводниковых приборов в качестве датчиков температуры. Приборы с тремя областями различной проводимости, как, например, n-p-n , позволяют создавать устройства, обладающие свойствами усиления электрических сигналов, а также их генерации.

Полупроводники - широкий класс веществ, характеризующийся значениями удельной электропроводности, лежащей в диапазоне между удельной элек-тропроводностью металлов и хороших диэлектриков, то есть эти вещества не могут быть отнесены как к диэлектрикам (так как не являются хорошими изоля-торами), так и к металлам (не являются хорошими проводниками электрического тока). К полупроводникам, например, относят такие вещества как германий, кремний, селен, теллур, а также некоторые оксиды, сульфиды и сплавы металлов.

Свойства:

1) С повышением температуры удельное сопротивление полупроводников уменьшается, в отличие от металлов, у которых удельное сопротивление с повышением температуры увеличивается. Причем как правило в широком интервале температур возрастание это происходит экспоненционально. Удельное сопротивление полупроводниковых кристаллов может также уменьшаться при воздействии света или сильных электронных полей.

2) Свойство односторонней проводимости контакта двух полупроводников. Именно это свойство используется при создании разнообразных полупроводни-ковых приборов: диодов, транзисторов, тиристоров и др.

3) Контакты различных полупроводников в определенных условиях при осве-щении или нагревании являются источниками фото - э. д. с. или, соответственно, термо - э. д. с.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются :

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

3. Физические процессы в p-n – переходе.

Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-n -переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, а другая - дырочную.

Образование p-n перехода. P-n переход в равновесном состоянии

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р -области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n -области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p иn областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n -области переходит в p и рекомбинирует там с дырками. Дырки из р -области переходят в n -область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в пограничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n -области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает контактная разность потенциалов φ к и электрическое поле Е к , которое препятствует диффузии свободных носителей заряда из глубины р- иn- областей через р-n- переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n- переходом.

P-n -переход характеризуется двумя основными параметрами:

1. Высота потенциального барьера . Она равна контактной разности потенциалов φ к . Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k – постоянная Больцмана; е – заряд электрона; Т – температура; N а и N Д – концентрации акцепторов и доноров в дырочной и электронной областях соответственно; р р и р n – концентрации дырок в р- и n- областях соответственно; n i – собственная концентрация носителей заряда в нелигированном полупроводнике,  т =кТ/е - температурный потенциал. При температуре Т =27 0 С  т =0.025В, для германиевого перехода  к =0,6В, для кремниевого перехода к =0,8В.

2. Ширина p-n-перехода (рис.1) – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях: l p-n = l p + l n :

Отсюда ,

где ε – относительная диэлектрическая проницаемость материала полупроводника; ε 0 - диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n -переход называется симметричным, если , то и p-n -переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-n переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует, и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

I др + I диф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n -переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δ м . Если δ м << l p-n , то p-n -переход называют резким. Если δ м >>l p-n , то p-n -переход называют плавным.

Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. P-n -переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода . Р-n- переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р -области, а отрицательный к n -области (рис.1.2)

При прямом смещении, напряжения  к и U направлены встречно, результирующее напряжение на p-n -переходе убывает до величины  к - U . Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. l p-n ≈ ( к – U) 1/2 . Ток диффузии, ток основных носителей заряда, становится много больше дрейфового. Через p-n -переход протекает прямой ток

I р-n =I пр =I диф +I др I диф .

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией , а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

2) Обратное смещение , возникает когда к р -области приложен минус, а к n -области плюс, внешнего источника напряжения (рис.1.3).

Такое внешнее напряжение U включено согласно  к . Оно: увеличивает высоту потенциального барьера до величины  к + U ; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. l p-n ≈( к + U) 1/2 ; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I 0 , т.е.

I р-n =I обр =I диф +I др I др = I 0 .

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n -областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией . Экстракция и создает обратный ток p-n перехода – это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .

Тепловой ток кремниевого перехода много меньше теплового тока перехода на основе германия (на 3-4 порядка). Это связано с  к материала.

С увеличением площади перехода возрастает его обьем, а следовательно возрастает число неосновных носителей появляющихся в результате термогенерации и тепловой ток.

Итак, главное свойство p-n -перехода – это его односторонняя проводимость.

4. Вольтамперная характеристика p-n – перехода.

Получим вольт-амперную характеристику p-n перехода. Для этого запишем уравнение непрерывности в общем виде:

Будем рассматривать стационарный случай dp/dt = 0.

Рассмотрим ток в квазинейтральном объеме полупроводника n-типа справа от обедненной области p-n перехода (x > 0). Темп генерации G в квазинейтральном объеме равен нулю: G = 0. Электрическое поле E тоже равно нулю: E = 0. Дрейфовая компонента тока также равна нулю: I E = 0, следовательно, ток диффузионный . Темп рекомбинации R при малом уровне инжекции описывается соотношением:

Воспользуемся следующим соотношением, связывающим коэффициент диффузии, длину диффузии и время жизни неосновных носителей: Dτ = L p 2 .

С учетом отмеченных выше допущений уравнение непрерывности имеет вид:

Граничные условия для диффузионного уравнения в p-n переходе имеют вид:

Решение дифференциального уравнения (2.58) с граничными условиями (*) имеет вид:

Соотношение (2.59) описывает закон распределения инжектированных дырок в квазинейтральном объеме полупроводника n-типа для электронно-дырочного перехода (рис. 2.15). В токе p-n перехода принимают участие все носители, пересекшие границу ОПЗ с квазинейтральным объемом p-n перехода. Поскольку весь ток диффузионный, подставляя (2.59) в выражение для тока, получаем (рис. 2.16):

Соотношение (2.60) описывает диффузионную компоненту дырочного тока p-n перехода, возникающую при инжекции неосновных носителей при прямом смещении. Для электронной компоненты тока p-n перехода аналогично получаем:

При V G = 0 дрейфовые и диффузионные компоненты уравновешивают друг друга. Следовательно, .

Полный ток p-n перехода является суммой всех четырех компонент тока p-n перехода:

Выражение в скобках имеет физический смысл обратного тока p-n перехода. Действительно, при отрицательных напряжениях V G < 0 ток дрейфовый и обусловлен неосновными носителями. Все эти носители уходят из цилиндра длиной L n со скоростью L n /τ p . Тогда для дрейфовой компоненты тока получаем:

Рис. 2.15. Распределение неравновесных инжектированных из эмиттера носителей по квазинейтральному объему базы p-n перехода

Нетрудно видеть, что это соотношение эквивалентно полученному ранее при анализе уравнения непрерывности.

Если требуется реализовать условие односторонней инжекции (например, только инжекции дырок), то из соотношения (2.61) следует, что нужно выбрать малое значение концентрации неосновных носителей n p0 в p-области. Отсюда следует, что полупроводник p-типа должен быть сильно легирован по сравнению с полупроводником n-типа: N A >> N D . В этом случае в токе p-n перехода будет доминировать дырочная компонента (рис. 2.16).

Рис. 2.16. Токи в несимметричном p-n nереходе при прямом смещении

Таким образом, ВАХ p-n перехода имеет вид:

Плотность тока насыщения J s равна:

ВАХ p-n перехода, описываемая соотношением (2.62), приведена на рисунке 2.17.

Рис. 2.17. Вольт-амперная характеристика идеального p-n перехода

Как следует из соотношения (2.16) и рисунка 2.17, вольт-амперная характеристика идеального p-n перехода имеет ярко выраженный несимметричный вид. В области прямых напряжений ток p-n перехода диффузионный и экспоненциально возрастает с ростом приложенного напряжения. В области отрицательных напряжений ток p-n перехода - дрейфовый и не зависит от приложенного напряжения.

5. Емкость p-n – перехода.

Любая система, в которой при изменении потенциала φ меняется электрический заряд Q, обладает емкостью. Величина емкости С определяется соотношением: .

Для p-n перехода можно выделить два типа зарядов: заряд в области пространственного заряда ионизованных доноров и акцепторов Q B и заряд инжектированных носителей в базу из эмиттера Q p . При различных смещениях на p-n переходе при расчете емкости будет доминировать тот или иной заряд. В связи с этим для емкости p-n перехода выделяют барьерную емкость C B и диффузионную емкость C D .

Барьерная емкость C B - это емкость p-n перехода при обратном смещении V G < 0, обусловленная изменением заряда ионизованных доноров в области пространственного заряда.

Величина заряда ионизованных доноров и акцепторов Q B на единицу площади для несимметричного p-n перехода равна:

Дифференцируя выражение (2.65), получаем:

Из уравнения (2.66) следует, что барьерная емкость C B представляет собой емкость плоского конденсатора, расстояние между обкладками которого равно ширине области пространственного заряда W. Поскольку ширина ОПЗ зависит от приложенного напряжения V G , то и барьерная емкость также зависит от приложенного напряжения. Численные оценки величины барьерной емкости показывают, что ее значение составляет десятки или сотни пикофарад.

Диффузионная емкость C D - это емкость p-n перехода при прямом смещении V G > 0, обусловленная изменением заряда Q p инжектированных носителей в базу из эмиттера Q p .

Зависимость барьерной емкости С B от приложенного обратного напряжения V G используется для приборной реализации. Полупроводниковый диод, реализующий эту зависимость, называется варикапом. Максимальное значение емкости варикап имеет при нулевом напряжении V G . При увеличении обратного смещения емкость варикапа уменьшается. Функциональная зависимость емкости варикапа от напряжения определяется профилем легирования базы варикапа. В случае однородного легирования емкость обратно пропорциональна корню из приложенного напряжения V G . Задавая профиль легирования в базе варикапа N D (x), можно получить различные зависимости емкости варикапа от напряжения C(V G) - линейно убывающие, экспоненциально убывающие.

6. Полупроводниковые диоды: классификация, особенности конструкции, условные обозначения и маркировка.

Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n -перехода.

Полупроводники характеризуются как свойствами проводников , так и диэлектриков . В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10 −19 Дж против 11,2·10 −19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5-2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой .

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

- Постоянная Планка - масса электрона - температура ; - уровень проводимой зоны - уровень Ферми ;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

- Постоянная Планка ; - масса дырки; - температура ; - уровень Ферми ; - уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где - удельное сопротивление, - подвижность электронов , - подвижность дырок, - их концентрация, q - элементарный электрический заряд (1,602·10 −19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)

Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)

Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников - дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников - так называемый p-n переход . В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где - термодинамическое напряжение, - концентрация электронов, - концентрация дырок, - собственная концентрация .

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока .

Транзистор

Транзистор - полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов ,
  • сложные: двухэлементные A III B V и A II B VI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно - с увеличением периода ширина запрещённой зоны уменьшается.

Группа IIB IIIA IVA VA VIA
Период
2 5 6 7
3 13 14 15 16
4 30 31 32 33 34
5 48 49 50 51 52
6 80

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками . В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем - это в первую очередь относится к кремнию , но затрагивает и другие соединения ( , GaAs , InP , InSb).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро .

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре . И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов - фосфором , который является донором , и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок - установки молекулярно-лучевой эпитаксии , позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули , электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости . Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где - ширина запрещённой зоны, - постоянная Планка . Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний , германий , арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора , в частности закон сохранения импульса . Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где - длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников . Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными . Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон . Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами .

Таким образом, прямозонные полупроводники, такие как арсенид галлия , начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике .

Непрямозонные полупроводники, например, кремний , поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры . Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда , а следовательно фотопроводимость .

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов , электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры , создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы - собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными , и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами , серу - сульфидами , теллур - теллуридами , углерод - карбидами . Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева , к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A - первый элемент, B - второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение A III B V

Широкое применние получили следующие соединения:

A III B V

  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
A II B V
  • CdSb, ZnSb
A II B VI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
A IV B VI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (A I B III C 2 VI , A I B V C 2 VI , A II B IV C 2 V , A II B 2 II C 4 VI , A II B IV C 3 VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe) x (HgTe) 1-x , (HgTe) x (HgSe) 1-x , (PbTe) x (SnTe) 1-x , (PbSe) x (SnSe) 1-x и других.

Соединения A III B V , в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения A II B V используют в качестве люминофоров видимой области, светодиодов , датчиков Холла , модуляторов.

Соединения A III B V , A II B VI и A IV B VI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов , выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа A III B V
Параметры AlSb GaSb InSb AlAs GaAs InAs
Температура плавления, К 1333 998 798 1873 1553 1218
Постоянная решётки, 6,14 6,09 6,47 5,66 5,69 6,06
Ширина запрещённой зоны ΔE , эВ 0,52 0,7 0,18 2,2 1,32 0,35
Диэлектрическая проницаемость ε 8,4 14,0 15,9 - - -
Подвижность, см²/(В·с):
электронов 50 5000 60 000 - 4000 3400
дырок 150 1000 4000 - 400 460
Показатель преломления света, n 3,0 3,7 4,1 - 3,2 3,2
Линейный коэффициент теплового
расширения, K -1
- 6,9·10 -6 5,5·10 -6 5,7·10 -6 5,3·10 -6 -