Обчислити площу криволінійної трапеції обмеженою лініями онлайн. Певний інтеграл

З цієї статті ви дізнаєтеся, як знайти площу фігури, обмеженою лініями, використовуючи обчислення за допомогою інтегралів. Вперше з постановкою такого завдання ми стикаємося у старших класах, коли тільки-но пройдено вивчення певних інтегралів і настав час приступити до геометричної інтерпретації отриманих знань на практиці.

Отже, що буде потрібно для успішного вирішення задачі з пошуку площі фігури за допомогою інтегралів:

  • Вміння грамотно будувати креслення;
  • Вміння вирішувати певний інтеграл за допомогою відомої формули Ньютона-Лейбніца;
  • Вміння «побачити» вигідніший варіант рішення - тобто. зрозуміти, як у тому чи іншому випадку буде зручніше проводити інтегрування? Вздовж осі ікс (OX) чи осі ігорок (OY)?
  • Ну і куди без коректних обчислень? Сюди входить розуміння як вирішувати той інший тип інтегралів і правильні чисельні обчислення.

Алгоритм розв'язання задачі з обчислення площі фігури, обмеженої лініями:

1. Будуємо креслення. Бажано це робити на листку в клітку з великим масштабом. Підписуємо олівцем над кожним графіком назву цієї функції. Підпис графіків робиться виключно задля зручності подальших обчислень. Отримавши графік шуканої постаті, найчастіше буде видно відразу, які межі інтегрування буде використано. Таким чином, ми вирішуємо завдання графічним методом. Однак буває так, що значення меж дробові чи ірраціональні. Тому, можна зробити додаткові розрахунки, переходимо за крок два.

2. Якщо явно не задані межі інтегрування, то знаходимо точки перетину графіків один з одним, і дивимося, чи наше графічне рішення збігається з аналітичним.

3. Далі необхідно проаналізувати креслення. Залежно від цього, як розташовуються графіки функцій, існують різні підходи до знаходження площі фігури. Розглянемо різні приклади перебування площі фігури з допомогою інтегралів.

3.1. Найкласичніший і найпростіший варіант завдання, це коли потрібно знайти площу криволінійної трапеції. Що таке криволінійна трапеція? Це плоска фігура, обмежена віссю ікс (у = 0), прямими х = а, х = b і будь-якої кривої, безперервної на проміжку від a до b. При цьому дана фігура невід'ємна і розташовується не нижче осі абсцис. У цьому випадку площа криволінійної трапеції чисельно дорівнює певному інтегралу, що обчислюється за формулою Ньютона-Лейбніца:

Приклад 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Якими лініями обмежена фігура? Маємо параболу y = x2 - 3x + 3, яка розташовується над віссю ОХ, вона невід'ємна, т.к. всі точки цієї параболи мають позитивні значення. Далі, задані прямі х = 1 і х = 3, які пролягають паралельно осі ОУ є обмежувальними лініями фігури зліва і справа. Ну і у = 0 вона ж вісь ікс, яка обмежує фігуру знизу. Отримана фігура заштрихована, як видно із малюнка зліва. В даному випадку можна відразу приступати до вирішення задачі. Перед нами простий приклад криволінійної трапеції, яку вирішуємо за допомогою формули Ньютона-Лейбніца.

3.2. У попередньому пункті 3.1 розібрано випадок, коли криволінійна трапеція розташована над віссю ікс. Тепер розглянемо випадок, коли умови завдання такі самі, крім того, що функція пролягає під віссю ікс. До стандартної формули Ньютона-Лейбніца додається мінус. Як розв'язувати таку задачу розглянемо далі.

Приклад 2. Обчислити площу фігури, обмежену лініями y = x2 + 6x + 2, x = -4, x = -1, y = 0 .

У цьому прикладі маємо параболу y = x2 + 6x + 2 , яка бере свій початок з-під осі ОХ , прямі х = -4, х = -1, у = 0 . Тут у = 0 обмежує шукану фігуру зверху. Прямі х = -4 і х = -1 це межі, не більше яких обчислюватиметься певний інтеграл. Принцип вирішення задачі на пошук площі фігури практично повністю збігається з прикладом номер 1. Єдина відмінність у тому, що задана функція не позитивна, і все також безперервна на проміжку [-4; -1]. Що означає не позитивна? Як видно з малюнка, фігура, яка полягає в рамках заданих іксів, має виключно «негативні» координати, що нам і потрібно побачити і пам'ятати при вирішенні задачі. Площу фігури шукаємо за формулою Ньютона-Лейбніца, тільки зі знаком мінус на початку.

Статтю не завершено.

Завдання 1 (про обчислення площі криволінійної трапеції).

У декартовій прямокутній системі координат xOy дана фігура (див. малюнок), обмежена віссю х, прямими х = a, х = b (a криволінійною трапецією. Потрібно обчислити площу криволінійної трапеції.
Рішення. Геометрія дає нам рецепти для обчислення площ багатокутників та деяких частин кола (сектора, сегмента). Використовуючи геометричні міркування, ми зможемо визначити лише наближене значення шуканої площі, розмірковуючи так.

Розіб'ємо відрізок [а; b] (підстава криволінійної трапеції) на n рівних частин; це розбиття здійснимо за допомогою точок x 1 x 2 ... x k ... x n-1. Проведемо через ці точки прямі, паралельні осі у. Тоді задана криволінійна трапеція розіб'ється на n елементів, на n вузьких стовпчиків. Площа всієї трапеції дорівнює сумі площ стовпчиків.

Розглянемо окремо k-ий стовпчик, тобто. криволінійну трапецію, основою якої є відрізок . Замінимо його прямокутником з тією самою основою і висотою, що дорівнює f(x k) (див. рисунок). Площа прямокутника дорівнює \(f(x_k) \ cdot \ Delta x_k \), де \ ( \ Delta x_k \) - Довжина відрізка ; Звичайно вважати складене твір наближеним значенням площі k-го стовпчика.

Якщо тепер зробити те саме з усіма іншими стовпчиками, то прийдемо до наступного результату: площа S заданої криволінійної трапеції приблизно дорівнює площі S n ступінчастої фігури, складеної з n прямокутників (див. малюнок):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Тут заради однаковості позначень ми вважаємо, що a = х 0 b = x n ; \(\Delta x_0 \) - Довжина відрізка , \(\Delta x_1 \) - Довжина відрізка, і т.д; при цьому, як ми домовилися вище, \(\Delta x_0 = \dots = \Delta x_(n-1) \)

Отже, (S \approx S_n \), причому це наближена рівність тим точніше, чим більше n.
За визначенням вважають, що потрібна площа криволінійної трапеції дорівнює межі послідовності (S n):
$$ S = \lim_(n \to \infty) S_n $$

Завдання 2 (про переміщення точки)
По прямій рухається матеріальна точка. Залежність швидкості від часу виражається формулою v = v(t). Знайти переміщення крапки за проміжок часу [а; b].
Рішення. Якби рух був рівномірним, то завдання вирішувалося дуже просто: s = vt, тобто. s = v(b-а). Для нерівномірного руху доводиться використовувати самі ідеї, у яких було засновано рішення попередньої завдання.
1) Розділимо проміжок часу [а; b] на n рівних частин.
2) Розглянемо проміжок часу і вважатимемо, що у цей проміжок часу швидкість була постійною, такою, як у момент часу t k . Отже, ми вважаємо, що v = v (t k).
3) Знайдемо наближене значення переміщення точки за проміжок часу, це наближене значення позначимо s k
\(s_k = v(t_k) \Delta t_k \)
4) Знайдемо наближене значення переміщення s:
\(s \approx S_n \) де
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) Переміщення, що шукається, дорівнює межі послідовності (S n):
$$ s = \lim_(n \to \infty) S_n $$

Підіб'ємо підсумки. Розв'язання різних завдань звелися до однієї і тієї ж математичної моделі. Багато завдань з різних галузей науки і техніки приводять у процесі вирішення такої ж моделі. Отже, цю математичну модель треба спеціально вивчити.

Поняття певного інтегралу

Дамо математичний опис тієї моделі, яка була побудована у трьох розглянутих задачах для функції y = f(x), безперервної (але необов'язково невід'ємної, як це передбачалося у розглянутих задачах) на відрізку [а; b]:
1) розбиваємо відрізок [а; b] на n рівних частин;
2) складаємо суму $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) обчислюємо $$ \lim_(n \to \infty) S_n $$

У курсі математичного аналізу доведено, що ця межа у разі безперервної (або шматково-безперервної) функції існує. Його називають певним інтегралом від функції y = f(x) за відрізком [а; b] і позначають так:
\(\int\limits_a^b f(x) dx \)
Числа a та b називають межами інтегрування (відповідно нижнім та верхнім).

Повернемося до розглянутих вище завдань. Визначення площі, дане в задачі 1, тепер можна переписати так:
\(S = \int\limits_a^b f(x) dx \)
тут S - площа криволінійної трапеції, зображеної на малюнку вище. У цьому полягає геометричний зміст певного інтегралу.

Визначення переміщення точки, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = a до t = b, дане в задачі 2, можна переписати так:

Формула Ньютона - Лейбніца

Спочатку відповімо питанням: який зв'язок між певним інтегралом і первообразной?

Відповідь можна знайти в задачі 2. З одного боку, переміщення точки s, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = а до t = b і обчислюється за формулою
\(S = \int\limits_a^b v(t) dt \)

З іншого боку, координата точки, що рухається, є первісна для швидкості - позначимо її s(t); отже, переміщення s виражається формулою s = s(b) - s(a). У результаті отримуємо:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
де s(t) - первісна для v(t).

У курсі математичного аналізу доведено таку теорему.
Теорема. Якщо функція y = f(x) безперервна на відрізку [а; b], то справедлива формула
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
де F(x) - первісна для f(x).

Наведену формулу зазвичай називають формулою Ньютона - Лейбніца на честь англійського фізика Ісаака Ньютона (1643-1727) та німецького філософа Готфріда Лейбніца (1646-1716), які отримали її незалежно один від одного і практично одночасно.

Насправді замість запису F(b) - F(a) використовують запис \(\left. F(x)\right|_a^b \) (її називають іноді подвійною підстановкою ) і, відповідно, переписують формулу Ньютона - Лейбніца в такому вигляді:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

Обчислюючи певний інтеграл, спочатку знаходять первісну, а потім здійснюють подвійну підстановку.

Маючи формулу Ньютона - Лейбніца, можна одержати дві властивості певного інтеграла.

Властивість 1. Інтеграл від суми функцій дорівнює сумі інтегралів:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

2. Постійний множник можна винести за знак інтеграла:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Обчислення площ плоских фігур за допомогою певного інтегралу

За допомогою інтеграла можна обчислювати площі не тільки криволінійних трапецій, а й плоских фігур складнішого вигляду, наприклад, такого, який представлений на малюнку. Фігура Р обмежена прямими х = а, х = b та графіками безперервних функцій y = f(x), y = g(x), причому на відрізку [а; b] виконується нерівність \(g(x) \leq f(x) \). Щоб обчислити площу S такої фігури, будемо діяти так:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Отже, площа фігури S, обмеженої прямими х = а, х = b і графіками функцій y = f(x), y = g(x), безперервних на відрізку і таких, що для будь-якого x з відрізка [а; b] виконується нерівність \(g(x) \leq f(x) \), обчислюється за формулою
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Таблиця невизначених інтегралів (первісних) деяких функцій $$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n +1)) (n +1) + C \; \; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch) ) x + C $$

а)

Рішення.

Перший і найважливіший момент рішення - побудова креслення.

Виконаємо креслення:

Рівняння y=0задає вісь «іксів»;

- х=-2і х = 1- Прямі, паралельні осі Оу;

- у = х 2 +2 -парабола, гілки якої спрямовані вгору, з вершиною у точці (0; 2).

Зауваження. Для побудови параболи досить визначити точки її перетину з координатними осями, тобто. поклавши х = 0знайти перетин з віссю Оуі вирішивши відповідне квадратне рівняння, знайти перетин з віссю Ох .

Вершину параболи можна знайти за формулами:

Можна побудувати лінії та крапково.

На відрізку [-2; 1] графік функції y=x 2 +2розташований над віссю Oxтому:

Відповідь: S= 9 кв.

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на вічко» підраховуємо кількість клітин у кресленні - ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Що робити, якщо криволінійна трапеція розташована під віссю Ох?

b) Обчислити площу фігури, обмеженою лініями y=-e x , x=1та координатними осями.

Рішення.

Виконаємо креслення.

Якщо криволінійна трапеція повністю розташована під віссю Ох , то її площу можна знайти за формулою:

Відповідь: S=(e-1)кв.од.»1,72 кв.од.

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині.

с) Знайти площу плоскої фігури, обмеженої лініями у=2х-х 2, у=-х.

Рішення.

Спочатку потрібно виконати креслення. Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи і прямий Це можна зробити двома способами. Перший спосіб – аналітичний.

Вирішуємо рівняння:

Отже, нижня межа інтегрування а=0, верхня межа інтегрування b=3 .

Будуємо задані лінії: 1. Парабола – вершина в точці (1; 1); перетин з віссю Ох -точки (0; 0) та (0; 2). 2. Пряма – бісектриса 2-го та 4-го координатних кутів. А тепер Увага! Якщо на відрізку [ a;b] деяка безперервна функція f(x)більше або дорівнює певній безперервній функції g(x), то площу відповідної фігури можна знайти за формулою: .


І не важливо, де розташована фігура - над віссю або під віссю, а важливо, який графік Вище (щодо іншого графіка), а який-НИЖЧЕ. У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Можна побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними).

Потрібна фігура обмежена параболою зверху і прямою знизу.

На відрізку , за відповідною формулою:

Відповідь: S=4,5 кв.

Як вставити математичні формули на сайт?

Якщо потрібно колись додавати одну-дві математичні формули на веб-сторінку, то найпростіше зробити це, як описано в статті: математичні формули легко вставляються на сайт у вигляді картинок, які автоматично генерує Вольфрам Альфа. Окрім простоти, цей універсальний спосіб допоможе покращити видимість сайту у пошукових системах. Він працює давно (і, гадаю, працюватиме вічно), але морально вже застарів.

Якщо ви постійно використовуєте математичні формули на своєму сайті, я рекомендую вам використовувати MathJax - спеціальну бібліотеку JavaScript, яка відображає математичні позначення у веб-браузерах з використанням розмітки MathML, LaTeX або ASCIIMathML.

Є два способи, як почати використовувати MathJax: (1) за допомогою простого коду можна швидко підключити до вашого сайту скрипт MathJax, який автоматично підвантажуватиметься з віддаленого сервера (список серверів); (2) завантажити скрипт MathJax з віддаленого сервера на свій сервер та підключити до всіх сторінок свого сайту. Другий спосіб – більш складний та довгий – дозволить прискорити завантаження сторінок вашого сайту, і якщо батьківський сервер MathJax з якихось причин стане тимчасово недоступним, це ніяк не вплине на ваш власний сайт. Незважаючи на ці переваги, я вибрав перший спосіб, як більш простий, швидкий і не потребує технічних навичок. Наслідуйте мій приклад, і вже через 5 хвилин ви зможете використовувати всі можливості MathJax на своєму сайті.

Підключити скрипт бібліотеки MathJax з віддаленого сервера можна за допомогою двох варіантів коду, взятого на головному сайті MathJax або на сторінці документації:

Один з цих варіантів коду потрібно скопіювати і вставити в код вашої веб-сторінки, бажано між тегами або відразу після тега . За першим варіантом MathJax підвантажується швидше і менше гальмує сторінку. Натомість другий варіант автоматично відстежує та підвантажує свіжі версії MathJax. Якщо вставити перший код, його потрібно буде періодично оновлювати. Якщо вставити другий код, то сторінки завантажуватимуться повільніше, зате вам не потрібно буде постійно стежити за оновленнями MathJax.

Підключити MathJax найпростіше в Blogger або WordPress: в панелі керування сайтом додайте віджет, призначений для вставки стороннього коду JavaScript, скопіюйте в нього перший або другий варіант завантаженого коду, представленого вище, і розмістіть віджет ближче до початку шаблону (до речі, це зовсім не обов'язково , оскільки скрипт MathJax завантажується асинхронно). Ось і все. Тепер вивчіть синтаксис розмітки MathML, LaTeX та ASCIIMathML, і ви готові вставляти математичні формули на веб-сторінки свого сайту.

Будь-який фрактал будується за певним правилом, яке послідовно застосовується необмежену кількість разів. Щоразу називається ітерацією.

Ітеративний алгоритм побудови губки Менгера досить простий: вихідний куб зі стороною 1 ділиться площинами, що паралельні його граням, на 27 рівних кубів. З нього видаляються один центральний куб і 6 прилеглих до нього на грані кубів. Виходить безліч, що складається з 20 менших кубів, що залишилися. Поступаючи так само з кожним із цих кубів, отримаємо безліч, що складається вже з 400 менших кубів. Продовжуючи цей процес безкінечно, отримаємо губку Менгера.

У попередньому розділі, присвяченому розбору геометричного сенсу певного інтеграла, ми отримали низку формул для обчислення площі криволінійної трапеції:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x для безперервної та невід'ємної функції y = f (x) на відрізку [a; b ] ,

S (G) = - ∫ a b f (x) d x для безперервної та непозитивної функції y = f (x) на відрізку [a; b].

Ці формули застосовні для вирішення простих завдань. Насправді ж нам частіше доведеться працювати з складнішими фігурами. У зв'язку з цим, цей розділ ми присвятимо розбору алгоритмів обчислення площі фігур, які обмежені функціями явно, тобто. як y = f(x) або x = g(y) .

Теорема

Нехай функції y = f 1 (x) та y = f 2 (x) визначені і безперервні на відрізку [a; b], причому f 1 (x) ≤ f 2 (x) для будь-якого значення x з [a; b]. Тоді формула для обчислення площі фігури G обмеженою лініями x = a , x = b , y = f 1 (x) і y = f 2 (x) матиме вигляд S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Схожа формула буде застосовна для площі фігури, обмеженої лініями y = c , y = d , x = g 1 (y) та x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y.

Доказ

Розберемо три випадки, котрим формула буде справедлива.

У першому випадку, враховуючи властивість адитивності площі, сума площ вихідної фігури G і криволінійної трапеції G 1 дорівнює площі фігури G 2 . Це означає, що

Тому S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x.

Виконати останній перехід ми можемо з використанням третьої якості певного інтеграла.

У другому випадку справедлива рівність: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графічна ілюстрація матиме вигляд:

Якщо обидві функції непозитивні, отримуємо: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графічна ілюстрація матиме вигляд:

Перейдемо до розгляду загального випадку, коли y = f 1 (x) та y = f 2 (x) перетинають вісь O x .

Точки перетину ми позначимо як x i, i = 1, 2,. . . , n-1. Ці точки розбивають відрізок [a; b] на n частин x i-1; x i, i = 1, 2,. . . , n де α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Отже,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Останній перехід ми можемо здійснити з використанням п'ятої якості певного інтеграла.

Проілюструємо на графіку загальний випадок.

Формулу S(G) = ∫ a b f 2 (x) - f 1 (x) d x можна вважати доведеною.

А тепер перейдемо до розбору прикладів обчислення площі фігур, які обмежені лініями y = f(x) та x = g(y) .

Розгляд будь-якого з прикладів ми починатимемо з побудови графіка. Зображення дозволить нам представляти складні фігури як поєднання простіших фігур. Якщо побудова графіків і фігур на них викликає у вас труднощі, можете вивчити розділ про основні елементарні функції, геометричне перетворення графіків функцій, а також побудову графіків під час дослідження функції.

Приклад 1

Необхідно визначити площу фігури, яка обмежена параболою y = - x 2 + 6 x - 5 і прямими лініями y = - 1 3 x - 1 2 x = 1 x = 4 .

Рішення

Зобразимо лінії на графіку в системі декартової координат.

На відрізку [1; 4 ] графік параболи y = - x 2 + 6 x - 5 розташований вище за пряму y = - 1 3 x - 1 2 . У зв'язку з цим для отримання відповіді використовуємо формулу, отриману раніше, а також спосіб обчислення певного інтеграла за формулою Ньютона-Лейбніца:

S(G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Відповідь: S(G) = 13

Розглянемо складніший приклад.

Приклад 2

Необхідно обчислити площу фігури, яка обмежена лініями y = x + 2, y = x, x = 7.

Рішення

В даному випадку ми маємо тільки одну пряму лінію, розташовану паралельно осі абсцис. Це x = 7. Це вимагає від нас знайти другу межу інтегрування самостійно.

Побудуємо графік та нанесемо на нього лінії, дані за умови завдання.

Маючи графік перед очима, ми легко можемо визначити, що нижньою межею інтегрування буде абсцис точки перетину графіка прямої y = x і напів параболи y = x + 2 . Для знаходження абсциси використовуємо рівність:

y = x + 2 О Д З З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (-1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Виходить, що абсцис точки перетину є x = 2 .

Звертаємо вашу увагу на той факт, що в загальному прикладі на кресленні лінії y = x + 2, y = x перетинаються в точці (2; 2), тому такі докладні обчислення можуть здатися зайвими. Ми привели тут таке докладне рішення лише тому, що у складніших випадках рішення може бути не таким очевидним. Це означає, що координати перетину ліній краще завжди обчислювати аналітично.

На інтервалі [2; 7] графік функції y = x розташований вище за графік функції y = x + 2 . Застосуємо формулу для обчислення площі:

S(G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Відповідь: S(G) = 59 6

Приклад 3

Необхідно обчислити площу фігури, яка обмежена графіками функцій y = 1 x та y = - x 2 + 4 x - 2 .

Рішення

Нанесемо лінії на графік.

Визначимося з межами інтегрування. Для цього визначимо координати точок перетину ліній, прирівнявши вирази 1 x - x 2 + 4 x - 2 . За умови, що x не дорівнює нулю, рівність 1 x = - x 2 + 4 x - 2 стає еквівалентним рівнянню третього ступеня - x 3 + 4 x 2 - 2 x - 1 = 0 із цілими коефіцієнтами. Освіжити в пам'яті алгоритм вирішення таких рівнянь ми можете, звернувшись до розділу «Рішення кубічних рівнянь».

Коренем цього рівняння є х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Розділивши вираз - x 3 + 4 x 2 - 2 x - 1 на двочлен x - 1 отримуємо: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Коріння, що залишилося, ми можемо знайти з рівняння x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (-3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0 . 3

Ми знайшли інтервал x ∈ 1; 3 + 13 2 , на якому фігура G укладена вище синій і нижче червоної лінії. Це допомагає нам визначити площу фігури:

S(G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Відповідь: S(G) = 7 + 13 3 - ln 3 + 13 2

Приклад 4

Необхідно обчислити площу фігури, яка обмежена кривими y = x 3 , y = - log 2 x + 1 і віссю абсцис.

Рішення

Нанесемо усі лінії на графік. Ми можемо отримати графік функції y = - log 2 x + 1 з графіка y = log 2 x якщо розташуємо його симетрично щодо осі абсцис і піднімемо на одну одиницю вгору. Рівняння осі абсцис у = 0.

Позначимо точки перетину ліній.

Як очевидно з малюнка, графіки функцій y = x 3 і y = 0 перетинаються у точці (0 ; 0) . Так виходить тому, що х = 0 є єдиним дійсним коренем рівняння х 3 = 0 .

x = 2 є єдиним коренем рівняння - log 2 x + 1 = 0 тому графіки функцій y = - log 2 x + 1 і y = 0 перетинаються в точці (2 ; 0) .

x = 1 є єдиним коренем рівняння x 3 = - log 2 x + 1. У зв'язку з цим графіки функцій y = x 3 і y = - log 2 x + 1 перетинаються в точці (1; 1). Останнє твердження може бути неочевидним, але рівняння x 3 = - log 2 x + 1 не може мати більше одного кореня, так як функція y = x 3 є строго зростаючою, а функція y = - log 2 x + 1 строго спадаючою.

Подальше рішення передбачає кілька варіантів.

Варіант №1

Фігуру G ми можемо представити як суму двох криволінійних трапецій, розташованих вище за осі абсцис, перша з яких розташовується нижче середньої лінії на відрізку x ∈ 0 ; 1 , а друга нижче за червону лінію на відрізку x ∈ 1 ; 2 . Це означає, що площа дорівнює S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Варіант №2

Фігуру G можна представити як різницю двох фігур, перша з яких розташована вище за осі абсцис і нижче за синю лінію на відрізку x ∈ 0 ; 2 , а друга між червоною та синьою лініями на відрізку x ∈ 1 ; 2 . Це дозволяє нам знайти площу наступним чином:

S(G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В цьому випадку для знаходження площі доведеться використовувати формулу виду S (G) = c d (g 2 (y) - g 1 (y)) d y . Фактично, лінії, які обмежують фігуру, можна подати у вигляді функцій від аргументу y .

Дозволимо рівняння y = x 3 і - log 2 x + 1 щодо x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Отримаємо потрібну площу:

S(G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Відповідь: S(G) = 1 ln 2 - 1 4

Приклад 5

Необхідно обчислити площу фігури, обмежену лініями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Рішення

Червоною лінією нанесемо графік лінію, задану функцією y = x . Синім кольором нанесемо лінію y = -1 2 x + 4, чорним кольором позначимо лінію y = 2 3 x - 3.

Зазначимо точки перетину.

Знайдемо точки перетину графіків функцій y = x та y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 П о верка: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 не я в л я т с я р е ш е н ня му р а в н е н і я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н е е м у р а в н і н я ⇒ (4 ; 2) т о ч к а перес е ч е і я y = x та y = - 1 2 x + 4

Знайдемо точку перетину графіків функцій y = x та y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 Перевірка: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н н е м у р а в н е н я ⇒ (9 ; 3) т о к а перес е ч а н я y = x і y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я ет с я р е ш е н н ня м у р я в н е ня

Знайдемо точку перетину ліній y = - 1 2 x + 4 і y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) точка перес е чення і = - 1 2 x + 4 і y = 2 3 x - 3

Спосіб №1

Представимо площу шуканої фігури як суму площ окремих фігур.

Тоді площа фігури дорівнює:

S(G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Спосіб №2

Площа вихідної фігури можна як суму двох інших фігур.

Тоді розв'яжемо рівняння лінії щодо x , а тільки після цього застосуємо формулу обчислення площі фігури.

y = x ⇒ x = y 2 до р а з н а я л і н і я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 1 2 x + 4 ⇒ x = - 2 y + 8 с і н я л і н і я

Таким чином, площа дорівнює:

S(G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Як бачите, значення збігаються.

Відповідь: S(G) = 11 3

Підсумки

Для знаходження площі фігури, яка обмежена заданими лініями, нам необхідно побудувати лінії на площині, знайти точки їх перетину, застосувати формулу для знаходження площі. У цьому розділі ми розглянули варіанти завдань, що найчастіше зустрічаються.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter