Жидкий метан: особенности и применение. Что такое природный газ, каков его состав и как его добывают

Предельные, углеводороды ряда метана (алканы)

Алканы, или парафины - алифатические предельные углеводороды, в молекулах которых атомы углерода связаны между собой простой s -связью. Оставшиеся валентности углеродного атома, не затраченные на связь с другими атомами углерода, полностью насыщены водородом. Поэтому предельные углеводороды содержат в молекуле максимальное число водородных атомов.

Углеводороды ряда алканов имеют общую формулу C n H 2n+2 . В таблице представлены некоторые представители ряда алканов и их некоторые физические свойства.

Формула

Название

Название радикала

Т пл. 0 С

Т кип. 0 С

CH 4

метан

метил

C 2 H 6

этан

этил

C 3 H 8

пропан

пропил

C 4 H 10

бутан

бутил

C 4 H 10

изобутан

изобутил

C 5 H 12

пентан

пентил

C 5 H 12

изопентан

изопентил

C 5 H 12

неопентан

неопентил

C 6 H 14

гексан

гексил

C 7 H 16

гептан

гептил

C 10 H 22

декан

децил

C 15 H 32

пентадекан

C 20 H 42

эйкозан

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН 2 - .Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его, называются гомологами .

Тренажёр №1 - Гомологи и изомеры

Тренажёр №2. - Гомологический ряд предельных углеводородов

Физические свойства

Первые четыре члена гомологического ряда метана - газообразные вещества, начиная с пентана - жидкости, а углеводороды с числом углеродных атомов 16 и выше - твердые вещества (при обычной температуре). Алканы - неполярные соединения и трудно поляризуемые. Они легче воды и в ней практически не растворяются. Не растворяются также в других растворителях с высокой полярностью. Жидкие алканы - хорошие растворители для многих органических веществ. Метан и этан, а также высшие алканы не имеют запаха. Алканы - горючие вещества. Метан горит бесцветным пламенем.

Получение алканов

Для получения алканов используют в основном природные источники.

Газообразные алканы получают из природного и попутных нефтяных газов, а твердые алканы - из нефти. Природной смесью твердых высокомолекулярных алканов является горный воск - природный битум.

1. Из простых веществ:

n C + 2n Н 2 500 °С, кат → С n Н 2n + 2

2. Действие металлического натрия на галогенопроизводные алканов- реакция А.Вюрца :

2CH 3 -Cl + 2Na → CH 3 -CH 3 + 2NaCl

Химические свойства алканов

1. Реакции замещения - Галогенирование (стадийно)

CH 4 + Cl 2 hν → CH 3 Cl (хлорметан) + HCl (1 стадия) ;

метан

CH 3 Cl + Cl 2 CH 2 Cl 2 (дихлорметан)+ HCl (2 стадия);

С H 2 Cl 2 + Cl 2 hν → CHCl 3 (трихлорметан)+ HCl (3 стадия);

CHCl 3 + Cl 2 hν → CCl 4 (хлорметан)+ HCl (4 стадия).

2. Реакции горения (горят светлым не коптящим пламенем)

C n H 2n+2 + O 2 t → nCO 2 + (n+1)H 2 O

3. Реакции разложения

а) Крекинг при температуре 700-1000°С разрываются (-С-С-) связи:

C 10 H 22 → C 5 H 12 + C 5 H 10

б) Пиролиз при температуре 1000°С разрываются все связи, продукты – С (сажа) и Н 2:

С H 4 1000°С → C + 2 H 2

Применение

· Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.

· Использование в качестве топлива – в котельных установках, бензин, дизельное топливо, авиационное топливо, баллоны с пропан-бутановой смесью для бытовых плит

· Вазелин используется в медицине, парфюмерии, косметике, высшие алканы входят в состав смазочных масел, соединения алканов применяются в качестве хладагентов в домашних холодильниках

· Смесь изомерных пентанов и гексанов называется петролейным эфиром и применяется в качестве растворителя. Циклогексан также широко применяется в качестве растворителя и для синтеза полимеров.

· Метан используется для производства шин и краски

· Значение алканов в современном мире огромно. В нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ. Велико значение в медицине, парфюмерии и косметике.

Задания для закрепления

№1. Составьте уравнения реакций горения этана и бутана.

№2. Составьте уравнения реакций получения бутана из следующих галогеналканов:

CH 3 - Cl (хлорметан) и C 2 H 5 - I (йодэтан).

№3. Осуществите превращения по схеме, назовите продукты:

C→ CH 4 → CH 3 Cl → C 2 H 6 → CO 2

№4. Реши кроссворд

По горизонтали:

1. Алкан, имеющий молекулярную формулу С 3 Н 8 .
2. Простейший представитель предельных углеводородов.
3. Французский химик, имя которого носит реакция получения углеводородов с более длинной углеродной цепью взаимодействием галогенопроизводных предельных углеводородов с металлическим натрием.
4. Геометрическая фигура, которую напоминает пространственное строение молекулы метана.
5. Трихлорметан.
6. Название радикала С 2 Н 5 –.
7. Наиболее характерный вид реакций для алканов.
8. Агрегатное состояние первых четырех представителей алканов при нормальных условиях.

Если вы правильно ответили на вопросы, то в выделенном столбце по вертикали получите одно из названий предельных углеводородов. Назовите это слово?

Метан - природный горючий газ, встречающийся в осадочном чехле земной коры в виде свободных скоплений, в растворённом (в нефти, пластовых и поверхностных водах), рассеянном, сорбированном (породами и органическим веществом) и твёрдом (газогидратном) состояниях.

Рис. 1

Рис. 2 - структурно-молекулярная формула метана.

Является простейшим углеводородом, представляет собой бесцветный газ без запаха, который горит бледным синеватым пламенем. Является наиболее устойчивым и инертным углеводородом за счет отсутствия углеродной связи (С-С). По своим свойствам малорастворим в воде и легче воздуха.

На 90-95% метан имеет природное происхождение, но также имеются антропогенные источники его выделения: рисовые поля, животноводство, свалки, добыча угля, потери в нефтегазовой отрасли, горение биомассы и т.п. В газовых месторождениях 99% чистого, сухого газа, а газы нефтяных скважин содержат помимо метана 10-40% высших гомологов - пропана, бутана, пентана и гексана (мокрый или жирный газ).

Является крайне взрывоопасным при концентрации в воздухе от 4,4% до 17%. Наиболее взрывоопасная концентрация 9,5%. Часто является наркотиком; действие ослабляется ничтожной растворимостью в воде и крови. Относится к четвертому классу опасности (малоопасные вещества).

Классификация метана по происхождению:

Биогенный - возникает в результате химической трансформации органического вещества. Например, бактериальный (микробный) метан образуется в результате деятельности бактерий, а термогенный возникает при термохимических процессах, в осадочных породах при их погружении на 3-10 км, в условиях высоких температур и давлений.

Абиогенный - возникающий в результате химических реакций неорганических соединений, чаще на больших глубинах в мантии земли.

В атмосферу метан попадает от естественных и антропогенных источников. Среди естественных источников это - болота, тундра, водоёмы, насекомые (термиты), метангидраты, геохимические процессы. К антропогенным относят - рисовые поля, шахты, потери при добыче нефти и газа, животноводство, горение биомассы, свалки.

Виды выделения метана:

Обыкновенное - непрерывное и равномерное выделение из невидимых трещин и пор угольного пласта и пород. Зафиксировать можно только приборами.

Суфлярное - местное интенсивное выделение газа из больших трещин в угольном пласте и породах, сопровождается шипением, свистом, давлением, действует недели, месяцы.

Внезапное выделение - бурное выделение большого количества метана, сопровождающееся смещением пород или угля на определенное расстояние от забоя. Газа метана может выделиться сотни и тысячи м 3 .

Источники метана и его получение.

На 90-95% метан имеет биологическое происхождение. Травоядные копытные животные, такие как коровы и козы, испускают пятую часть годового выброса метана: его вырабатывают бактерии в их желудках. Другими важными источниками служат термиты, рис-сырец, болота, фильтрация естественного газа (это продукт прошлой жизни) и фотосинтез растений. Вулканы вносят в общий баланс метана на Земле менее 0,2%, но источником и этого газа могут быть организмы прошлых эпох. Промышленные выбросы метана незначительны. Таким образом, обнаружение метана на планете типа Земли указывает на наличие там жизни.

Метан образуется при термической переработке нефти и нефтепродуктов (10-57% по объёму), коксовании и гидрировании каменного угля (24-34%). Лабораторные способы получения: сплавление ацетата натрия со щелочью, действие воды на метилмагнийиодид или на карбид алюминия.

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и калия) или безводного гидроксида натрия с уксусной кислотой. Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Использование метана.

Метан - наиболее термически устойчивый насыщенный углеводород. Его широко используют как бытовое и промышленное топливо и как сырьё для промышленности. Так, хлорированием метана производят метилхлорид, метиленхлорид, хлороформ, четырёххлористый углерод.

При неполном сгорании метана получают сажу, при каталитическом окислении - формальдегид, при взаимодействии с серой - сероуглерод.

Термоокислительный крекинг и электрокрекинг метана- важные промышленные методы получения ацетилена.

Каталитическое окисление смеси метана с аммиаком лежит в основе промышленного производства синильной кислоты.

Метан используют как источник водорода в производстве аммиака, а также для получения водяного газа (т.н. синтез-газа):

CH4 + H2O > CO + 3H2,

применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и др.

Важное производное метана - нитрометан.

В наше время метан широко используется в качестве моторного топлива для автомобилей. Однако плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20-25 МПа (200-250 атмосфер). Для хранения газа в таком состоянии используются специальные баллоны, которые устанавливаются на автомобилях.

Метан относят к парниковым газам, так как повышение его содержания в атмосфере способствует развитию парникового эффекта. Метан в несколько раз легче воздуха и обладает более сильным парниковым эффектом, чем углекислый газ, поэтому наряду с другими вредными веществами был занесен в список веществ регламентируемый Рамочной Конвенцией ООН об изменении климата и Киотским протоколом по сокращению выбросов парниковых газов.

Метан – это простейший представитель предельных углеводородов. Он хорошо горит с выделением большого количества тепла, поэтому широко используется промышленностью.

Как получить метан в промышленности

Метан входит в состав природного газа и газа, сопутствующего нефтяным месторождениям. Поэтому промышленность получает метан из этих газов.

Как получить метан в домашних условиях

Метан имеет и другое название – болотный газ. Для того чтобы получить его в домашних условиях следует взять немного почвы со дна болота и поместить ее в банку, залив сверху водой. Банку плотно укупоривают и помещают в темное и теплое место. Через несколько дней можно будет заметить появление на поверхности воды мелких пузырьков газа. Образующийся метан можно отвести из банки через газоотводящую трубочку.

Как получить метан в лабораторных условиях

Получить метан в условиях лаборатории можно несколькими способами:

  1. Пропускание смеси сероводорода и сероуглерода через трубку, на дне которой расположена раскаленная медь: CS 2 + 2H 2 S + 8Cu = CH 4 + Cu 2 S. Это был самый первый способ получения метана. Позже было выяснено, что получить метан можно при нагревании смеси водорода и углерода в присутствии никелевого катализатора до 475 градусов. Без использования катализатора нагревать смесь приходится до 1200 градусов. С + 2H 2 = CH 4
  2. В настоящее время метан получают нагреванием смеси гидроксида натрия и ацетата натрия: СН 3 СООNa + NaOH = Na 2 CO 3 + CH 4 .
  3. Получить чистый метан можно при реакции карбида алюминия и воды: Al 4 C 3 + 12H 2 O = 4 Al(OH) 3 + 3CH 4
  4. Синтез метана может вестись и на основе соединения водорода и угарного газа: CO + 3H 2 = CH 4 + H 2 O

Как из метана получить ацетилен

Получить ацетилен из метана можно в результате нагревания последнего до температуры в полторы тысячи градусов:

2 CH 4 >C 2 H 2 + H 2

Как получить из метана метанол

Чтобы получить из метана метанол следует провести несколько химических реакций. Сначала происходит реакция между хлором и метаном. Эта реакция протекает только на свету, т.к. запускается она фотонами света. В ходе этой реакции образуется трихлорметан и соляная кислота: CH 4 + Cl 2 > CH 3 Cl + HCl. Затем проводят реакцию между полученным трихлорметаном и водным раствором гидроксида натрия. В результате этого получается метанол и хлорид натрия: CH 3 Cl + NaOH > NaCl + CH 3 OH

Как из метана получить анилин

Получить анилин из метана, возможно проделав только целую цепочку реакций, которая схематически выглядит так: CH 4 > C 2 H 2 > C 6 H 6 > C 6 H 5 NO 2 > C 6 H 5 NH 2 .

Сначала производят нагревание метана до 1500 градусов, в результате чего образуется ацетилен. Затем из ацетилена получают бензол, используя для этого реакцию Зелинского. Для этого через нагретую до 600 градусов трубку, наполовину заполненную активированным углем, пропускают ацетилен: 3С 2 H 2 =C 6 H 6

Из бензола получают нитробензол: С 6 H 6 + HNO 3 = C 6 H 5 NO 2 + Н 2 О, который представляет собой исходное сырье для получения анилина. Этот процесс идет по реакции Зинина:

С 6 H 5 NO 2 + 3(NH 4) 2 S = C 6 H 5 NH 2 + 6NH 3 + 3S + 2H 2 O.

Физико-химические свойства метана.

Опасные примеси в рудничном воздухе

К ядовитым примесям рудничного воздуха относятся окись углерода, окислы азота, сернистый газ и сероводород.

Окись углерода (СО) – газ без цвета, вкуса и запаха с удельным весом 0,97. Горит и взрывается при концентрации от 12,5 до 75%. Температура воспламенения, при концентрации 30%, 630-810 0 С. Очень ядовит. Смертельная концентрация – 0,4%. Допустимая концентрация в горных выработках - 0,0017%. Основная помощь при отравлении – искусственное дыхание в выработке со свежим воздухом.

Источниками окиси углерода являются взрывные работы, работы двигателей внутреннего сгорания, рудничные пожары и взрывы метана и угольной пыли.

Окислы азота (NO) - имеют бурый цвет и характерный резкий запах. Очень ядовиты, вызывают раздражение слизистых оболочек дыхательных путей и глаз, отеки легких. Смертельная концентрация, при кратковременном вдыхании, - 0,025%. Предельное содержание оксидов азота в рудничном воздухе не должно превышать 0,00025% (в пересчете на двуокись – NO 2). Для диоксида азота – 0,0001%.

Сернистый газ (SO 2) – бесцветен, с сильным раздражающим запахом и кислым вкусом. Тяжелее воздуха в 2,3 раза. Очень ядовит: раздражает слизистые оболочки дыхательных путей и глаз, вызывает воспаление бронхов, отек гортани и бронхов.

Сернистый газ образуется при взрывных работах (в сернистых породах), пожарах, выделяется из горных пород.

Предельное содержание в рудничном воздухе – 0,00038%. Концентрация 0,05% - опасна для жизни.

Сероводород (H 2 S) – газ без цвета, со сладковатым вкусом и запахом тухлых яиц. Удельный вес – 1,19. Сероводород горит, а при концентрации 6% взрывается. Очень ядовит, раздражает слизистые оболочки дыхательных путей и глаз. Смертельная концентрация – 0,1%. Первая помощь при отравлении – искусственное дыхание на свежей струе, вдыхание хлора (с помощью платка, смоченного хлорной известью).

Сероводород выделяется из горных пород и минеральных источников. Образуется при гниении органических веществ, рудничных пожарах и взрывных работах.

Сероводород хорошо растворяется в воде. Это необходимо учитывать при передвижении людей по заброшенным выработкам.

Допустимое содержание H 2 S в рудничном воздухе не должно превышать 0,00071%.


Лекция 2

Метан и его свойства

Метан является основной, наиболее распространенной частью рудничного газа. В литературе и на практике, метан, чаще всего отождествляется с рудничным газом. В рудничной вентиляции этому газу уделяется наибольшее внимание из-за его взрывчатых свойств.

Физико-химические свойства метана.

Метан (СН 4) – газ без цвета, вкуса и запаха. Плотность – 0,0057. Метан инертен, но, вытесняя кислород (вытеснение происходит в следующей пропорции: 5 единиц объема метана замещают 1 единицу объема кислорода, т.е. 5:1), может представлять опасность для людей. Воспламеняется при температуре 650-750 0 С. С воздухом метан образует горючие и взрывчатые смеси. При содержании в воздухе до 5-6% горит у источника тепла, от 5-6% до 14-16% - взрывается, свыше 14-16% - не взрывается. Наибольшая сила взрыва при концентрации 9,5%.

Одно из свойств метана – запаздывание вспышки, после контакта с источником воспламенения. Время запаздывания вспышки называется идукционным периодом. Наличие этого периода создает условия для предупреждения вспышки при взрывных работах, применяя предохранительные взрывчатые вещества (ВВ).

Давление газа в месте взрыва примерно в 9 раз выше начального давления газо-воздушной смеси до взрыва. При этом может возникать давление до 30 ат и выше. Различные препятствия в выработках (сужения, выступы и т.д.) способствуют повышению давления и увеличивают скорость распространения взрывной волны в горных выработках.