16 логарифм 7 по основанию 4. Логарифмы: примеры и решения

Одночлены являются одним из основных видов выражений, изучаемых в рамках школьного курса алгебры. В этом материале мы расскажем, что это за выражения, определим их стандартный вид и покажем примеры, а также разберемся с сопутствующими понятиями, такими как степень одночлена и его коэффициент.

Что такое одночлен

В школьных учебниках обычно дается следующее определение этого понятия:

Определение 1

К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.

Исходя из этого определения, мы можем привести примеры таких выражений. Так, все числа 2 , 8 , 3004 , 0 , - 4 , - 6 , 0 , 78 , 1 4 , - 4 3 7 будут относиться к одночленам. Все переменные, например, x , a , b , p , q , t , y , z тоже будут по определению одночленами. Сюда же можно отнести степени переменных и чисел, например, 6 3 , (− 7 , 41) 7 , x 2 и t 15 , а также выражения вида 65 · x , 9 · (− 7) · x · y 3 · 6 , x · x · y 3 · x · y 2 · z и т.д. Обратите внимание, что в состав одночлена может входить как одно число или переменная, так и несколько, причем они могут быть упомянуты несколько раз в составе одного многочлена.

Такие виды чисел, как целые, рациональные, натуральные тоже относятся к одночленам. Также сюда можно включить действительные и комплексные числа. Так, выражения вида 2 + 3 · i · x · z 4 , 2 · x , 2 · π · x 3 тоже будут одночленами.

Что такое стандартный вид одночлена и как привести выражение к нему

Для удобства работы все одночлены сначала приводят к особому виду, называемому стандартным. Сформулируем конкретно, что же это значит.

Определение 2

Стандартным видом одночлена называют такой его вид, в которой он представляет из себя произведение числового множителя и натуральных степеней разных переменных. Числовой множитель, также называемый коэффициентом одночлена, обычно записывают первым с левой стороны.

Для наглядности подберем несколько одночленов стандартного вида: 6 (это одночлен без переменных), 4 · a , − 9 · x 2 · y 3 , 2 3 5 · x 7 . Сюда же можно отнести выражение x · y (здесь коэффициент будет равен 1), − x 3 (тут коэффициент равен - 1).

Теперь приведем примеры одночленов, которые нужно привести к стандартному виду: 4 · a · a 2 · a 3 (здесь нужно объединить одинаковые переменные), 5 · x · (− 1) · 3 · y 2 (тут нужно объединить слева числовые множители).

Обычно в случае, когда одночлен имеет несколько переменных, записанных буквами, буквенные множители записывают в алфавитном порядке. Например, предпочтительнее запись 6 · a · b 4 · c · z 2 , чем b 4 · 6 · a · z 2 · c . Однако порядок может быть и другим, если этого требует цель вычисления.

Привести к стандартному виду можно любой одночлен. Для этого нужно выполнить все необходимые тождественные преобразования.

Понятие степени одночлена

Очень важным является сопутствующее понятие степени одночлена. Запишем определение данного понятия.

Определение 3

Степенью одночлена , записанного в стандартном виде, является сумма показателей степеней всех переменных, которые входят в его запись. Если ни одной переменной в нем нет, а сам одночлен отличен от 0 , то его степень будет нулевой.

Приведем примеры степеней одночлена.

Пример 1

Так, одночлен a имеет степень, равную 1 , поскольку a = a 1 . Если у нас есть одночлен 7 ,то он будет иметь нулевую степень, поскольку в нем нет переменных и он отличен от 0 . А вот запись 7 · a 2 · x · y 3 · a 2 будет одночленом 8 -й степени, ведь сумма показателей всех степеней переменных, включенных в него, будет равна 8: 2 + 1 + 3 + 2 = 8 .

Одночлен, приведенный к стандартному виду, и исходный многочлен будут иметь одинаковую степень.

Пример 2

Покажем, как подсчитать степень одночлена 3 · x 2 · y 3 · x · (− 2) · x 5 · y . В стандартном виде его можно записать как − 6 · x 8 · y 4 . Вычисляем степень: 8 + 4 = 12 . Значит, степень исходного многочлена также равна 12 .

Понятие коэффициента одночлена

Если у нас есть одночлен, приведенный к стандартному виду, который включает в себя хотя бы одну переменную, то мы говорим о нем как о произведении с одним числовым множителем. Этот множитель называют числовым коэффициентом, или коэффициентом одночлена. Запишем определение.

Определение 4

Коэффициентом одночлена называют числовой множитель одночлена, приведенного к стандартному виду.

Возьмем для примера коэффициенты различных одночленов.

Пример 3

Так, в выражении 8 · a 3 коэффициентом будет число 8 , а в (− 2 , 3) · x · y · z им будет − 2 , 3 .

Особое внимание надо уделить коэффициентам, равным единице и минус единице. Как правило, в явном виде их не указывают. Считается, что в одночлене стандартного вида, в котором нет числового множителя, коэффициент равен 1 , например, в выражениях a , x · z 3 , a · t · x , поскольку их можно рассматривать как как 1 · a , x · z 3 – как 1 · x · z 3 и т.д.

Точно так же в одночленах, в которых нет числового множителя и которые начинаются со знака минус, мы можем считать коэффициентом - 1 .

Пример 4

Например, такой коэффициент будет у выражений − x , − x 3 · y · z 3 , поскольку они могут быть представлены как − x = (− 1) · x , − x 3 · y · z 3 = (− 1) · x 3 · y · z 3 и т.д.

Если у одночлена вообще нет ни одного буквенного множителя, то говорить о коэффициенте можно и в этом случае. Коэффициентами таких одночленов-чисел будут сами эти числа. Так, например, коэффициент одночлена 9 будет равен 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)