3 сравнение отрезков и углов. Сравнение отрезков и углов

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сравнение отрезков и углов

1)Что называется углом?

2)Какие фигуры на рисунках являются углами? Объяснить.

3)Назвать углы на рисунках, их стороны и вершины.

M N K a b A D E F O k h

4)Какие точки принадлежат внутренней области угла, какие – внешней?

M A P C D B K O E F X

Сравнение отрезков и углов

Две геометрические фигуры называются равными, если их можно совместить наложением.

A M B N MN  AB

A M B M - середина отрезка AB

Точка отрезка, делящая его пополам, т.е.на два равных отрезка, называется серединой отрезка.

A B  MNK   ABC С M N K

A B С D BD -биссектриса  ABD= D BC

Луч, исходящий из вершины угла и делящий его на два равных угла, называется биссектрисой угла.

A B №1 .На рисунке CB = BE , DE  AC . Сравните AB и DB . С D E

A B №2 .На рисунке  AO B =  DOC . Есть ли еще на рисунке равные углы? С O D

№ 3 .На прямой a от точки A в одном направлении отложены два отрезка AB и AC (AC  AB). От точки С на этой прямой отложите такой отрезок CE , чтобы AC = BE . Что вы можете сказать о длине отрезка CE ?

A B С E a AC  AB AC = BE CE - ?

A B № 4 .На рисунке  AO С =  DOB , OM –биссектриса  AOB . Докажите, что OM -биссектриса угла С OD . С O D M


По теме: методические разработки, презентации и конспекты

Основные свойства откладывания отрезков и углов

В основе системы обучения, которую я сейчас использую на своих уроках,лежит принцип: позиция учителя - к классу не с ответом(готовые знания, умения и навыки), а с вопросом, позиция ученика - за познан...

На этом уроке учитель продолжит разговор о линиях и точках, расскажет, что такое отрезок, как он обозначается. Также вы узнаете о четырех способах сравнения отрезков и узнаете о единицах измерения длины. В конце урока вы вместе с учителем потренируетесь решать задачи, используя единицы измерения длины.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок и

Если заданы точка и линия, то точка либо принадлежит этой линии, либо нет. Еще говорят, что линия проходит через точку.

На рисунке 1 точка не принадлежит линии , или линия не проходит через точку . Точка принадлежит линии , или линия проходит через точку .

Рис. 1. Линия и точки: принадлежащие линии и не принадлежащие

Пусть у нас есть две точки и (рис. 2). Сколько можно провести линий, которые будут проходить через обе эти точки? Или сколькими линиями можно соединить эти две точки? Бесконечное количество.

Рис. 2. Точки и

Точки и могут обозначать два места, например дом и школу. А линии, их соединяющие, - траекторию, по которой можно пройти от дома до школы (рис. 3). Часто интересует самая короткая дорога от дома до школы, от одного места до другого, от точки до точки .

Рис. 3. Дорога от дома до школы как отрезок

Какая дорога от школы до дома самая короткая? Какая линия, соединяющая и , будем самой короткой?

Чтобы дорога оказалась самой короткой, идти от школы до дома надо по прямой. Чтобы линия, соединяющая точки, оказалась самой короткой, соединять их нужно по прямой.

Соединим и самой короткой возможной линией. Такая линия называется отрезком (рис. 4). Точки и называются концами отрезка.

Рис. 4. Точки и - концы отрезка

Обозначается сам отрезок , по именам точек - концов отрезка. Другой такой же короткой линии, соединяющей и , не существует. Если провести из в любую другую линию, она обязательно окажется длиннее. То есть существует только одна кратчайшая линия между и . Она и называется отрезком.

Если мы хотим указать на другие линии, соединяющие наши точки, например верхние или нижние, то нужно добавить еще точки, чтобы не было путаницы (рис. 5).

Рис. 5. Линии и , соединяющие точки и

Если две точки и необходимо соединить отрезком, то используется линейка. Линия, проведенная по линейке от точки до точки по линейке, и будет нужным отрезком (рис. 6). Сам отрезок будет называться . Точки и - его концами. Отрезок является кратчайшей линией, соединяющей точки и .

Рис. 6. Построение отрезка с помощью линейки

Любая точка либо принадлежит отрезку, либо не принадлежит.

Или говорят еще: «точка лежит на отрезке либо не лежит на отрезке». На рисунке точки и не принадлежат отрезку , точка принадлежит отрезку (рис. 7).

Рис. 7. Точки, принадлежащие и не принадлежащие отрезку

Сами точки и , концы отрезка, тоже принадлежат отрезку .

Посмотрим на два отрезка на рисунке 8. Что про них можно сказать? Отрезок короче отрезка (рис. 8). .

Рис. 8. Отрезки и

Как мы это поняли? Просто увидели. То есть сравнить эти два отрезка оказалось несложно.

Задача сравнения отрезков, их длины встречается в жизни достаточно часто. Например, два человека хотят выяснить, чей рост больше, кто из них выше.

1 способ: на глаз

Он подходит, если отрезки сильно отличаются и ответ однозначен.

Очевидно, что на рисунке 9 отрезок больше, длиннее, чем отрезок .

Очевидно, что папа выше сына.

Рис. 9. Сравнение роста папы и сына

Очевидно, что телебашня выше дерева на рисунке 10.

Рис. 10. Сравнение высоты телебашни и дерева

Этот способ очень прост, но может привести к ошибке.

Иногда, когда мы смотрим на картинку, то мы совершенно уверены, что понимаем, какой из двух отрезков больше. Но оказывается, что мы ошибаемся, потому что дополнительные построения вокруг отрезков обманывают зрение.

На картинке 1 нам кажется, что верхний отрезок длиннее нижнего.

Рис. 10.2. Иллюзия: кажется, что отрезки разной длины

Но это не так. В этом легко убедиться, если построить еще две линии.

Рис. 10.3. Одинаковые отрезки

Один из самых простых примеров ошибки восприятия. Какой отрезок короче на рисунке 3?

Рис. 10.4. Иллюзия: кажется, что отрезки не равны по длине

«Конечно же, первый!» - говорит наше восприятие. Но это не так. Эти отрезки одинаковые. В этом можно будет убедиться, воспользовавшись любым из остальных способов сравнения отрезков, которые мы рассматриваем на нашем сегодняшнем уроке.

Сложно поверить, что отрезки и равны. Дополнительные линии вокруг заставляют нас поверить, что отрезок намного короче отрезка на рисунке 4.

Рис. 10.5. Иллюзия: отрезки и имеют одинаковую длину

Все рассмотренные картинки являются примерами оптических иллюзий. Наберите в поисковой системе «оптические иллюзии», и вы найдете огромное количество очень интересных примеров по этой теме. Не только про сравнение отрезков.

Ну а мы с вами делаем главный вывод из этих примеров: не всегда можно доверять нашей оценке «на глаз». Нужны более точные методы сравнения отрезков.

Если бабушка хочет понять, одинаковы ли две спицы по длине, то она возьмет их вместе, зажмет в руку и несильно стукнет ими по столу, чтобы нижние края спиц оказались на одном уровне (рис. 11). По положению верхних краев она поймет, одинаковы ли спицы, если нет, то какая из них длиннее.

Рис. 11. Проверка с помощью наложения

Такой способ можно использовать, если предметы, которые мы сравниваем, можно легко приложить один к другому. Например, для сравнения роста люди встают спиной друг к другу и смотрят, чья макушка окажется выше.

Итак, метод заключается в том, что два предмета прикладывают друг к другу, совмещают концы с одной стороны и по положению других концов понимают, какой отрезок больше или, может быть, они равны.

Этот метод уже является точным, в отличие от первого. Но у него есть один серьезный недостаток. Чтобы им воспользоваться, нужно иметь возможность взять один отрезок и переместить, приложить его ко второму. Это не всегда возможно.

Ведь даже если нарисованы два отрезка, затруднительно взять один из них и приложить к другому. Если только разрезать лист, сложить части друг с другом и посмотреть на просвет.

Если один предмет мы не можем приставить к другому, то можно использовать третий, который легко совмещается с первым и вторым по очереди. Таким измерителем часто являются наши руки.

Если мы хотим понять, пройдет ли диван в дверной проем, мы руками отмечаем его ширину и, стараясь не изменить расстояние между руками, подходим к дверному проему и проверяем, хватит ли ширины дверей.

Мы можем использовать веревку, нитку, палку, чтобы сравнить длины двух предметов, которые сложно перемещать. Приложить нитку к одному предмету, потом ее же к другому. Так сразу будет понятно, какой из предметов длиннее. В математике для этой цели используются специальный измеритель, циркуль.

Нужно сравнить два отрезка и (рис. 12).

Рис. 12. Отрезки для сравнения

Совмещаем концы отрезка с иголками измерителя (рис. 13) и, не меняя раствора, сравниваем с другим отрезком (рис. 14).

Рис. 13. Измерение отрезка

Рис. 14. Измерение отрезка

Отрезок равен отрезку .

Записывается это так: .

Или может оказаться такая ситуация (рис. 15).

Рис. 15. Отрезки для сравнения

Отрезок не равен отрезку . Он равен отрезку , который является частью отрезка (рис. 16).

Рис. 16. Отрезок равен части отрезка

Отрезок меньше отрезка , так как является его частью.

Отрезок меньше отрезка , потому что равен его части.

Во всех предыдущих способах мы сравнивали отрезки, выясняли, у кого из них длина больше. Но саму длину не измеряли. Мы ее не знали.

Так, два человека могут встать друг другу спиной и выяснить, кто из них выше. Но каков рост каждого из них, они не узнают.

Последний способ, который мы сейчас рассмотрим, заключается в том, чтобы измерить длину каждого отрезка и сравнить их длины.

Так, если два человека знают, что рост одного составляет 1 м 73 см, а другого - 1 м 75 см, то понятно, что второй выше, и не нужно вставать рядом, чтобы это понять.

Длина, выраженная числом, то есть измеренная, становится очень удобным инструментом. Мы теперь эту длину можем записать, передать по телефону, запомнить.

Чтобы измерить отрезок, нужно приложить к нему линейку с нанесенной шкалой.

На рисунке 17 мы видим, что длина первого отрезка составляет 6 см, второго - 7 см.

Рис. 17. Измерение отрезков линейкой

Второй отрезок больше. Кроме того, мы теперь знаем, что второй не просто больше, а больше на 1 см.

А что если один отрезок измерял один человек, а второй - другой человек, да еще и в другом городе? Можно ли будет сравнить эти два отрезка? Да, это возможно потому, что на всех линейках нанесены одинаковые деления и не важно, какой конкретно линейкой мы пользовались. Скорее всего, на всех таких линейках мы увидим одинаковые деления - сантиметры и миллиметры.

Одна из самых часто встречающихся единиц длины - это метр.

Метр используется при измерении объектов не маленьких, но и не огромных, таких, которые можно оценить на глаз, увидеть сразу целиком: длина комнаты или двора, высота дерева или дома, расстояние от дома до школы и так далее. Сокращенно метр обозначается буквой «м». Точка, обозначающая сокращение, не нужна.

Все остальные единицы для измерения либо очень больших объектов, либо намного меньших получаются из метра.

Приставка «кило-» означает тысячу. Если перед словом метр поставить приставку «кило-», то полученное слово «километр» будет обозначать тысячу метров.

Сам километр кратко обозначается двумя буквами «км», тоже без точки для сокращения.

В километрах мы меряем большие расстояния, например расстояния между городами.

Если соединить центры Москвы и Санкт-Петербурга воображаемым отрезком (рис. 18), то его длина будет равна 635 км, или 635 000 метров.

Урок № 4 (15.09.16)

Предмет: геометрия, 7 класс.

Тема: Сравнение отрезков и углов.

Цели урока:

1) Обучающая: формирование теоретических знаний по теме «Сравнение отрезков и углов»; формирование навыков решения задач на сравнение отрезков и углов.

2) Развивающая : развитие умений применять полученные теоретические знания при выполнении практических заданий.

3) Воспитывающая : воспитание интереса к изучению математики, ответственности, самостоятельности.

Оборудование: учебник «Геометрия 7 – 9 класс» Л.С. Атанасян и др., рабочая тетрадь, карандаш, линейка, раздаточный материал, фигуры из картона.

Тип урока: изучение нового материала

План урока:

    Организационный момент.

    Актуализация опорных знаний.

    Получение знаний.

    Закрепление нового материала.

    Рефлексия.

    Домашнее задание.

Ход урока:

1. Организационный момент.

Приветствие учащихся. Ставятся цели и определяются задачи урока.

Объявляется тема урока. Учащиеся записывают тему урока и дату в рабочих тетрадях.

2. Актуализация опорных знаний.

Давайте вспомним из материала предыдущего урока, что такое отрезок и угол (Учащимся предлагается ответить на вопросы):

– Что такое отрезок?

– Как можно обозначать отрезки?

– Что называют углом?

– Как обозначают углы?

– Изобразите развёрнутый и неразвёрнутый углы.

Сегодня на уроке мы снова поговорим об отрезках и углах, а точнее выясним, как сравнить два отрезка или два угла. Также познакомимся с новым для вас понятием биссектрисы угла.

3. Получение знаний.

Каждому из вас известно, что в окружающем нас мире встречаются предметы, которые имеют одинаковую форму и одинаковые размеры. Например, два одинаковых карандаша, два одинаковых автомобиля, два одинаковых будильника.

В геометрии две фигуры, имеющие одинаковую форму и одинаковые размеры, называют равными.

Давайте возьмём две фигуры F 1 и F 2 (рисунок 1), вырезанные из бумаги.

Рисунок 1.

Чтобы установить, равны они или нет, наложим одну фигуру на другую. Предположим, что наши фигуры совместились, тогда можем сказать, что они равны.

А вот некоторые фигуры P 1 и P 2 (рисунок 2).

Рисунок 2.

Если попробуем наложить их друг на друга эти две фигуры, то увидим, что их совместить невозможно, а, следовательно, они не равны.

Можем сделать следующий вывод:

Две геометрические фигуры называются равными, если их можно совместить наложением .

Поговорим, как сравнить два отрезка. Возьмём два произвольных отрезка (рисунок 3).

Рисунок 3.

Чтобы установить, равны данные отрезки или нет, наложим один отрезок на другой так, чтобы конец одного отрезка совместился с концом другого (рисунок 3). При этом совместятся и два других конца отрезков, а, следовательно, отрезки равны.

Теперь возьмём отрезок АВ и отрезок АС (рисунок 4), и наложим их друг на друга таким же образом. Видим, что отрезки не совместились полностью, а значит, они не равны.

Рисунок 4.

Из рисунка также видно, что отрезок АВ составляет часть отрезка АС, поэтому отрезок АВ меньше отрезка АС. Записывают это так: АВ < АС.

Поговорим о том, что же называют серединой отрезка . Рассмотрим отрезок АВ. Отметим на нём точку С, которая делит его на две равные части (рисунок 5). Таким образом, можно сказать, что точка С и есть середина отрезка АВ, т.е. отрезок АС равен отрезку СВ.

Рисунок 5.

Сформулируем определение:

Точка отрезка, делящая его пополам, т. е. на два равных отрезка, называется серединой отрезка .

Далее рассмотрим два неразвёрнутых угла: угол 1 и угол 2 (рисунок 6). Чтобы установить, равны они или нет, наложим один угол на другой так, чтобы сторона одного угла совместилась со стороной другого, а две другие оказались по одну сторону от совместившихся сторон.

Рисунок 6.

Если две другие стороны также совместятся, то и углы полностью совместятся, а, значит, они равны. Но в нашем случае эти стороны не совместились, следовательно, наши углы не равны, и меньшим является угол, который составляет часть другого, а это угол 1.

Записываем это так: 1 < 2.

Возьмём неразвёрнутый угол АОС и развёрнутый угол ВОС (рисунок 7), наложим их друг на друга указанным выше способом (рисунок 8), то увидим, что неразвёрнутый угол составляет часть развёрнутого, а, следовательно, развёрнутый угол больше неразвёрнутого, т.е. угол ВОС больше угла АОС.

Рисунок 7.

Рисунок 8.

Следует отметить, что любые два развёрнутых угла , очевидно, равны.

И напоследок, возьмём некоторый угол hk . Проведём луч l из вершины этого угла так, чтобы он разделил его на два равных угла (рисунок 9).

Рисунок 9.

Таким образом, сформулируем следующее определение:

Луч, исходящий из вершины угла и делящий его на два равных угла, называется биссектрисой угла . В нашем случае луч l – биссектриса угла hk .

4. Закрепление нового материала.

Для закрепления материала учащимся предлагается выполнить следующие практические задания.

Задание 1. На прямой A отмечены точки C и D , которые лежат между точками A и B , точка C лежит между точками А и D , отрезки A D и CB равны. Является ли середина отрезка A B серединой отрезка CD (рисунок 10)?

Решение:

Рисунок 10.

А D = AC + CD , CB = CD + DB ,так как AD = CB , то АС= DB .

Пусть точка О – середина отрезка С D , т. е. СО=OD, CD = CO + OD .

AB=AO+OB, AO= АС + С O, OB=OD+DB. А так как АС= DB и СО=OD, то и АО=ОВ, а следовательно, О является серединой и отрезка АВ.

Задание 2. Углы AOB и COD на рисунке 11 равны, луч OE – биссектриса угла ВОС . Является ли луч OE биссектрисой угла AOD ?

Рисунок 11.

Решение: Рассмотрим ∠ AOD .

∠ AOD = ∠ AOE + ∠ EOD . Так как ∠ AOE = ∠ AO В + ∠ ВOE и ∠ EOD = ∠ EO С + ∠ СOD , причём ∠ AO В = ∠ СOD (по условию задачи), ∠ ВOE = =∠ EO С (так как ОЕ – биссектриса ∠ ВОС ), то ∠ AOE = ∠ EOD . Следовательно, ОЕ является биссектрисой ∠ AOD .

5. Рефлексия.

Подводятся итоги урока, обсуждается, что учащиеся узнали. Ребята по кругу высказываются одним предложением, выбирая начало фразы записанной на доске:

    сегодня я узнал…

    было интересно…

    было трудно…

    я выполнял задания…

    я понял, что…

    я научился…

    у меня получилось … Оценивается работа учащихся на уроке.

6. Домашнее задание: п. 5,6 стр.10-12, № 18, 20, 30 (доп-но).

Раздаточный материал.

    Сравнение геометрических фигур

В геометрии две фигуры, имеющие одинаковую форму и одинаковые размеры, называют равными.

Сравнение позволяет судить о равенстве фигур, и один из способов сравнить фигуры – наложение.

(Если две геометрические фигуры удаётся совместить наложением, они равны).

    Сравнение отрезков и углов

А) Как происходит совмещение отрезков AB и CD ?

Конец A одного отрезка совмещают с концом C другого отрезка. Если совпадают и другие концы B и D , то эти отрезки равны AB = CD .

Если нет, то один отрезок меньше другого и этот факт записывают также, как при сравнении чисел: AB < CD

Если совместить один конец отрезка с другим, то одна половина отрезка будет совмещена с другой.

На отрезке точку, которая делит его на две равные части, называют серединной отрезка.

Если точка K серединная точка отрезка JL , то JK = KL .

Б) Как происходит совмещение углов ABC и MNK ?

Вершину B одного угла совмещают с вершиной N другого угла и сторону BA одного угла накладывают на сторону NM другого угла так, чтобы другие стороны BC и NK были по одну сторону от совместившихся сторон.