Бензол вступает в реакцию с хлором. Ароматические УВ

Ароматические УВ (арены) – это УВ, молекулы которых содержат одно или несколько бензольных колец.

Примеры ароматических УВ:

Арены ряда бензола (моноциклические арены)

Общая формула: C n H 2n-6 , n≥6

Простейшим представителем ароматических УВ является бензол, его эмпирическая формула С 6 Н 6 .

Электронное строение молекулы бензола

Общая формула моноциклических аренов C n H 2 n -6 показывает, что они являются ненасыщенными соединениями.

В 1856 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола с сопряженными связями (чередуются простые и двойные связи) - циклогексатриен-1,3,5:

Такая структура молекулы бензола не объясняла многие свойства бензола:

  • для бензола характерны реакции замещения, а не реакции присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для ;
  • бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором КМnО 4).

Проведенные позже электронографические исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину 0,140 нм (среднее значение между длиной простой связи С-С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 о. Молекула представляет собой правильный плоский шестиугольник.

Современная теория для объяснения строения молекулы С 6 Н 6 использует представление о гибридизации орбиталей атома .

Атомы углерода в бензоле находятся в состоянии sp 2 -гибридизации. Каждый атом «С» образует три σ-связи (две с атомами углерода и одну с атомом водорода). Все σ-связи находятся в одной плоскости:

Каждый атом углерода имеет один р-электрон, который не участвует в гибридизации. Негибридизованные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, и в результате образуется единая сопряженная π-система (вспомните эффект сопряжения р-электронов в молекуле бутадиена-1,3, рассмотренный в теме «Диеновые углеводороды»):

Сочетание шести σ-связей с едиой π-системой называется ароматической связью.

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом, или бензольным ядром .

В соответствии с современными представлениями об электронном строении бензола молекулу С 6 Н 6 изображают следующим образом:

Физические свойства бензола

Бензол при обычных условиях - бесцветная жидкость; t o пл = 5,5 о С; t o кип. = 80 о С; имеет характерный запах; не смешивается с водой, хороший растворитель, сильно токсичен.

Химические свойства бензола

Ароматическая связь определяет химические свойства бензола и других ароматических УВ.

6π-электронная система является более устойчивой, чем обычные двухэлектроиные π-связи. Поэтому реакции присоединения менее характерны для ароматических УВ, чем для непредельных УВ. Наиболее характерными для аренов являются реакции замещения.

I . Реакции замещения

1.Галогенирование

2. Нитрование

Реакцию осуществляют смесью и кислот (нитрующая смесь):

3.Сульфирование

4.Алкилирование (замещение атома «Н» на алкильную группу) – реакции Фриделя-Крафтса , образуются гомологи бензола:

Вместо галогеналканов можно использовать алкены (в присутствии катализатора – AlCl 3 или неорганической кислоты):

II . Реакции присоединения

1.Гидрирование

2.Присоединение хлора

III. Реакции окисления

1. Горение

2С 6 Н 6 + 15О 2 → 12СО 2 + 6Н 2 О

2. Неполное окисление (KMnO 4 или K 2 Cr 2 O 7 в кислой среде). Бензольное кольцо устойчиво к действию окислителей. Реакция не происходит.

Получение бензола

В промышленности:

1) переработка нефти и угля;

2) дегидрирование циклогексана:

3) дегидроциклизация (ароматизация) гексана:

В лаборатории:

Сплавление солей бензойной кислоты со :

Изомерия и номенклатура гомологов бензола

Любой гомолог бензола имеет боковую цепь, т.е. алкильные радикалы, связанные с бензольным ядром. Первый гомолог бензола представляет собой бензольное ядро, связанное с метильным радикалом:

Толуол не имеет изомеров, поскольку все положения в бензольном ядре равноценны.

Для последующих гомологов бензола возможен один вид изомерии – изомерия боковой цепи, которая может быть двух видов:

1) изомерия числа и строения заместителей;

2) изомерия положения заместителей.

Физические свойства толуола

Толуол - бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

Химические свойства толуола

I . Реакции замещения

1.Реакции с участием бензольного кольца

Метилбензол вступает во все реакции замещения, в которых участвует бензол, и проявляет при этом более высокую реакционную способность, реакции протекают с большей скоростью.

Метильный радикал, содержащийся в молекуле толуола, является заместителем рода, поэтому в результате реакций замещения в бензольном ядре получаются орто- и пара-производные толуола или при избытке реагента - трипроизводные общей формулы:

а) галогенирование

При дальнейшем хлорировании можно получить дихлорметилбензол и трихлорметилбензол:

II . Реакции присоединения

Гидрирование

III. Реакции окисления

1.Горение
C 6 H 5 CH 3 + 9O 2 → 7CO 2 + 4H 2 O

2. Неполное окисление

В отличие от бензола его гомологи окисляются некоторыми окислителями; при этом окислению подвергается боковая цепь, в случае толуола – метильная группа. Мягкие окислители типа MnO 2 окисляют его до альдегидной группы, более сильные окислители (KMnO 4) вызывают дальнейшее окисление до кислоты:

Любой гомолог бензола с одной боковой цепью окисляется сильным окислителем типа KMnO4 в бензойную кислоту, т.е. происходит разрыв боковой цепи с окислением отщепившейся части ее до СО 2 ; например:

При наличии нескольких боковых цепей каждая из них окисляется до карбоксильной группы и в результате образуются многоосновные кислоты, например:

Получение толуола:

В промышленности:

1) переработка нефти и угля;

2) дегидрирование метилциклогексана:

3) дегидроциклизация гептана:

В лаборатории:

1) алкилирование по Фриделю-Крафтсу;

2) реакция Вюрца-Фиттига (взаимодействие натрия со смесью галогенбензола и галогеналкана).

1. Из перечисленных формул веществ:
выберите молекулярную формула бензола и запишите его структурную формулу.

2. На основе современных представлений об электронных орбиталях и их перекрывании поясните, как образуются химические связи в молекуле бензола.

3. Число σ-связей в молекуле бензола равно:
4) 12

4. Бензол и толуол являются
2) гомологами

5. Структурные формулы, которые приведены ниже, отражают строение

3) трех соединений

6. Вещество, формула которого

1)1,2,4-трихлорбензол

7. Как получают ароматические углеводороды? Приведите уравнения соответствующих реакций.
1) переработка нефти
2) тримеризация ацетилена над активированным углем

8. Бензол вступает в реакцию замещения с
1) хлором и азотной кислотой

9. Напишите уравнения реакций горения этиленбензола и ксилола.

10. Сравните химические свойства бензола и толуола и поясните сущность взаимного влияния атомов в молекулах. Вспомните соответствующее положение из теории А.М. Бутлерова и приведите другие примеры.

11. Какие мероприятия осуществляются в вашей местности по охране окружающей среды
Сортировка и переработка мусора, охрана водоёмов, лесов.

12. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

13. Напишите уравнения химических реакций, подтверждающих генетическую связь между классами органических соединений в схеме 7.

Задача 1. Какой объем воздуха (н.у.) потребуется, чтобы сжечь 1 л бензола, плотность которого 0,88 г/см3?

Задача 2. Сожгли 10,6 г о-ксилола (н.у.). полученный оксид углерода (IV) пропустили через 80 г раствора, в котором массовая доля гидроксида натрия составляет 10 %. Какое вещество образовалось в результате реакций и какова его масса?

Задача 3. Из 13,44 л ацетилена получили 12 г бензола (н.у.). сколько это составляет процентов по сравнению с теоретическим выходом продукта?

Задача 4. К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль брома. Какие вещества получились в результате реакции? каковы их массы?

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах , но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Третье свойство — алкилирование бензола галогеналканами.

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

К ароматическим соединениям, или аренам, относится большая группа соединений, молекулы которых содержат устойчивую циклическую группировку (бензольное кольцо), обладающую особыми физическими и химическими свойствами.

К таким соединениям относятся прежде всего бензол и его многочисленные производные.

Термин "ароматические" вначале использовался применитель­но к продуктам природного происхождения, которые имели ароматный запах. Поскольку среди этих соединений было много таких, которые включали бензольные кольца, термин "аромати­ческие" стали применять к любым соединениям (в том числе имеющих и неприятный запах), содержащих бензольное кольцо.

Бензол, его электронное строение

По формуле бензола С 6 Н 6 можно предположить, что бензол является сильно ненасыщенным соединением, аналогич­ным, например, ацетилену. Однако химические свойства бензола не подтверждают такого предположения. Так, при обыч­ных условиях, бензол не дает реакций, характерных для непре­дельных углеводородов: не вступает в реакции присоединения с галогенводородами, не обесцвечивает раствор марганцево-кислого калия. В то же время бензол вступает в реакции заме­щения аналогично предельным углеводородам.

Эти факты говорят о том, что, бензол частично сходен с предельными, частично с непредельными углеводородами и в то же время отличается от тех и других. Поэтому в течение длительного времени между учеными происходили оживленные дискуссии по вопросу о строении бензола.

В 60-е гг. прошлого столетия большинство химиков признали теорию циклического строения бензола на основании факта, что однозамещенные производные бензола (например, бромбензол) не имеют изомеров.

Наибольшее признание получила формула бензола, предло­женная в 1865 г. немецким химиком Кекуле, в которой двой­ные связи в кольце углеродных атомов бензола чередуются с простыми, причем, по гипотезе Кекуле, простые и двойные связи непрерывно перемещаются:

Однако формула Кекуле не может объяснить, почему бензол не проявляет свойств непредельных соединений.

Согласно современным представлениям молекула бензола имеет строение плоского шестиугольника, стороны которого равны между собой и составляют 0,140 нм. Это расстояние является средним значением между величинами 0,154 нм (длина одинарной связи) и 0,134 нм (длина двойной связи). Не только углеродные атомы, но и связанные с ними шесть атомов водорода лежат в одной плоскости. Углы, образован­ные связями Н - С - С и С - С - С равны 120 °.

Атомы углерода в бензоле находятся в sр 2 -гибрндизации, т.е. из четырех орбиталей атома углерода гибридизированными являются только три (одна 2s- и две 2 р-), которые принимают участие в образовании σ-связей между углеродными атомами. Четвертая 2 р-орбиталь перекрывается с 2 р -орбиталями двух соседних углеродных атомов (справа и слева), шесть делокализованных π-электронов, находящихся на гантелеобразных орбиталях, оси которых перпендикулярны плоскости бензольного кольца, образуют единую устойчивую замкнутую электронную систему.

В результате образования замкнутой электронной системы всеми шестью углеродными атомами, происходит "выравнивание" про­стых и двойных связей, т.е. в молекуле бензола отсутствуют классические двойные и одинарные связи. Равномерное распре­деление π-электронной плотности между всеми углеродными атомами и является причиной высокой устойчивости молекулы бензола. Чтобы подчеркнуть выравненность π-электронной плотности в молекуле бензола, прибегают к такой формуле:

Номенклатура и изомерия ароматических углеводородов ряда бензола

Общая формула гомологического ряда бензола С n Н 2 n -6 .

Первый гомолог бензола - метилбензол, или толуол, С 7 Н 8

не имеет изомеров положения, как и все другие однозамещенные производные.

Второй гомолог С 8 Н 10 может существовать в четырех изомерных формах: этилбензол С 6 Н 5 -С 2 Н 5 и три диметилбензола, или ксилола, С б Н 4 (СН 3) 2 (орто-, мета- и пара -ксилолы, или 1,2-, 1,3- и 1,4-диметилбензолы):

Радикал (остаток) бензола С 6 Н 5 - носит название фенил ; названия радикалов гомологов бензола производят от названий соответствующих углеводородов, до­бавляя к корню суффикс -ил (толил, ксилил и т. д.) и обозна­чая буквами (о-, м-, п-) или цифрами положение боковых це­пей. Общее название для всех ароматических радикалов арилы аналогично названию алкилы для радикалов алканов. Ра­дикал С 6 Н 5 -СН 2 - называется бензил.

Называя более сложные производные бензола из возможных порядков ну­мерации выбирают тот, при котором сумма цифр номеров за­местителей будет наименьшей. Например, диметил этил бензол строения

следует назвать1,4-диметил-2-этилбензол (сумма цифр равна 7), а не 1,4-диметил-6-этилбензол (сумма цифр равна 11).

Названия высших гомологов бензола часто производят не от названия ароматического ядра, а от названия боковой цепи, т. е. рассматривают их как производные алканов:

Физические свойства ароматических углеводородов ряда бензола

Низшие члены гомологического ряда бензола представля­ют собой бесцветные жидкости с характерным запахом. Плот­ность и показатель преломления у них значительно выше, чем у алканов и алкенов. Температура плавления тоже заметно выше. Из-за высокого содержания углерода все аро­матические соединения горят сильно коптящим пламенем. Все ароматические углеводороды нерастворимы в во­де и хорошо растворимы в большинстве органических раствори­телей: многие из них хорошо перегоняются с водяным паром.

Химические свойства ароматических углеводородов ряда бензола

Для ароматических углеводородов наиболее характерны реак­ции замещения водорода в ароматическом кольце. В реакции присоединения ароматические углеводороды вступают с боль­шим трудом при жестких условиях. Отличительной особеннос­тью бензола является его значительная стойкость по отношению к окислителям.

Реакции присоединения

    Присоединение водорода

В отдельных ред­ких случаях бензол способен к реакциям присоединения. Гид­рирование, т. е. присоединение водорода, происходит при дей­ствии водорода в жестких условиях в присутствии катализато­ров (Ni, Pt, Pd). При этом молекула бензола присоединяет три молекулы водорода с образованием циклогексана:

    Присоединение галогенов

Если раствор хлора в бензоле подвергнуть действию солнечно­го света или ультрафиолетовых лучей, то происходит ради­кальное присоединение трех молекул галогена с образованием сложной смеси стереоизомеров гексахлорциклогексана:

Гексахлорциклогексаи (товарное название гексахлоран) в на­стоящее время находит применение как инсектицид - вещества, уничтожающие насекомых, являющихся вредителями сельского хозяйства.

Реакции окисления

Бензол еще более стоек к действию окислителей, чем предельные углеводороды. Он не окисляется разбавленной азотной кислотой, раствором КМпО 4 и т.д. Гомологи бензола окисляются значительно легче. Но и в них бензольное ядро относительно более устойчиво к действию окислителей, чем соединенные с ним углеводородные радикалы. Существует пра­вило: любой гомолог бензола с одной боковой цепью окисляется в одноосновную (бензойную) кислоту:

Гомологи бензола с несколькими боковыми цепями любой сложности окисляются с образованием многоосновных аромати­ческих кислот:

Реакции замещения

1. Галогенирование

В обычных условиях ароматические углеводороды практически не реагируют с гало­генами; бензол не обесцвечивает бромной воды, но в присутствии катализаторов (FeCl 3 , FеВг 3 , АlCl 3) в безводной среде хлор и бром энергично вступают в реакцию с бензолом при комнатной температуре:

    Реакция нитрования

Для реакции применяют концентри­рованную азотную кислоту, часто в смеси с концентрированной серной кислотой (катализатор):

В незамещенном бензоле реакционная способность всех шести атомов углерода в реакциях замещения одинакова; заместители могут присоединяться к любому углеродному атому. Если же в бензольном ядре уже имеется заместитель, то под его влиянием состояние ядра изменяется, и положение, в которое вступает любой новый заместитель, зависит от природы первого замести­теля. Из этого следует, что каждый заместитель в бензольном ядре проявляет определенное направляющее (ориентирующее) влияние и способствует введению новых заместителей лишь в определенные по отношению к себе положения.

По направляющему влиянию различные заместители подраз­деляются на две группы:

а) заместители первого рода:

Они направляют любой новый заместитель в орто- и пара-по­ложения по отношению к себе. При этом они почти все умень­шают устойчивость ароматической группировки и облегчают как реакции замещения, так и реакции бензольного ядра:

б) заместители второго рода:

Они направляют любой новый заместитель в мета-положение по отношению к себе. Они увеличивают устойчивость аромати­ческой группировки и затрудняют реакции замещения:

Таким образом, ароматический характер бензола (и других аренов) выражается в том, что это соединение, по составу яв­ляясь непредельным, в целом ряде химических реакций про­являет себя как предельное соединение, для него характерны химическая устойчивость, трудность реакций присоединения. Только в особых условиях (катализаторы, облучение) бензол ведет себя так, как будто в его молекуле имеются три двойные связи.

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.