Базальные ганглии функции и возрастные особенности. Базальные ганглии

Базальные ганглии и их функциональные связи

Базальные ганглии, или подкорковые узлы, расположены в основании больших полушарий в толще белого вещества в виде отдельных ядер, или узлов. К базальным ядрам относятся: полосатое тело, состоящее из хвостатого и чечевицеобразного ядер; ограда и миндалевидное тело (Атл., рис. 25, с. 134).

Хвостатое ядро располагается кпереди от таламуса. Его передняя утолщенная часть - головка - помещается впереди зрительного бугра, в латеральной стенке переднего рога бокового желудочка, сзади оно постепенно суживается и переходит в хвост . Хвостатое ядро охватывает зрительный бугор спереди, сверху и с боков.

Чечевицеобразное ядро получило свое название за сходство с чечевичным зерном и находится латеральнее таламуса и хвостатого ядра. Нижняя поверхность переднего отдела чечевицеобразного ядра прилежит к переднему продырявленному веществу и соединяется с хвостатым ядром, медиальная часть чечевицеобразного ядра обращена к внутренней капсуле, находящейся на границе таламуса и головки хвостатого ядра. Латеральная поверхность чечевицеобразного ядра выпуклая и обращена к основанию островковой доли больших полушарий. На фронтальном разрезе головного мозга чечевицеобразное ядро имеет форму треугольника, вершина которого обращена в медиальную, а основание - в латеральную сторону. Чечевицеобразное ядро прослойками белого вещества делится на более темно-окрашенную латеральную часть - скорлупу и медиальную - бледный шар , состоящий из двух сегментов: внутреннего и наружного. Скорлупа по генетическим, структурным и функциональным признакам близка к хвостатому ядру, и они относятся к филогенетически более новым образованиям. Бледный шар является более старым образованием.

Ограда расположена в белом веществе полушария, сбоку от скорлупы, от которой отделяется тонким слоембелого вещества - наружной капсулой . Таким же тонким слоем белого вещества ограда отделена и от коры островка.

Миндалевидное тело находится в белом веществе височной доли полушария, примерно на 1,5-2,0 см кзади от височного полюса.

Функции базальных ганглиев определяются прежде всего их связями, которые у них имеются в достаточно большом количестве. Так, например, хвостатое ядро и скорлупа получают нисходящие связи преимущественно от экстрапирамидной системы. На них оканчиваются волокна от нейронов коры, таламуса и черной субстанции. Другие поля коры также посылают большое количество аксонов к хвостатому ядру и скорлупе.

Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда - к таламусу и только от него - к сенсорным полям. Следовательно, между этими образованиями имеется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром.

Обилие связей хвостатого ядра и скорлупы свидетельствует об участии в интегративных процессах, организации и регуляции движений, регуляции работы внутренних органов.

Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, о чем свидетельствует наступление реакции через 2-4 мс после раздражения таламуса.

Во взаимодействиях хвостатого ядра и бледного шара превалируют тормозные влияния. При раздражении хвостатого ядра большая часть нейронов бледного шара тормозится, а меньшая возбуждается.

Хвостатое ядро и черное вещество имеют между собой прямые и обратные связи. Так, например, стимуляция черного вещества приводит к увеличению, а разрушение - к уменьшению количества дофамина в хвостатом ядре. Благодаря дофамину проявляется растормаживающий механизм взаимодействия хвостатого ядра и бледного шара.

Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условно-рефлекторная деятельность, двигательная активность. Выключение хвостатого ядра сопровождается развитием гиперкинезов типа непроизвольных мимических реакций, тремора, атетоза, торсионного спазма хореи (подергивание конечностей, туловища, как при некоординированном танце), двигательной гиперактивности в форме бесцельного перемещения с места на место.

В случае повреждения хвостатого ядра наблюдаются существенные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра условные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения.

Несмотря на функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для него. Так, для скорлупы характерно участие в организации пищевого поведения. Раздражение скорлупы приводит к изменениям дыхания, слюноотделения.

Бледный шар имеет связи с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, соматосенсорной системой и др., что свидетельствует об его участии в организации простых и сложных форм поведения.

Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание).

Повреждение бледного шара вызывает у людей маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные движения рук при ходьбе, появляется симптом пропульсии: длительная подготовка к движению, затем быстрое движение и остановка.

Ограда образует связи преимущественно с корой больших полушарий. Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи. Отмечено, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

Миндалевидное тело принимает импульсы из разнообразных афферентных систем, в том числе обонятельной, имеет отношение к эмоциональным реакциям.

Таким образом, базальные ганглии являются интегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований базальных ядер. Кроме того, базальные ганглии являются связующим звеном между ассоциативными и двигательными областями коры больших полушарий.



Развитие базальных ганглиев. Базальные ганглии развиваются интенсивнее, чем зрительные бугры. Бледный шар (паллидум) миелинизируется раньше полосатого тела (стриатум) и коры больших полушарий. Отмечено, что миелинизация в бледном шаре почти полностью заканчивается к 8 месяцам развития плода.

В структурах полосатого тела миелинизация начинается у плода, а заканчивается только к 11 месяцам жизни. Хвостатое тело в течение первых двух лет жизни увеличивается в 2раза, что связывают с развитием у ребенка автоматических двигательных актов.

Двигательная активность новорожденного в значительной мере связана с бледным шаром, импульсы от которого вызывают некоординированные движения головы, туловища и конечностей.

У новорожденного паллидум уже имеет множественные связи со зрительным бугром, подбугровой областью и черной субстанцией. Связь паллидума со стриатумом развивается позже, часть стриопаллидарных волокон оказывается миелинизированной на первом месяце жизни, а другая часть - лишь к 5 месяцам и позже.

Пирамидная система у новорожденного еще недостаточно развита, и импульсы к мышцам доставляются от подкорковых ганглиев по экстрапирамидной системе. Вследствие этого движения ребенка в первые месяцы жизни характеризуются обобщенностью, недифференцированностью.

Отмечено, что такие акты, как плач, в моторном отношении осуществляются за счет бледного шара. С развитием полосатого тела связано появление мимических движений, а затем умение сидеть и стоять. Так как стриатум оказывает тормозящее влияние на паллидум, то создается постепенное разделение движений.

Для того чтобы сидеть, ребенок должен уметь вертикально держать голову и спину. Это появляется у него к двум месяцам, а поднимать голову, лежа на спине, ребенок начинает к 2-3 месяцам. Сидеть начинает к 6-8 месяцам.

В первые месяцы жизни у ребенка имеется отрицательная реакция опоры: при попытке поставить его на ножки он поднимает их и подтягивает к животу. Затем эта реакция становится положительной: при прикосновении к опоре ножки разгибаются. В 9 месяцев ребенок может стоять с помощью поддержки, в 10 месяцев он стоит свободно.

С 4-5-месячного возраста довольно быстро развиваются различные произвольные движения, но они еще длительное время сопровождаются многообразными дополнительными движениями.

Появление произвольных (таких, как схватывание) и выразительных движений (улыбка, смех) связывают с развитием стриарной системы и двигательных центров коры больших полушарий. Аксоны их клеток прорастают к базальным ганглиям, и деятельность последних начинает регулироваться корой. Громко смеяться ребенок начинает с 8 месяцев.

По мере роста и развития всех отделов головного мозга и коры больших полушарий движения ребенка становятся менее обобщенными и более координированными. Только к концу дошкольного периода устанавливается определенное равновесие коркового и подкоркового двигательных механизмов.

Большие полушария головного мозга сверху покрыты тонким слоем серого вещества - корой больших полушарий. Их два (правое и левое), они соединены между собой толстой горизонтальной пластинкой - мозолистым телом , состоящим из нервных волокон, идущих поперечно из одного полушария в другое. Под мозолистым телом находится свод , представляющий два дугообразных белых тяжа, которые соединены между собой средней частью, а спереди и сзади расходятся, образуя впереди столбы свода, позади ножки свода.

Каждое полушарие имеет три поверхности : верхнелатеральную (наиболее выпуклая), медиальную (плоская, обращенная к соседнему полушарию) и нижнюю, имеющую сложный рельеф, соответствующий внутреннему основанию черепа. В каждом полушарии имеются наиболее выступающие участки, получившие название полюсов : лобный полюс, затылочный полюс и височный полюс.

На всем протяжении кора углубляется, образуя многочисленные борозды, которые делят поверхность полушарий на извилины и доли. В каждом полушарии выделяют шесть долей: лобную, теменную, височную, затылочную, краевую и островок. Их разделяют латеральная, центральная, теменно-затылочная, поясная и коллатеральная борозды (Атл., рис. 22, с. 133).

Латеральная борозда начинается у основания полушария значительным углублением, дно которого образует покрытый бороздами и извилинами островок. Затем переходит на верхнелатеральную поверхность полушария, направляясь назад и несколько вверх, отделяя височную долю от выше расположенных долей: лобной - спереди и теменной - сзади.

Центральная борозда начинается на верхнем краю полушария, несколько сзади от его середины и идет вперед вниз, чаще всего не доходит до латеральной (боковой) борозды. Центральная борозда отделяет лобную долю от теменной (Атл., рис. 27, с. 135).

Теменно-затылочная борозда проходит вертикально по медиальной поверхности полушария, отделяя теменную долю от затылочной.

Поясная борозда проходит по медиальной поверхности полушария параллельно мозолистому телу, отделяя лобную и теменную доли от поясной извилины.

Коллатеральная борозда отделяет на нижней поверхности полушария височную долю от краевой и затылочной.

На нижней поверхности полушария, в его передней части, расположена обонятельная борозда , в которой лежит обонятельная луковица, продолжающаяся в обонятельный тракт. Сзади он раздваивается на латеральную и медиальную полоски , образующие обонятельный треугольник, в центре которого лежит переднее продырявленное вещество.

Доли полушария. Лобная доля. В переднем отделе каждого полушария находится лобная доля. Она заканчивается спереди лобным полюсом и ограничена снизу латеральной бороздой (сильвиева борозда), а сзади - глубокой центральной бороздой. Спереди от центральной борозды, почти параллельно ей, располагается предцентральная борозда. От нее вперед направляются верхняя и нижняя лобные борозды. Они делят лобную долю на извилины. Лобная доля имеет 4 извилины: предцентральную, расположенную между центральной бороздой сзади и предцентральной бороздой спереди; верхнелобную (выше верхней лобной борозды); среднюю лобную (между верхней и нижней лобными бороздами); нижнюю лобную (книзу от нижней лобной борозды). Нижняя лобная извилина делится на три части: покрышечную (лобная покрышка) - между нижней предцентральной бороздой сзади, нижней лобной бороздой сверху и восходящей ветвью боковой борозды спереди; треугольную часть - между восходящей и передней ветвями боковой борозды и глазничную - ниже передней ветви боковой борозды.

Теменная доля находится кзади от центральной борозды. Задней границей этой доли является теменно-затылочная борозда. В пределах теменной доли выделяется постцентральная борозда, которая лежит позади центральной борозды и почти параллельна ей. Между центральной и постцентральной бороздами располагается постцентральная извилина. От постцентральной борозды кзади отходит внутритеменная борозда. Она параллельна верхнему краю полушария. Кверху от внутритеменной борозды находится верхняя теменная долька. Ниже этой борозды лежит нижняя теменная долька, в пределах которой имеются две извилины: надкраевая и угловая. Надкраевая извилина охватывает конец латеральной борозды, а угловая - конец верхней височной борозды.

Височная доля занимает нижнебоковые отделы полушария и отделяется от лобной и теменной долей глубокой латеральной бороздой. На верхнелатеральной ее поверхности лежат три параллельные борозды. Верхняя височная борозда лежит непосредственно под латеральной и ограничивает верхнюю височную извилину . Нижняя височная борозда состоит из отдельных отрезков, ограничивает снизу среднюю височную извилину. Нижняя височная извилина с медиальной стороны ограничена нижнелатеральным краем полушария. Спереди височная доля закругляется в височный полюс.

Затылочная доля располагается позади теменно-затылочной борозды. По сравнению с другими долями она имеет небольшие размеры. На верхнелатеральной поверхности она не имеет постоянных борозд. Ее основная шпорная борозда расположена горизонтально на медиальной поверхности и идет от затылочного полюса до теменно-затылочной борозды, с которой сливается в один ствол. Между этими бороздами лежит треугольной формы извилина - клин. Нижняя поверхность затылочной доли лежит над мозжечком (Атл., рис. 27, с. 135). На заднем конце доля суживается в затылочный полюс.

Краевая доля располагается на медиальной и нижней поверхностях полушария. В нее входят поясная и парагиппокампальная извилины. Поясная извилина ограничивается снизу бороздой мозолистого тела, а сверху - поясной бороздой , отделяющей ее от лобной и теменной долей. Парагиппокампальная извилина ограничивается сверху гиппокамповой бороздой, которая служит продолжением вниз и вперед заднего конца борозды мозолистого тела. Снизу извилина отделена коллатеральной бороздой от височной доли.

Белое вещество находится под корой больших полушарий, образуя выше мозолистого тела сплошную массу. Ниже белое вещество прерывается скоплениями серого (базальными ганглиями) и располагается между ними в виде прослоек или капсул (Атл., рис. 25, с. 134).

В составе белого вещества различают ассоциативные, комиссуральные и проекционные волокна.

Ассоциативные волокна связывают между собой различные участки коры одного и того же полушария. Они разделяются на короткие и длинные. Короткие волокна связывают между собой соседние извилины в форме дугообразных пучков. Длинные ассоциативные волокна соединяют более отдаленные друг от друга участки коры. К длинным ассоциативным волокнам относятся:

Верхний продольный пучок - соединяет нижнюю лобную извилину с нижнетеменной долькой, височной и затылочной долями; он имеет форму дуги, огибающей островок, и тянется вдоль всего полушария;

Нижний продольный пучок - соединяет височную долю с затылочной;

Лобно-затылочный пучок - соединяет лобную долю с затылочной и островком;

Поясной пучок - соединяет переднее продырявленное вещество с гиппокампом и крючком, расположен в форме дуги в поясной извилине, огибает сверху мозолистое тело;

Крючковидный пучок - соединяет нижнюю часть лобной доли, крючок и гиппокамп.

Комиссуральные волокна связывают кору симметричных частей обоих полушарий. Они образуют так называемые комиссуры или спайки. Самая крупная мозговая спайка - мозолистое тело , соединяющее одноименные участки новой коры правого и левого полушарий. Оно расположено в глубине продольной щели и представляет собой уплощенное вытянутое образование. Поверхность мозолистого тела покрыта тонким слоем серого вещества, которое образует четыре продольные полоски. Расходящиеся от мозолистого тела волокна образуют его лучистость. В ней различают лобную, теменную, височную и затылочную части.

Для филогенетически древней коры системами комиссуральных волокон являются передняя и задняя спайки. Передняя спайка связывает крючки височных долей и парагиппокампальные извилины, а также серое вещество обонятельных треугольников.

Проекционные волокна выходят за пределы полушарий в составе проекционных путей. По ним осуществляется двусторонняя связь коры с нижележащими отделами центральной нервной системы. Одни из этих волокон проводят возбуждение центростремительно, по направлению к коре, а другие, наоборот, - центробежно.

Проекционные волокна в белом веществе полушария ближе к коре образуют так называемый лучистый венец и проходят во внутренней капсуле (Атл., рис. 25, с. 134). Во внутренней капсуле различают переднюю и заднюю ножки и колено. Нисходящие проекционные пути, проходя через капсулу, связывают различные зоны коры с нижележащими структурами. В передней ножке проходят лобно-мостовой путь (часть корково-мостового пути) и передняя таламическая лучистость. В колене идут волокна кортико-ядерного пути, а в верхней части задней ножки кортикоспинальные, кортикокрасноядерные, кортикоретикулярные пути, а также волокна таламической лучистости. В наиболее удаленной части задней ножки проходят кортико-тектальные, височно-мостовые волокна и волокна таламической лучистости, идущие к затылочным и височным областям коры в зрительные и слуховые зоны. Здесь же идет теменно-затылочно-мостовой пучок.

Нисходящие проекционные пути, идущие от коры, объединяются в пирамидный путь, состоящий из кортикоядерного и кортикоспинального путей.

Восходящие проекционные пути несут к коре импульсы, возникающие от органов чувств, а также от органов движения. К этим проекционным путям относятся: латеральный спинно-таламический путь, волокна которого, проходя через заднюю ножку внутренней капсулы, образуя лучистый венец, достигают коры больших полушарий, ее постцентральной извилины; передний спинно-таламический путь, несущий импульсы от кожи к коре головного мозга в постцентральную извилину; проводящий путь проприоцептивной чувствительности коркового направления, поставляющий импульсы мышечно-суставного чувства к коре больших полушарий в постцентральную извилину.

Особое место в системе волокон больших полушарий занимает свод . Он представляет собой изогнутый тяж, в котором различают тело, ножки, столбы. Тело свода расположено под мозолистым телом и срастается с ним. Спереди тело свода переходит в столбы свода, которые загибаются вниз, и каждый из них переходит в мамиллярное тело гипоталамуса. Столбы свода расположены над передними отделами таламусов. Между каждым столбом и таламусом имеется щель - межжелудочковое отверстие. Спереди от столбов свода, срастаясь с ними, лежит передняя спайка . Сзади тело свода продолжается в парные ножки свода, которые уходят латерально вниз, отделяются от мозолистого тела и срастаются с гиппокампом, образуя его бахромку. Правый и левый гиппокампы связаны между собой через комиссуру свода , расположенную между ножками. Таким образом, с помощью свода височная доля полушария соединяется с мамиллярными телами промежуточного мозга. Кроме того, часть волокон свода направляется от гиппокампа к таламусу, миндалине и древней коре.

Базальные ганглии (базальные ядра) – это стриопаллидарная система, состоящая из трёх пар крупных ядер, погружённых в белое вещество конечного мозга в основании больших полушарий, и связывающих сенсорные и ассоциативные зоны коры с двигательной корой.

Строение

Филогенетически древняя часть базальных ганглиев – бледный шар, более позднее образование – полосатое тело и наиболее молодая часть – ограда.

Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело – из хвостатого ядра и скорлупы. Ограда расположена между скорлупой и островковой (инсулярной) корой. В функциональном отношении базальные ганглии включают в себя также субталамические ядра и черную субстанцию.

Функциональные связи базальных ядер

Возбуждающая афферентная импульсация поступает преимущественно в полосатое тело (в хвостатое ядро) в основном из трёх источников:

1) от всех областей коры напрямую и опосредовано через таламус;

2) от неспецифических ядер таламуса;

3) от черной субстанции.

Среди эфферентных связей базальных ганглиев можно отметить три главных выхода:

  • от полосатого тела тормозящие пути идут к бледному шару непосредственно и с участием субталамического ядра; от бледного шара начинается самый важный эфферентный путь базальных ядер, идущий преимущественно в двигательные вентральные ядра таламуса, от них возбуждающий путь идет в двигательную кору;
  • часть эфферентных волокон из бледного шара и полосатого тела идет к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;
  • от полосатого тела тормозящие пути идут к черной субстанции и после переключения – к ядрам таламуса.

Следовательно, базальные ганглии являются промежуточным звеном. Они связывают ассоциативную и, частично, сенсорную кору с двигательной корой. Поэтому в структуре базальных ядер выделяют несколько параллельно действующих функциональных петель, связывающих их с корой больших полушарий.

Рис.1. Схема функциональных петель, проходящих через базальные ядра:

1 – скелетно-моторная петля; 2 – глазодвигательная петля; 3 – сложная петля; ДК – двигательная кора; ПМК – премоторная кора; ССК – соматосенсорная кора; ПФК – префронтальная ассоциативная кора; П8 – поле восьмой фронтальной коры; П7 – поле седьмой теменной коры; ФАК – фронтальная ассоциативная кора; ВЛЯ – вентролатеральное ядро; МДЯ – медиодорсальное ядро; ПВЯ – переднее вентральное ядро; БШ – бледный шар; ЧВ – черное вещество.

Скелетно-моторная петля соединяет премоторную, двигательную и соматосенсорную области коры со скорлупой. Импульсация от нее идет в бледный шар и черное вещество и далее через двигательное вентролатеральное ядро возвращается в премоторную область коры. Считают, что эта петля служит для регуляции таких параметров движения, как амплитуда, сила, направление.

Глазодвигательная петля соединяет области коры, контролирующие направление взгляда, с хвостатым ядром. Оттуда импульсация идет в бледный шар и черное вещество, из которых она проецируется соответственно в ассоциативное медиодорсальное и переднее релейное вентральное ядра таламуса, а из них возвращается в лобное глазодвигательное поле 8. Эта петля участвует в регуляции скачкообразных движений глаз (саккал).

Предполагается существование также сложных петель, по которым импульсация из лобных ассоциативных зон коры поступает в хвостатое ядро, бледный шар и черное вещество. Затем через медиодорсальное и вентральное переднее ядра таламуса возвращается в ассоциативную лобную кору. Считают, что эти петли участвуют в осуществлении высших психофизиологических функций мозга: контроле мотиваций, прогнозировании, когнитивной деятельности.

Функции

Функции полосатого тела

Влияние полосатого тела на бледный шар. Влияние осуществляется преимущественно тормозное медиатором ГАМК. Однако часть нейронов бледного шара дают смешанные ответы, а некоторые только ВПСП. То есть полосатое тело оказывает на бледный шар двоякое действие: тормозящее и возбуждающее, с преобладанием тормозящего.

Влияние полосатого тела на черное вещество. Между черным веществом и полосатым телом имеются двусторонние связи. Нейроны полосатого тела оказывают тормозящее влияние на нейроны черного вещества. В свою очередь, нейроны черного вещества оказывают модулирующее влияние на фоновую активность нейронов полосатого тела. Кроме влияния на полосатое тело черное вещество оказывает тормозящее действие на нейроны таламуса.

Влияние полосатого тела на таламус. Раздражение полосатого тела вызывает в таламусе появление высокоамплитудных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела нарушает цикл сон-бодрствование уменьшением длительности сна.

Влияние полосатого тела на моторную кору. Хвостатое ядро полосатого тела «вытормаживает» ненужные в данных условиях степени свободы движения, обеспечивая, тем самым формирование четкой двигательно-оборонительной реакции.

Стимуляция полосатого тела. Стимуляция полосатого тела в различных его участках вызывает различные реакции: поворот головы и туловища в сторону, противоположную раздражению; задержку пищедобывательной деятельности; подавление ощущения боли.

Поражение полосатого тела. Поражение хвостатого ядра полосатого тела приводит к гиперкинезам (избыточным движениям) - хорее и атетозу.

Функции бледного шара

От полосатого тела бледный шар получает преимущественно тормозное и частично возбуждающее влияние. Но на двигательную кору, мозжечок, красное ядро и ретикулярную формацию он оказывает модулирующее влияние. На центр голода и насыщения бледный шар оказывает активирующее влияние. Разрушение бледного шара ведет к адинамии, сонливости, эмоциональной тупости.

Результаты деятельности всех базальных ядер:

  • выработка вместе с мозжечком сложных двигательных актов;
  • контроль параметров движения (сила, амплитуда, скорость и направление);
  • регуляция цикла сон-бодрствоание;
  • участие в механизме формирования условных рефлексов, сложных форм восприятия (например, осмысление текста);
  • участие в акте торможения агрессивных реакций.

В статье поговорим о базальных ганглиях. Что это такое и какую роль эта структура играет в здоровье человека? Все вопросы будут подробно рассмотрены в статье, после чего вы поймёте важность абсолютно каждой «детали» в вашем теле и голове.

О чем идет речь?

Все мы прекрасно знаем, что мозг человека является очень сложной уникальной структурой, в которой абсолютно все элементы неразрывно и прочно связаны при помощи миллионов нейронных связей. В мозгу есть серое и Первое является обычным скоплением множества нервных клеток, а второе отвечает за скорость передачи импульсов между нейронами. Кроме коры, естественно, есть и другие структуры. Они представляют собой ядра или базальные ганглии, состоящие из серого вещества и находящиеся в белом. Во многом именно они отвечают за нормальную работу нервной системы.

Базальные ганглии: физиология

Расположены эти ядра возле полушарий головного мозга. Они имеют очень много отростков большой длины, которые называются аксонами. Благодаря им информация, то есть нервные импульсы, передается к разным структурам мозга.

Строение

Строение базальных ганглий разнообразное. В основном по этой классификации их делят на те, которые относятся к экстрапирамидной и лимбической системе. Обе эти системы имеют огромное влияние на работу головного мозга, находятся с ним в тесном взаимодействии. Они оказывают воздействие на таламус, теменные и лобные доли. Экстрапирамидная сеть состоит из базальных ганглий. Ей полностью пронизаны подкорковые части мозга, и она оказывает важнейшее влияние на работу всех функций организма человека. Эти скромные образования очень часто остаются недооценёнными, а ведь их работа ещё полностью не изучена.

Функции

Функций базальных ганглий не так много, но они существенны. Как мы уже знаем, они сильно связаны со всеми остальными структурами мозга. Собственно, из понимания этого утверждения и вытекают основные :

  1. Контроль за осуществлением процессов по интеграции в высшей нервной деятельности.
  2. Влияние на работу вегетативной нервной системы.
  3. Регулирование двигательных процессов человека.

В чём участвуют?

Есть ряд процессов, в которых ядра принимают непосредственное участие. Базальные ганглии, строение, развитие и функции которых мы рассматриваем, участвуют в таких действиях:

  • влияют на ловкость человека при использовании ножниц;
  • точность забивания гвоздей;
  • скорость реакции, ведение мяча, точность попадания в корзину и ловкость отбивания мяча при игре в баскетбол, футбол, волейбол;
  • владение голосом во время пения;
  • координация действий во время копания земли.

Также эти ядра влияют на сложные двигательные процессы, например на мелкую моторику. Это выражается в том, как двигается рука во время письма или рисования. Если работа этих структур головного мозга нарушена, то почерк будет неразборчивым, грубым, «неуверенным». Другими словами, будет казаться, что человек только недавно взял в руки ручку.

Новые исследования доказали, что базальные ганглии также могут влиять на тип движения:

  • поддающиеся контролю или внезапные;
  • повторяемые много раз или новые, совершенно неизвестные;
  • простые односложные или последовательные и даже одновременные.

Многие исследователи небезосновательно считают, что функции базальных ганглий заключаются в том, что человек может действовать автоматически. Это говорит о том, что многие действия, которые человек выполняет на ходу, не обращая на них особого внимания, возможны именно благодаря ядрам. Физиология базальных ганглий такова, что они контролируют и регулируют автоматическую деятельность человека, не забирая при этом ресурсы у центральной нервной системы. То есть мы должны понимать, что именно эти структуры во многом контролируют то, как человек действует при стрессе или в непонятной опасной ситуации.

В обычной жизни базальные ядра просто передают импульсы, которые поступают от лобных долей, к другим структурам мозга. Целью является целенаправленное выполнение известных действий без нагрузки на ЦНС. Однако в опасных ситуациях ганглии «переключаются» и позволяют человеку автоматически принять наиболее оптимальное решение.

Патологии

Поражения базальных ганглиев могут быть очень разными. Рассмотрим некоторые из них. Это дегенеративные поражения мозга человека (например, болезнь Паркинсона или хорея Гентингтона). Это могут быть наследственные генетические болезни, которые связаны с нарушением обмена веществ. Патологии, характеризующиеся сбоями в работе ферментных систем. Заболевания щитовидной железы тоже могут происходить из-за нарушений в работе ядер. Возможные патологии, возникающие вследствие отравления марганцем. Влиять на работу базальных ядер могут опухоли мозга, и, пожалуй, это самая неприятная ситуация.

Формы патологий

Исследователи условно выделяют две основных формы патологии, которые могут возникать у человека:

  1. Функциональные проблемы. Такое часто встречается у детей. Причиной в большинстве случаев является генетика. Могут возникать у взрослых людей после инсульта, сильной травмы или кровоизлияния. Кстати, в пожилом возрасте именно нарушения работы экстрапирамидной системы человека вызывают болезнь Паркинсона.
  2. Опухоли и кисты. Такая патология очень опасна, она требует немедленного врачебного вмешательства. Характерным симптомом является наличие серьезных и затяжных неврологических болезней.

Также стоит отметить, что базальные ганглии головного мозга могут влиять на гибкость поведения человека. Это означает, что человек начинает теряться в различных ситуациях, не может быстро среагировать, приспособиться к трудностям или просто действовать по своему привычному алгоритму. Также сложно дается понимание того, как надо по логике вещей поступить в простой для нормального человека ситуации.

Поражение базальных ганглиев опасно тем, что человек становится практически необучаем. Это логично, ведь обучение похоже на автоматизированную задачу, а за такие задачи, как мы знаем, отвечают именно эти ядра. Однако это поддаётся лечению, хоть и очень медленному. При этом результаты будут незначительны. На фоне этого человек перестает управлять своей координацией движений. Со стороны кажется, что он двигается резко и порывисто, как будто дергается. При этом действительно может возникать тремор конечностей или какие-то непроизвольные действия, над которыми больной не властен.

Коррекция

Терапия расстройства полностью зависит от того, чем оно было вызвано. Лечением занимается врач-невропатолог. Очень часто решить проблему можно только при помощи постоянного приема препаратов. Самостоятельно восстанавливаться эти системы не способны, а народные методы эффективными бывают крайне редко. Главное, что требуется от человека - это своевременное обращение к врачу, так как только это позволит улучшить ситуацию и даже избежать очень неприятных симптомов. Врач проводит диагностику, наблюдая за пациентом. Также используются современные методы диагностики, как МРТ и КТ мозга.

Подводя итоги статьи, хочется сказать о том, что для нормальной работы человеческого организма, и в частности мозга, очень важно правильное функционирование всех его структур и даже тех, которые на первый взгляд могут показаться совершенно незначительными.

Базальные ганглии , или подкорковые ядра , — это тесно связанные между собой структуры мозга, расположенные в глубине больших полушарий между лобными долями и .

Базальные ганглии являются парными образованиями и состоят из ядер серого вещества, разделенных прослойками белого — волокон внутренней и наружной капсул мозга. В состав базальных ганглиев входят: полосатое тело, состоящее из хвостового ядра и скорлупы, бледный шар и ограда. С функциональной точки зрения иногда к понятию базальных ганглиев относят также субталамическое ядро и черную субстанцию (рис. 1). Большой размер этих ядер и подобие в структуре у различных видов дают основание предполагать, что они вносят большой вклад в организацию работы мозга наземных позвоночных животных.

Основные функции базальных ганглиев:
  • Участие в формировании и хранении программ врожденных и приобретенных двигательных реакций и координация этих реакций (основная)
  • Регуляция тонуса мышц
  • Регуляция вегетативных функций (трофические процессы, углеводный обмен, слюно- и слезотечение, дыхание и т.д.)
  • Регуляция чувствительности организма на восприятие раздражений (соматических, слуховых, зрительных и др.)
  • Регуляция ВНД (эмоциональные реакции, память, скорость выработки новых условных рефлексов, скорость переключения с одной формы деятельности на другую)

Рис. 1. Важнейшие афферентные и эфферентные связи базальных ганглиев: 1 паравентрикулярное ядро; 2 вентролатеральное ядро; 3 срединные ядра таламуса; СЯ — субталамическое ядро; 4 — кортикоспинальный тракт; 5 — кортикомостовой тракт; 6 — эфферентный путь от бледного шара к среднему мозгу

Из клинических наблюдений давно известно, что одним из последствий заболеваний базальных ганглиев является нарушение тонуса мышц и движений . На этом основании можно было бы предполагать, что базальные ганглии должны быть связаны с моторными центрами ствола и спинного мозга. Современными методами исследования показано, что аксоны их нейронов не следуют в нисходящем направлении к моторным ядрам ствола и спинного мозга, а повреждение ганглиев не сопровождается парезами мышц, как это имеет место при повреждении других нисходящих моторных путей. Большая часть эфферентных волокон базальных ганглиев следует в восходящем направлении к моторным и другим областям коры больших полушарий мозга.

Афферентные связи

Структурой базальных ганглиев , к нейронам которой поступает большая часть афферентных сигналов, является полосатое тело . Его нейроны получают сигналы из коры больших полушарий мозга, ядер таламуса, клеточных групп черной субстанции промежуточного мозга, содержащих дофамин, и от нейронов ядра шва, содержащих серотонин. При этом нейроны скорлупы полосатого тела получают сигналы преимущественно из первичной соматосенсорной и первичной моторной коры, а нейроны хвостатого ядра (уже предварительно интегрированные полисенсорные сигналы) из нейронов ассоциативных областей коры больших полушарий мозга. Анализ афферентных связей базальных ядер с другими структурами мозга предполагает, что от них в ганглии поступает не только информация, связанная с движениями, но и информация, которая может отражать состояние общей активности мозга и быть связана с его высшими, познавательными функциями и эмоциями.

Полученные сигналы подвергаются в базальных ганглиях сложной обработке, в которой участвуют его различные структуры, связанные между собой многочисленными внутренними связями и содержащие различные типы нейронов. Среди этих нейронов большинство составляют ГАМК-ергические нейроны полосатого тела, которые посылают аксоны к нейронам бледного шара и черной субстанции. Эти нейроны продуцируют также динорфин и энкефалин. Большой удельный вес в передаче и обработке сигналов внутри базальных ганглиев занимают его возбуждающие холинергические интернейроны с широко ветвящимися дендритами. К этим нейронам конвергируют аксоны нейронов черной субстанции, секретирующие дофамин.

Эфферентные связи базальных ганглиев используются для посылки сигналов, обработанных в ганглиях, в другие структуры мозга. Нейроны, формирующие основные эфферентные пути базальных ганглиев, располагаются главным образом в наружном и внутреннем сегментах бледного шара и в черной субстанции, получающих афферентные сигналы в основном из полосатого тела. Часть эфферентных волокон бледного шара следует в интраламинарные ядра таламуса и оттуда — в полосатое тело, образуя подкорковую нейронную сеть. Большая часть аксонов эфферентных нейронов внутреннего сегмента бледного шара следует через внутреннюю капсулу к нейронам вентральных ядер таламуса, а от них — в префронтальную и дополнительную моторную кору больших полушарий. Через связи с моторными областями коры мозга базальные ганглии оказывают влияние на контроль движений, осуществляемый корой через кортикоспинальный и другие нисходящие двигательные пути.

Хвостатое ядро получает афферентные сигналы с ассоциативных областей коры мозга и, обработав их, посылает эфферентные сигналы преимущественно в префронтальную кору. Предполагается, что эти связи являются основой для участия базальных ганглиев в решении задач, связанных с подготовкой и исполнением движений. Так, при повреждении хвостатого ядра у обезьян нарушается способность выполнять движения, требующие сведений из аппарата пространственной памяти (например, учета, где расположен предмет).

Базальные ганглии связаны эфферентными связями с ретикулярной формацией промежуточного мозга, через которые участвуют в контроле ходьбы, а также с нейронами верхних холмиков, через которые они могут контролировать движения глаз и головы.

С учетом афферентных и эфферентных связей базальных ганглиев с корой и другими структурами мозга выделяют несколько нейронных сетей или петель, проходящих через ганглии или заканчивающихся внутри их. Моторная петля образована нейронами первичной моторной, первичной сенсомоторной и дополнительной моторной коры, чьи аксоны следуют к нейронам скорлупы и затем через бледный шар и таламус достигают нейронов дополнительной моторной коры. Глазодвигательная петля образована нейронами моторных полей 8, 6 и сенсорного поля 7, аксоны которых следуют в хвостатое ядро и далее к нейронам лобного глазного поля 8. Префронтальные петли образованы нейронами префронтальной коры, аксоны которых следуют к нейронам хвостатого ядра, черного тела, бледного шара и вентральных ядер таламуса и затем достигают нейронов прсфронтальной коры. Каемчатая петля образована нейронами круговой извилины, орбитофронтальной коры, некоторых областей височной коры, тесно связанных со структурами лимбической системы. Аксоны этих нейронов следуют к нейронам вентральной части полосатого тела, бледного шара, медиодорсального таламуса и далее — к нейронам тех областей коры, в которых петля начиналась. Как можно видеть, каждая петля формируется множественными корковостриарными связями, которые после их прохождения через базальные ганглии следуют через ограниченную область таламуса в определенную одиночную область коры.

Области коры, посылающие сигналы в ту или иную петлю, функционально связаны друг с другом.

Функции базальных ганглиев

Нейронные петли базальных ганглиев являются морфологической основой выполняемых ими основных функций. Среди них — участие базальных ганглиев в подготовке и осуществлении движений. Особенности участия базальных ганглиев в выполнении этой функции вытекают из наблюдений за характером нарушения движений при заболеваниях ганглиев. Предполагается, что базальные ганглии играют важную роль в планировании, программировании и выполнении сложных движений, инициируемых корой больших полушарий.

С их участием абстрактный замысел движения превращается в моторную программу сложных произвольных действий. Их примером могут быть такие действия, как одновременное осуществление нескольких движений в отдельных суставах. Действительно, при регистрации биоэлектрической активности нейронов базальных ганглиев во время выполнения произвольных движений отмечается се повышение в нейронах субталамических ядер, ограды, внутреннего сегмента бледного шара и ретикулярной части черного тела.

Повышение активности нейронов базальных ганглиев инициируется притоком возбуждающих сигналов к нейронам полосатого тела из коры больших полушарий, опосредованных высвобождением глутамата. К этим же нейронам поступает поток сигналов из черной субстанции, оказывающий на нейроны полосатого тела притормаживающее действие (через высвобождение ГАМК) и способствующий фокусированию влияния нейронов коры на определенные группы нейронов полосатого тела. В это же время к его нейронам поступают афферентные сигналы из таламуса с информацией о состоянии активности других областей мозга, имеющих отношение к организации движений.

Нейроны полосатого тела интегрируют все эти потоки информации и передают ее нейронам бледного шара и ретикулярной части черной субстанции и далее но эфферентным путям эти сигналы передаются через таламус в моторные области коры мозга, в которых осуществляется подготовка и инициирование предстоящего движения. Предполагается, что базальные ганглии еще на этапе подготовки движения осуществляют выбор типа движения, необходимого для достижения поставленной цели, отбор мышечных групп, необходимых для его эффективного выполнения. Вероятно, базальные ганглии участвуют в процессах моторного обучения путем повторения движений, причем их роль заключается в выборе оптимальных путей осуществления сложных движений для достижения желаемого результата. С участием базальных ганглиев достигается устранение избыточности движений.

Еще одной из моторных функций базальных ганглиев является участие в осуществлении автоматических движений или моторных навыков. Когда базальные ганглии повреждены, человек выполняет их в более замедленном темпе, менее автоматизировано, с меньшей точностью. Двустороннее разрушение или повреждение ограды и бледного шара у человека сопровождается возникновением навязчиво-принудительного двигательного поведения и появлением элементарных стереотипных движений. Двустороннее повреждение или удаление бледного шара ведет к снижению двигательной активности и гипокинезии, в то время как одностороннее повреждение этого ядра или не влияет, или слабо сказывается на двигательных функциях.

Поражение базальных ганглиев

Патология в области базальных ганглиев у человека сопровождается появлением непроизвольных и нарушением произвольных движений, а также нарушением распределения тонуса мышц и позы. Непроизвольные движения проявляются обычно при спокойном бодрствовании и исчезают во время сна. Различают две большие группы нарушения движений: с доминированием гипокинезии — брадикинезии, акинезии и ригидности, которые наиболее выражены при паркинсонизме; с доминированием гиперкинезии, которая наиболее характерна для хореи Хантингтона.

Гиперкинетические моторные нарушения могут проявляться тремором покоя — непроизвольными ритмическими сокращениями мышц дистальных и проксимальных отделов конечностей, головы и других частей тела. В других случаях они могут проявляться хореей — внезапными, быстрыми, насильственными движениями мышц туловища, конечностей, лица (гримасы), появляющимися вследствие дегенерации нейронов хвостатого ядра, голубоватого пятна и других структур. В хвостатом ядре обнаружено снижение уровня нейромедиаторов — ГАМК, ацетилхолина и нейромодуляторов — энкефалина, вещества Р, динорфина и холецистокинина. Одним из проявлений хореи является атетоз — медленные, продолжительные корчащие движения дистальных частей конечностей, обусловленных нарушением функции ограды.

В результате одностороннего (при кровоизлиянии) или двустороннего повреждения субталамических ядер может развиться баллизм , проявляющийся внезапными, насильственными, большой амплитуды и интенсивности, молотящими, стремительными движениями на противоположной (гемибаллизм) или обеих сторонах тела. Заболевания в области полосатого тела могут вести к развитию дистонии , которая проявляется насильственными, медленными, повторяющимися, скручивающими движениями мышц руки, шеи или торса. Примером локальной дистонии может быть непроизвольное сокращение мышц предплечья и кисти во время письма — писчий спазм. Заболевания в области базальных ганглиев могут вести к развитию тиков, характеризующихся внезапными, кратковременными насильственными движениями мышц различных частей тела.

Нарушение мышечного тонуса при заболеваниях базальных ганглиев проявляется ригидностью мышц. При ее наличии попытка изменения положения в суставах сопровождается у больного движением, напоминающим таковое для зубчатого колеса. Оказываемое мышцами сопротивление возникает через определенные интервалы. В других случаях может развиться восковая ригидность, при которой сохраняется сопротивление во всем интервале движения в суставе.

Гипокинетические моторные нарушения проявляются задержкой или невозможностью начать движение (акинезия), замедленностью выполнения движений и их завершения (брадикинезия).

Нарушения моторных функций при заболеваниях базальных ганглиев могут иметь смешанный характер, напоминая парезы мышц или, наоборот, их спастичность. При этом может развиться нарушение движений от неспособности начать движение к неспособности подавить непроизвольные движения.

Наряду с тяжелыми, инвалидизирующими нарушениями движений другим диагностическим признаком паркинсонизма является невыразительное лицо, часто называемое паркинсонической маской. Одним из его признаков является недостаточность или невозможность спонтанного смещения взора. Взор больного может оставаться застывшим, но он может перемещать его по команде в направлении визуального объекта. Эти факты предполагают, что базальные ганглии вовлечены в контроль смещения взора и зрительного внимания, используя сложную глазодвигательную нейронную сеть.

Одним из возможных механизмов развития двигательных и, в частности, глазодвигательных нарушений при повреждении базальных ганглиев может быть нарушение передачи сигналов в нейронных сетях вследствие нарушения нейромеднаторного баланса. У здоровых людей активность нейронов полосатого тела находится под уравновешенным влиянием афферентных тормозных (дофамин, ГАМ К) сигналов черной субстанции и возбуждающих (глутамат) сенсомоторной коры. Одним из механизмов поддержания этого равновесия является его регуляция сигналами бледного шара. Нарушение равновесия в сторону преобладания тормозных влияний ограничивает возможность достижения сенсорной информации моторных областей коры мозга и ведет к снижению моторной активности (гипокинезии), что наблюдается при паркинсонизме. Потеря базальными ганглиями (при заболеваниях или с возрастом) части тормозных дофаминовых нейронов может вести к облегчению поступления сенсорной информации в моторную систему и увеличению ее активности, как это наблюдается при хорее Хантингтона.

Одним из подтверждений того, что нейромедиаторный баланс имеет важное значение в осуществлении моторных функций базальных ганглиев, а его нарушение сопровождается двигательной недостаточностью, является клинически подтвержденный факт, что улучшение двигательных функций при паркинсонизме достигается при приеме L-dopa — предшественника синтеза дофамина, который проникает в мозг через гематоэнцефалический барьер. В мозге под влиянием фермента дофаминкарбоксилазы происходит его превращение в дофамин, что способствует ликвидации дофаминовой недостаточности. Лечение паркинсонизма приемом L-dopa является в настоящее время наиболее эффективным методом, применение которого позволило не только облегчить состояние больных, но и увеличить продолжительность их жизни.

Разработаны и применены методы хирургической коррекции двигательных и других нарушений у больных посредством стереотаксического разрушения бледного шара или вентролатерального ядра таламуса. После этой операции удается устранить ригидность и тремор мышц на противоположной стороне, но не устраняются акинезии и нарушение позы. В настоящее время используется также операция вживления постоянных электродов в таламус, через которые проводится его хроническая электростимуляция.

Осуществлены трансплантация в мозг клеток, продуцирующих дофамин, и пересадка в область желудочковой поверхности мозга больных мозговых клеток одного из их надпочечников, после которой в части случаев достигалось улучшение состояния больных. Предполагается, что пересаженные клетки могли стать в течение некоторого времени источником образования дофамина или факторов роста, способствовавших восстановлению функции пострадавших нейронов. В других случаях в мозг имплантировалась ткань базальных ганглиев эмбрионов, результаты которой оказались лучше. Трансплантационные методы лечения пока не получили широкого распространения и их эффективность продолжает изучаться.

Функции других нейронных сетей базальных ганглиев остаются малоизученными. На основании клинических наблюдений и экспериментальных данных предполагается, что базальные ганглии участвуют в изменении состояния активности мышц и позы при переходе от сна к бодрствованию.

Базальные ганглии участвуют в формировании настроения, мотиваций и эмоций человека, в особенности связанных с исполнением движений, направленных на удовлетворение жизненно важных потребностей (прием пищи, питье) или получение морального и эмоционального удовольствия (вознаграждения).

У большинства больных с нарушением функций базальных ганглиев выявляются симптомы психомоторных изменений. В частности, при паркинсонизме может развиваться состояние депрессии (подавленное настроение, пессимизм, повышенная ранимость, печаль), беспокойства, апатии, психоз, снижение познавательных и умственных способностей. Это свидетельствует о важной роли базальных ганглиев в осуществлении высших психических функций у человека.

Базальные ганглии.

Скопление серого вещества в толще больших полушарий головного мозга.

Функция:

1) коррекция программы сложного двигательного акта;

2) формирование эмоционально-аффективных реакций;

3) оценка.

Базальные ядра имеют строение ядерных центров.

Синонимы:

Подкорковые ганглии;

Базальные ганглии;

Стрио-поллидарная система.

Анатомически к базальным ядрам относятся:

Хвостатое ядро;

Чечевицеобразное ядро;

миндалевидное ядро.

Головка хвостатого ядра и передний отдел скорлупы чечевицеобразного ядра образуют полосатое тело.

Медиально-расположенная часть чечевицеобразного ядра – называется бледный шар. Он представляет самостоятельную единицу (паллидум ).

Связи базального ядра.

Афферентные:

1) от таламуса;

2) от гипоталамуса;

3) из покрышки среднего мозга;

4) от черной субстанции афферентные пути заканчиваются на клетках полосатого тела.

5) от полосатого тела к бледному шару.

Бледный шар получает афферентный сигнал:

1) непосредственно от коры;

2) из коры через таламус;

3) от полосатого тела;

4 от центрального серого вещества промежуточного мозга;

5) от крыши и покрышки среднего мозга;

6) от черной субстанции.

Эфферентные волокна:

1) от бледного шара в таламус;

2) хвостатое ядро и скорлупа посылают сигналы в таламус через бледный шар;

3) гипоталамус;

4) черная субстанция;

5) красное ядро;

6) к ядру нижней оливы;

7) четверохолмию.

Точных сведений о связях ограды и миндалевидных ядер нет.

Физиология базальных ядер.

Широкие связи БЯ обуславливают сложность функционального значения БЯ в различных нейрофизиологических и психофизиологических процессах.

Установлено участие БЯ:

1) в сложных двигательных актах;

2) вегетативных функциях;

3) безусловных рефлексах (половых, пищевых, оборонительных);

4) сенсорных процессах;

5) условных рефлексах;

6) эмоциях.

Роль БЯ в сложных двигательных актах заключается в том, что они обуславливают миотатические рефлексы, оптимальное перераспределение мышечного тонуса благодаря модулирующим влияниям на нижележащие структуры ЦНС участвующие в регуляции движений.

Методы исследования БЯ:

1) раздражение – электро и химиостимуляция;

2) разрушение ;

3) электрофизиологический метод

4) анализ динамики

5)

6) при вживленных электродах.

Разрушение полосатого тела → растормаживание бледного шара и среднемозговых структур (черная субстанция, РФ ствола), что сопровождается изменением мышечного тонуса и появлениемгиперкинезов.

При разрушении бледного шара или его патологии наблюдается гипертонус мышц, ригидность, гиперкинез. Однако гиперкинезы связаны не с выпадением функции отдельно БЯ, а с сопряженным нарушением функций таламуса и среднего мозга, регулирующих тонус мышц.

Эффекты БЯ.

При стимуляции показана:

1) легкость восприятия моторных и биоэлектрических проявлений эпилептиформных реакций тонического типа;

2) тормозящее влияние хвостатого ядра и скорлупы на бледный шар;

3) стимуляция хвостатого ядра и скорлупы → дезориентация, хаотическая двигательная активность. Связано с передаточной функцией БЯ импульсов из РФ в кору.

Вегетативные функции. Вегетативные компоненты поведенческих реакций.

Эмоциональные реакции:

Мимические реакции;

Повышенная двигательная активность;

Угнетающее влияние раздражения хвостатого ядра на интеллект.

Исследованиявлияния хвостатого ядра на условнорефлекторную деятельность и целенаправленные движения свидетельствуют как о торможении, так и об облегчающем характере этих влияний.

Передний мозг, базальные ганглии и кора.

Физиология базальных ганглиев.

Это парные ядра, расположенные между лобными долями и промежуточным мозгом.

Структуры:

1. полосатое тело (хвоста и скорлупа);

2. бледный шар;

3. черная субстанция;

4. субталамическое ядро.

Связи БГ. Афферентные.

Большая часть афферентных волокон поступает в полосатое тело от:

1. всех областей коры БП;

2. от ядер таламуса;

3. от мозжечка;

4. от черной субстанции по дофаминэргическим путям.

Эфферентные связи.

1. от полосатого тела к бледному шару;

2. к черной субстанции;

3. от внутреннего отдела бледного шара → таламусу (и в меньшей степени к крыше среднего мозга) → двигательной области коры;

4. к гипоталамусу от бледного шара;

5. к красному ядру и РФ → руброспинальный путь, ретикулоспинальный путь.

Функция БГ.

1. Организация двигательных программ. Обусловлена эта роль связью с корой и другими отделами ЦНС.

2. Коррекция отдельных двигательных реакций. Это обусловлено тем, что подкорковые ганглии являются частью экстрапирамидной системы, обеспечивающей коррекцию двигательной активности за счет связей БГ с двигательными ядрами. А двигательные ядра в свою очередь связаны с ядрами ЧМН и спинным мозгом.

3. Обеспечивают условные рефлексы.

Методы исследования БЯ:

1) раздражение – электро и химиостимуляция;

2) разрушение ;

3) электрофизиологический метод (регистрация ЭЭГ и вызванных потенциалов);

4) анализ динамики условнорефлекторной деятельности на фоне стимуляции или выключения БЯ;

5) анализ клинико-неврологических синдромов;

6) психофизиологические исследования при вживленных электродах.

Эффекты раздражения.

Полосатого тела.

1. Двигательные реакции: появляются медленные (червеобразные) движения головы, конечностей.

2. Поведенческие реакции:

а) торможение ориентировочных рефлексов;

б) торможение волевых движений;

в) торможение двигательной активности эмоций при пищедобывании.

Бледного шара.

1. Двигательные реакции:

сокращение мимических, жевательных мышц, сокращение мышц конечностей, в изменении частоты тремора (если он есть).

2. Поведенческие реакции:

усиливаются двигательные компоненты пищедобывательного поведения.

Являются модулятором гипоталамуса.

Эффекты разрушения ядер и связей между структурами БГ.

Между черной субстанцией и полосатым телом – синдром Паркинсона – дрожательный паралич.

Симптомы:

1. дрожание рук с частотой 4 – 7гц (тремор);

2. маскообразное лицо – восковая ригидность;

3. отсутствие или резкое уменьшение жестикуляции;

4. осторожная походка мелкими шажками;

При неврологических исследованиях – акинезия, т. е. больные испытывают большие трудности перед началом или завершением движений. Паркинсонизм лечится препаратом L– дофа, но принимать всю жизнь, т. к. паркинсонизм связан с нарушением выделения медиатора дофамина черной субстанцией.

Эффекты поражения ядер.

Полосатого тела.

1. Атетоз – беспрерывные ритмические движения конечностей.

2. Хорея – сильные, неправильные движения, захватывающие почти всю мускулатуру.

Эти состояния связаны с выпадением тормозящего влияния полосатого тела на бледный шар.

3. Гипотонус и гиперкинез .

Бледного шара. 1.Гипертонус и гиперкинез. (скованность движений, обеднение мимики, пластический тонус).