Вирішення систем лінійних рівнянь методом гауса. Схема єдиного поділу

При вирішенні системи рівнянь

Найпростішим варіантом методу Гауса мають місце великі похибки. Причина полягає у появі великих коефіцієнтів, при округленні яких виходить абсолютна велика похибка D ~ 0.5. У свою чергу, великі коефіцієнти виходять після поділу на короткий провідний коефіцієнт .

Висновок:для зменшення впливу помилок округлення треба вибирати провідний елемент не просто відмінний від 0, а й досить великий.

Перша модифікація методу Гауса- Пошук по рядках. В алгоритмі провідний елемент треба вибирати з умови.

Нестача модифікації. Припустимо х i знайдено з похибкою D. Тоді при пошуку будь-якого х s треба, згідно з формулою зворотного ходу, множити . У цьому похибка D також помножиться на . Якщо значення велике, то похибка зросте.

Висновок:треба забезпечити, щоб провідний елемент був не просто великим, а найбільшим за модулем у своєму рядку. Тоді при нормуванні провідного рядка всі інші коефіцієнти, згідно з формулою (5), будуть за модулем менше 1, і помилки будуть зменшуватися.

Друга модифікація методу Гауса- Пошук по стовпцям. Зазначену вимогу можна забезпечити, якщо невідомі х i виключаються у довільному порядку, а у провідному рядку шукається , який доставляє . Це буде черговий провідний елемент. Після визначення провідного елемента міняємо місцями k-й та r-й стовпці.

Увага.За такої заміни змінюється нумерація невідомих x i . Щоб забезпечити таку заміну, треба при програмуванні ввести масив p 1 ... p n зі справжніми номерами невідомих. На початку прямого ходу все p i = i – звичайна нумерація. Після знаходження провідного елемента міняємо місцями p k і p r. При зворотному ході формулою (7) обчислюються перенумеровані x i . Після обчислення всіх невідомих треба покласти y]:=x[i], та масив y[i]буде остаточним розв'язанням задачі.

Третя модифікація методу Гауса- Повний пошук. Як ведучий вибирається елемент, що доставляє. При цьому міняються місцями k-й і r-й стовпці, p k і p r, а також m-й і k-й рядки. Ця модифікація забезпечує максимальну точність, але найскладніша.



Застосування методу Гауса для вирішення різних завдань лінійної алгебри

1. Звернення матриць.Нехай необхідно обчислити обернену матрицю до квадратної матриці А. Позначимо Х = А -1. Як відомо АХ = I, де I - одинична матриця, в якій по діагоналі розташовані 1, а решта елементів - 0. Іншими словами, i-й стовпець матриці I дорівнює

(1 стоїть на i-му місці). Нехай х (i) - i-й стовпець матриці Х. Тоді, в силу правила множення матриць (рядок множиться на стовпець) маємо А х (i) = e (i). Отже, для обігу матриці треба вирішити nсистем лінійних рівнянь з однаковими матрицями та різними правими частинами:

Ах = е (1) ; Ах = е (2) ; …; Ах = е (n) . (2.1)

Вирішивши ці системи, отримаємо, що знайдені рішення х (1), х (2), …, х (n) є стовпцями матриці А -1.

2. Обчислення визначників.У процесі перетворення матриці А до трикутного виду методом Гауса ми виконували з нею такі дії:

1) переставляли рядки чи стовпці залежно від модифікації методу;

2) ділили провідний рядок на ненульовий провідний елемент;

3) до рядків матриці додавали провідний рядок, помножений на деяке число.

Як відомо, при таких перетвореннях визначник матриці зазнає відповідних змін:

1) змінює знак;

2) ділиться той самий елемент;

3) не змінюється.

Після прямого ходу матриця буде приведена до верхнього трикутного вигляду з одиницями на головній діагоналі. Визначник такої матриці дорівнює, очевидно, 1. З урахуванням змін, які зазнавав визначник матриці А у процесі перетворень, маємо таку формулу:

det A = (–1) s × a 11 × a 22 ×…× a n n ,

де a j j – провідні елементи, s – число перестановок рядків та/або стовпців під час пошуку провідних елементів.

КОНТРОЛЬНІ ПИТАННЯ ТА ЗАВДАННЯ

1. Вручнуреалізувати метод Гауса (з пошуком по рядках, по стовпцях, по всій матриці – залежно від варіанта завдання) для даної системи рівнянь

та виконати наступні завдання

1) Вирішити цю систему рівнянь

2) Обчислити визначник матриці цієї системи ( методом Гауса- Див. 2 ).

3) Звернути матрицю цієї системи ( методом Гауса- Див. 1 ).

Надалі використовуйте результат розв'язання цієї задачі як тестовий приклад.

2. Скласти програму рішення лінійної системи методом Гаусса (з пошуком по рядках, по стовпцях, по всій матриці – залежно від варіанта завдання) та виконати звернення матриць із використанням цієї програми.

Продовжуємо розглядати системи лінійних рівнянь. Цей урок є третім на тему. Якщо ви невиразно уявляєте, що таке система лінійних рівнянь взагалі, почуваєтеся чайником, то рекомендую почати з азів на сторінці Далі корисно вивчити урок.

Метод Гауса – це просто!Чому? Відомий німецький математик Йоган Карл Фрідріх Гаусс ще за життя отримав визнання найбільшого математика всіх часів, генія і навіть прізвисько «короля математики». А все геніальне, як відомо просто!До речі, на гроші потрапляють не лише лохи, а ще й генії – портрет Гауса красувався на купюрі в 10 дойчмарок (до введення євро), і Гаус досі загадково посміхається німцям зі звичайних поштових марок.

Метод Гауса простий тим, що для його освоєння ДОСИТЬ ЗНАНЬ П'ЯТИКЛАСНИКА. Необхідно вміти складати та множити!Невипадково метод послідовного виключення невідомих викладачі часто розглядають на шкільних математичних факультативах. Парадокс, але у студентів метод Гауса викликає найбільші складнощі. Нічого дивного – вся річ у методиці, і я постараюся у доступній формі розповісти про алгоритм методу.

Спочатку трохи систематизуємо знання про системи лінійних рівнянь. Система лінійних рівнянь може:

1) Мати єдине рішення. 2) Мати безліч рішень. 3) Не мати рішень (бути несумісний).

Метод Гауса – найбільш потужний та універсальний інструмент для знаходження рішення будь-якийсистеми лінійних рівнянь Як ми пам'ятаємо, правило Крамера та матричний методнепридатні у випадках, коли система має нескінченно багато рішень чи несовместна. А метод послідовного виключення невідомих в будь-якому випадкуприведе нас до відповіді! На цьому уроці ми знову розглянемо метод Гауса для випадку №1 (єдине рішення системи), під пунктами №№2-3 відведено статтю. Зауважу, що сам алгоритм методу у всіх трьох випадках працює однаково.

Повернемося до найпростішої системи з уроку Як розв'язати систему лінійних рівнянь?і вирішимо її методом Гауса.

На першому етапі слід записати розширену матрицю системи: . За яким принципом записані коефіцієнти, гадаю, всім видно. Вертикальна характеристика всередині матриці не несе ніякого математичного сенсу - це просто накреслення для зручності оформлення.

Довідка : рекомендую запам'ятати терміни лінійної алгебри. Матриця системи - Це матриця, складена тільки з коефіцієнтів при невідомих, в даному прикладі матриця системи: . Розширена матриця системи – це та сама матриця системи плюс стовпець вільних членів, у разі: . Будь-яку з матриць можна для стислості називати просто матрицею.

Після того, як розширена матриця системи записана, з нею необхідно виконати деякі дії, які також називаються елементарними перетвореннями.

Існують такі елементарні перетворення:

1) Рядкиматриці можна, можливо переставлятимісцями. Наприклад, у матриці можна безболісно переставити перший і другий рядки:

2) Якщо в матриці є (або з'явилися) пропорційні (як окремий випадок – однакові) рядки, слід видалитиз матриці всі ці рядки крім одного. Розглянемо, наприклад, матрицю . У цій матриці останні три рядки пропорційні, тому достатньо залишити лише одну з них: .

3) Якщо в матриці в ході перетворень з'явився нульовий рядок, то його слід також видалити. Малювати не буду, зрозуміло, нульовий рядок – це рядок, у якому одні нулі.

4) Рядок матриці можна помножити (розділити)на будь-яке число, відмінне від нуля. Розглянемо, наприклад, матрицю. Тут доцільно перший рядок розділити на –3, а другий рядок – помножити на 2: . Ця дія дуже корисна, оскільки спрощує подальші перетворення матриці.

5) Це перетворення викликає найбільші труднощі, але насправді нічого складного також немає. До рядка матриці можна додати інший рядок, помножений на число, відмінне від нуля. Розглянемо нашу матрицю з практичного приклада: . Спочатку я розпишу перетворення дуже докладно. Помножуємо перший рядок на -2: , і до другого рядка додаємо перший рядок помножений на –2: . Тепер перший рядок можна розділити «назад» на –2: . Як бачите, рядок, який ПРИДБА ЧИне змінилась. Завждизмінюється рядок, ДО ЯКОГО ДОДАТИ ЮТ.

Насправді так докладно, звісно, ​​не розписують, а пишуть коротше: Ще раз: до другого рядка додали перший рядок, помножений на -2. Помножують рядок зазвичай усно або на чернетці, при цьому уявний хід розрахунків приблизно такий:

«Переписую матрицю та переписую перший рядок: »

«Спочатку перший стовпець. Внизу мені потрібно отримати нуль. Тому одиницю вгорі множу на –2: , і до другого рядка додаю перший: 2 + (–2) = 0. Записую результат у другий рядок: »

«Тепер другий стовпець. Угорі –1 множу на –2: . До другого рядка додаю перший: 1 + 2 = 3. Записую результат до другого рядка: »

«І третій стовпець. Угорі –5 множу на –2: . До другого рядка додаю перший: –7 + 10 = 3. Записую результат до другого рядка: »

Будь ласка, ретельно осмисліть цей приклад і розберіться в послідовному алгоритмі обчислень, якщо ви це зрозуміли, то метод Гауса практично «в кишені». Але, звісно, ​​над цим перетворенням ми ще попрацюємо.

Елементарні перетворення не змінюють рішення системи рівнянь

! УВАГА: розглянуті маніпуляції не можна використовуватиякщо Вам запропоновано завдання, де матриці дано «самі по собі». Наприклад, при «класичних» діях з матрицямищось переставляти всередині матриць в жодному разі не можна! Повернемося до нашої системи. Вона практично розібрана по кісточках.

Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до східчастого вигляду:

(1) До другого рядка додали перший рядок, помножений на -2. І знову: чому перший рядок множимо саме на –2? Для того щоб внизу отримати нуль, а значить, позбавитися однієї змінної в другому рядку.

(2) Ділимо другий рядок на 3.

Ціль елементарних перетворень привести матрицю до ступінчастого вигляду: . В оформленні завдання прямо так і відкреслюють простим олівцем «сходи», а також обводять кружальцями числа, які розташовуються на «сходах». Сам термін «ступінчастий вид» не цілком теоретичний, у науковій та навчальній літературі він часто називається трапецієподібний виглядабо трикутний вигляд.

В результаті елементарних перетворень отримано еквівалентнавихідна система рівнянь:

Тепер систему потрібно «розкрутити» у зворотному напрямку – знизу нагору, цей процес називається зворотним ходом методу Гауса.

У нижньому рівнянні ми вже готовий результат: .

Розглянемо перше рівняння системи та підставимо в нього вже відоме значення «гравець»:

Розглянемо найпоширенішу ситуацію, коли методом Гауса потрібно вирішити систему трьох лінійних рівнянь із трьома невідомими.

Приклад 1

Розв'язати методом Гауса систему рівнянь:

Запишемо розширену матрицю системи:

Зараз я одразу намалюю результат, до якого ми прийдемо під час рішення: І повторюся, наша мета – за допомогою елементарних перетворень привести матрицю до східчастого вигляду. З чого розпочати дії?

Спочатку дивимося на ліве верхнє число: Майже завжди тут має бути одиниця. Взагалі кажучи, влаштує і –1 (іноді й інші числа), але якось традиційно склалося, що туди зазвичай поміщають одиницю. Як організувати одиницю? Дивимось на перший стовпець – готова одиниця у нас є! Перетворення перше: міняємо місцями перший і третій рядки:

Тепер перший рядок у нас залишиться незмінним до кінця рішення. Вже легше.

Одиниця у лівому верхньому кутку організована. Тепер потрібно отримати нулі на цих місцях:

Нулі отримуємо саме за допомогою «важкого» перетворення. Спочатку знаємося з другим рядком (2, -1, 3, 13). Що потрібно зробити, щоби на першій позиції отримати нуль? Потрібно до другого рядка додати перший рядок, помножений на –2. Подумки чи чернетці множимо перший рядок на –2: (–2, –4, 2, –18). І послідовно проводимо (знову ж таки подумки або на чернетці) додавання, до другого рядка додаємо перший рядок, вже помножений на –2:

Результат записуємо у другий рядок:

Аналогічно розуміємося з третім рядком (3, 2, -5, -1). Щоб отримати на першій позиції нуль, потрібно до третього рядка додати перший рядок, помножений на –3. Подумки чи чернетці множимо перший рядок на –3: (–3, –6, 3, –27). І до третього рядка додаємо перший рядок, помножений на –3:

Результат записуємо у третій рядок:

Насправді ці дії зазвичай виконуються усно і записуються за один крок:

Не треба рахувати все відразу і одночасно. Порядок обчислень та «вписування» результатів послідовнийі зазвичай такий: спочатку переписуємо перший рядок, і пихкаємо собі потихеньку - НАСЛІДНО і Уважно:
А уявний хід самих розрахунків я вже розглянув вище.

В даному прикладі це зробити легко, другий рядок ділимо на -5 (оскільки там усі числа діляться на 5 без залишку). Заодно ділимо третій рядок на –2, адже що менше числа, то простіше рішення:

На заключному етапі елементарних перетворень потрібно отримати ще один нуль:

Для цього до третього рядка додаємо другий рядок, помножений на –2:
Спробуйте розібрати цю дію самостійно - помножте другий рядок на -2 і проведіть додавання.

Остання виконана дія – зачіска результату, ділимо третій рядок на 3.

В результаті елементарних перетворень отримано еквівалентну вихідну систему лінійних рівнянь: Круто.

Тепер у дію вступає зворотний перебіг методу Гаусса. Рівняння розкручуються знизу вгору.

У третьому рівнянні ми вже готовий результат:

Дивимося друге рівняння: . Значення «зет» вже відоме, таким чином:

І, нарешті, перше рівняння: . «Ігрек» і «Зет» відомі, справа за малим:

Відповідь:

Як уже неодноразово зазначалося, для будь-якої системи рівнянь можна і потрібно зробити перевірку знайденого рішення, благо це нескладно і швидко.

Приклад 2

Це приклад для самостійного рішення, зразок чистового оформлення та відповідь наприкінці уроку.

Слід зазначити, що ваш хід рішенняможе не збігтися з моїм ходом рішення, і це – особливість методу Гауса. Але відповіді обов'язково повинні вийти однаковими!

Приклад 3

Розв'язати систему лінійних рівнянь методом Гаусса

Дивимося на ліву верхню сходинку. Там у нас має бути одиниця. Проблема полягає в тому, що у першому стовпці одиниць немає взагалі, тому перестановкою рядків нічого не вирішити. У разі одиницю треба організувати з допомогою елементарного перетворення. Зазвичай це можна зробити кількома способами. Я вчинив так: (1) До першого рядка додаємо другий рядок, помножений на –1. Тобто подумки помножили другий рядок на –1 і виконали додавання першого і другого рядка, при цьому другий рядок у нас не змінився.

Тепер зліва вгорі "мінус один", що нас цілком влаштує. Хто хоче отримати +1, може виконати додатковий рух тіла: помножити перший рядок на –1 (змінити у неї знак).

(2) До другого рядка додали перший рядок, помножений на 5. До третього рядка додали перший рядок, помножений на 3.

(3) Перший рядок помножили на –1, в принципі це для краси. У третього рядка також змінили знак і переставили її на друге місце, таким чином, на другому сходинці у нас з'явилася потрібна одиниця.

(4) До третього рядка додали другий рядок, помножений на 2.

(5) Третій рядок поділили на 3.

Поганою ознакою, що свідчить про помилку в обчисленнях (рідше – про друкарську помилку), є «поганий» нижній рядок. Тобто, якби в нас унизу вийшло щось на зразок, і, відповідно, , то з великою часткою ймовірності можна стверджувати, що припущена помилка під час елементарних перетворень.

Заряджаємо зворотний хід, в оформленні прикладів часто не переписують саму систему, а рівняння "беруть прямо з наведеної матриці". Зворотний хід, нагадую, працює, знизу нагору. Та тут подарунок вийшов:

Відповідь: .

Приклад 4

Розв'язати систему лінійних рівнянь методом Гаусса

Це приклад для самостійного рішення, він дещо складніший. Нічого страшного, якщо хтось заплутається. Повне рішення та зразок оформлення наприкінці уроку. Ваше рішення може відрізнятись від мого рішення.

В останній частині розглянемо деякі особливості алгоритму Гаусса. Перша особливість полягає в тому, що іноді в рівняннях системи відсутні деякі змінні, наприклад: Як правильно записати розширену матрицю системи? Про цей момент я вже розповідав на уроці Правило Крамер. Матричний метод. У розширеній матриці системи на місці відсутніх змінних ставимо нулі: До речі, це досить легкий приклад, оскільки в першому стовпці вже є один нуль, і виконати менше елементарних перетворень.

Друга особливість полягає ось у чому. У всіх розглянутих прикладах на «сходинки» ми поміщали або -1 або +1. Чи можуть там бути інші цифри? У ряді випадків можуть. Розглянемо систему: .

Тут на лівій верхній сходинці у нас двійка. Але помічаємо той факт, що всі числа в першому стовпці поділяються на 2 без залишку - й інша двійка та шістка. І двійка зліва нагорі нас влаштує! На першому кроці потрібно виконати такі перетворення: до другого рядка додати перший рядок, помножений на -1; до третього рядка додати перший рядок, помножений на -3. Таким чином, ми отримаємо потрібні нулі у першому стовпці.

Або ще такий умовний приклад: . Тут трійка на другому «сході» теж нас влаштовує, оскільки 12 (місце, де нам потрібно отримати нуль) ділиться на 3 без залишку. Необхідно провести наступне перетворення: до третього рядка додати другий рядок, помножений на -4, в результаті чого буде отримано потрібний нам нуль.

Метод Гауса універсальний, але є одна своєрідність. Впевнено навчитися вирішувати системи іншими методами (методом Крамера, матричним методом) можна буквально з першого разу там дуже жорсткий алгоритм. Але щоб впевнено себе почувати в методі Гауса, слід «набити руку», і вирішувати хоча б 5-10 десять систем. Тому спочатку можливі плутанина, помилки у обчисленнях, і в цьому немає нічого незвичайного чи трагічного.

Дощова осіння погода за вікном. Тому для всіх бажаючих складніший приклад для самостійного рішення:

Приклад 5

Вирішити методом Гауса систему 4-х лінійних рівнянь із чотирма невідомими.

Таке завдання практично зустрічається негаразд і рідко. Думаю, навіть чайнику, який докладно вивчив цю сторінку, інтуїтивно зрозумілий алгоритм розв'язання такої системи. Принципово так само – просто дій більше.

Випадки, коли система не має рішень (неспільна) або має безліч рішень, розглянуті на уроці. Несумісні системи та системи із загальним рішенням. Там можна закріпити розглянутий алгоритм методу Гаусса.

Бажаю успіхів!

Рішення та відповіді:

Приклад 2: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду.
Виконані елементарні перетворення: (1) До другого рядка додали перший рядок, помножений на -2. До третього рядка додали перший рядок, помножений на -1. Увага! Тут може виникнути спокуса від третього рядка відняти першу, вкрай не рекомендую віднімати - сильно підвищується ризик помилки. Тільки складаємо! (2) У другому рядку змінили знак (помножили на –1). Другий і третій рядки поміняли місцями. Зверніть увагу , Що на «сходинках» нас влаштовує не тільки одиниця, але ще й -1, що навіть зручніше. (3) До третього рядка додали другий рядок, помножений на 5. (4) У другому рядку змінили знак (помножили на –1). Третій рядок поділили на 14.

Зворотній хід:

Відповідь : .

Приклад 4: Рішення : Запишемо розширену матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Виконані перетворення: (1) До першого рядка додали другий. Таким чином, організована потрібна одиниця на лівій верхній сходинці. (2) До другого рядка додали перший рядок, помножений на 7. До третього рядка додали перший рядок, помножений на 6.

З другою «сходинкою» все гірше , «Кандидати» неї - числа 17 і 23, а нам необхідна або одиниця, або -1. Перетворення (3) та (4) будуть спрямовані на отримання потрібної одиниці (3) До третього рядка додали другий, помножений на –1. (4) До другого рядка додали третій, помножений на –3. Потрібна річ на другій сходинці отримана . (5) До третього рядка додали другий, помножений на 6. (6) Другий рядок помножили на -1, третій рядок поділили на -83.

Зворотній хід:

Відповідь :

Приклад 5: Рішення : Запишемо матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Виконані перетворення: (1) Перший і другий рядки поміняли місцями. (2) До другого рядка додали перший рядок, помножений на -2. До третього рядка додали перший рядок, помножений на -2. До четвертого рядка додали перший рядок, помножений на -3. (3) До третього рядка додали другий, помножений на 4. До четвертого рядка додали другий, помножений на –1. (4) У другому рядку змінили знак. Четвертий рядок розділили на 3 та помістили замість третього рядка. (5) До четвертого рядка додали третій рядок, помножений на -5.

Зворотній хід:

Відповідь :


Метод Гаусачудово підходить для вирішення систем лінійних рівнянь алгебри (СЛАУ). Він має низку переваг у порівнянні з іншими методами:

  • по-перше, немає потреби попередньо дослідити систему рівнянь на спільність;
  • по-друге, методом Гаусса можна вирішувати не тільки СЛАУ, в яких кількість рівнянь збігається з кількістю невідомих змінних та основна матриця системи невироджена, а й системи рівнянь, в яких кількість рівнянь не збігається з кількістю невідомих змінних або визначник основної матриці дорівнює нулю;
  • по-третє, метод Гауса призводить до результату при порівняно невеликій кількості обчислювальних операцій.

Короткий огляд статті.

Спочатку дамо необхідні визначення та введемо позначення.

Далі опишемо алгоритм методу Гауса для найпростішого випадку, тобто, для систем лінійних рівнянь алгебри, кількість рівнянь в яких збігається з кількістю невідомих змінних і визначник основної матриці системи не дорівнює нулю. При вирішенні таких систем рівнянь найвиразніше видно суть методу Гаусса, яка полягає у послідовному виключенні невідомих змінних. Тому метод Гауса також називають методом послідовного виключення невідомих. Покажемо докладні рішення кількох прикладів.

У висновку розглянемо рішення методом Гауса систем лінійних рівнянь алгебри, основна матриця яких або прямокутна, або вироджена. Рішення таких систем має деякі особливості, які ми розберемо на прикладах.

Навігація на сторінці.

Основні визначення та позначення.

Розглянемо систему з p лінійних рівнянь з n невідомими (p може дорівнювати n ):

Де – невідомі змінні, – числа (дійсні чи комплексні), – вільні члени.

Якщо , то система лінійних рівнянь алгебри називається однорідний, в іншому випадку - неоднорідний.

Сукупність значення невідомих змінних , у яких всі рівняння системи перетворюються на тотожності, називається рішенням СЛАУ.

Якщо існує хоча б одне рішення системи лінійних рівнянь алгебри, то вона називається спільної, в іншому випадку - несумісний.

Якщо СЛАУ має єдине рішення, вона називається певною. Якщо рішень більше одного, то система називається невизначеною.

Кажуть, що система записана у координатної формиякщо вона має вигляд
.

Ця система в матричній формізапису має вигляд , де - основна матриця СЛАУ; - матриця стовпець невідомих змінних; - матриця вільних членів.

Якщо до матриці А додати як (n+1)-ого ​​стовпця матрицю-стовпець вільних членів, то отримаємо так звану розширену матрицюсистеми лінійних рівнянь Зазвичай розширену матрицю позначають буквою Т , а стовпець вільних членів відокремлюють вертикальною лінією від інших стовпців, тобто,

Квадратна матриця А називається виродженоюякщо її визначник дорівнює нулю. Якщо , то матриця А називається невиродженою.

Слід зазначити наступний момент.

Якщо з системою лінійних рівнянь алгебри зробити наступні дії

  • поміняти місцями два рівняння,
  • помножити обидві частини будь-якого рівняння на довільне та відмінне від нуля дійсне (або комплексне) число k ,
  • до обох частин якогось рівняння додати відповідні частини іншого рівняння, помножені на довільне число k ,

то вийде еквівалентна система, яка має такі ж рішення (або як і вихідна не має рішень).

Для розширеної матриці системи лінійних рівнянь алгебри ці дії означатимуть проведення елементарних перетворень з рядками:

  • перестановку двох рядків місцями,
  • множення всіх елементів будь-якого рядка матриці T на відмінне від нуля число k ,
  • додавання до елементів якогось рядка матриці відповідних елементів іншого рядка, помножених на довільне число k .

Тепер можна переходити до опису методу Гаусса.

Рішення систем лінійних рівнянь алгебри, в яких число рівнянь дорівнює числу невідомих і основна матриця системи невироджена, методом Гаусса.

Як би ми вчинили у школі, якби отримали завдання знайти рішення системи рівнянь .

Деякі зробили б так.

Зауважимо, що додавши до лівої частини другого рівняння ліву частину першого, а до правої частини - праву, можна позбутися невідомих змінних x 2 і x 3 і відразу знайти x 1 :

Підставляємо знайдене значення x 1 =1 у перше та третє рівняння системи:

Якщо помножити обидві частини третього рівняння системи на -1 і додати їх до відповідних частин першого рівняння, ми позбудемося невідомої змінної x 3 і зможемо знайти x 2 :

Підставляємо отримане значення x 2 =2 в третє рівняння і знаходимо невідому змінну x 3 :

Інші вчинили б інакше.

Дозволимо перше рівняння системи щодо невідомої змінної x 1 і підставимо отриманий вираз у друге та третє рівняння системи, щоб виключити з них цю змінну:

Тепер розв'яжемо друге рівняння системи щодо x 2 і підставимо отриманий результат у третє рівняння, щоб виключити з нього невідому змінну x 2 :

З третього рівняння системи видно, що х 3 =3. З другого рівняння знаходимо , та якщо з першого рівняння отримуємо .

Знайомі способи рішення, чи не так?

Найцікавіше тут те, що другий спосіб рішення по суті і є методом послідовного виключення невідомих, тобто методом Гауса. Коли ми висловлювали невідомі змінні (спочатку x 1 , наступному етапі x 2 ) і підставляли в інші рівняння системи, тим самим виключали їх. Виняток ми проводили до того моменту, поки в останньому рівнянні не залишилася єдина невідома змінна. Процес послідовного виключення невідомих називається прямим ходом методу Гауса. Після завершення прямого ходу у нас з'являється можливість обчислити невідому змінну, яка знаходиться в останньому рівнянні. З її допомогою з передостаннього рівняння знаходимо наступну невідому змінну тощо. Процес послідовного знаходження невідомих змінних під час руху від останнього рівняння до першого називається зворотним ходом методу Гауса.

Слід зазначити, що коли ми виражаємо x 1 через x 2 і x 3 у першому рівнянні, а потім підставляємо отриманий вираз у друге та третє рівняння, то до такого ж результату наводять такі дії:

Справді, така процедура також дозволяє виключити невідому змінну x 1 із другого та третього рівнянь системи:

Нюанси за винятком невідомих змінних за методом Гаусса виникають тоді, коли рівняння системи не містять деяких змінних.

Наприклад, у СЛАУ у першому рівнянні відсутня невідома змінна x 1 (іншими словами, коефіцієнт перед нею дорівнює нулю). Тому ми можемо дозволити перше рівняння системи щодо x 1 , щоб унеможливити цю невідому змінну з інших рівнянь. Виходом із цієї ситуації є перестановка місцями рівнянь системи. Так як ми розглядаємо системи лінійних рівнянь, визначники основних матриць яких відмінні від нуля, то завжди існує рівняння, в якому є потрібна нам змінна, і ми це рівняння можемо переставити на потрібну нам позицію. Для нашого прикладу достатньо поміняти місцями перше та друге рівняння системи , Далі можна дозволити перше рівняння щодо x 1 і виключити її з інших рівнянь системи (хоча в другому рівнянні x 1 вже немає).

Сподіваємося, що суть Ви вловили.

Опишемо алгоритм методу Гауса.

Нехай нам потрібно вирішити систему з n лінійних рівнянь алгебри з n невідомими змінними виду і нехай визначник її основної матриці відмінний від нуля.

Вважатимемо, що , оскільки ми можемо цього домогтися перестановкою місцями рівнянь системи. Виключимо невідому змінну x 1 зі всіх рівнянь системи, починаючи з другого. Для цього до другого рівняння системи додамо перше, помножене на , до третього рівняння додамо перше, помножене на , і так далі, до n-го рівняння додамо перше, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а .

До такого ж результату ми дійшли б, якби висловили x 1 через інші невідомі змінні в першому рівнянні системи і отриманий вираз підставили у всі інші рівняння. Таким чином, змінна x 1 виключена зі всіх рівнянь, починаючи з другого.

Далі діємо аналогічно, але лише з частиною отриманої системи, яка зазначена на малюнку

Для цього до третього рівняння системи додамо друге, помножене на , до четвертого рівняння додамо друге, помножене на , і так далі, до n-го рівняння додамо друге, помножене на . Система рівнянь після таких перетворень набуде вигляду

де , а . Таким чином, змінна x 2 виключена зі всіх рівнянь, починаючи з третього.

Далі приступаємо до виключення невідомої x 3 при цьому діємо аналогічно з зазначеною на малюнку частиною системи

Так продовжуємо прямий хід методу Гаусса доки система не набуде вигляду

З цього моменту починаємо зворотний хід методу Гауса: обчислюємо x n з останнього рівняння як за допомогою отриманого значення x n знаходимо x n-1 з передостаннього рівняння, і так далі, знаходимо x 1 з першого рівняння.

Розберемо алгоритм з прикладу.

приклад.

методом Гауса.

Рішення.

p align="justify"> Коефіцієнт a 11 відмінний від нуля, так що приступимо до прямого ходу методу Гаусса, тобто, до виключення невідомої змінної x 1 з усіх рівнянь системи, крім першого. Для цього до лівої та правої частин другого, третього та четвертого рівняння додамо ліву та праву частини першого рівняння, помножені відповідно на , і :

Невідому змінну x 1 виключили, переходимо до виключення x 2 . До лівих та правих частин третього та четвертого рівнянь системи додаємо ліву та праву частини другого рівняння, помножені відповідно на і :

Для завершення прямого ходу методу Гауса нам залишилося виключити невідому змінну x 3 з останнього рівняння системи. Додамо до лівої та правої частин четвертого рівняння відповідно ліву та праву частину третього рівняння, помножену на :

Можна розпочинати зворотний хід методу Гаусса.

З останнього рівняння маємо ,
з третього рівняння отримуємо ,
з другого,
з першого.

Для перевірки можна підставити отримані значення невідомих змінних вихідну систему рівнянь. Всі рівняння звертаються до тотожності, що говорить про те, що рішення за методом Гауса знайдено правильно.

Відповідь:

Нині ж наведемо рішення цього прикладу методом Гаусса в матричної формі записи.

приклад.

Знайдіть розв'язок системи рівнянь методом Гауса.

Рішення.

Розширена матриця системи має вигляд . Зверху над кожним стовпцем записані невідомі змінні, яким відповідають елементи матриці.

Прямий хід методу Гаусса тут передбачає приведення розширеної матриці системи до трапецеїдальний вид за допомогою елементарних перетворень. Цей процес схожий із винятком невідомих змінних, яке ми проводили із системою в координатній формі. Зараз Ви в цьому переконаєтесь.

Перетворимо матрицю так, щоб усі елементи в першому стовпці, починаючи з другого, стали нульовими. Для цього до елементів другого, третього та четвертого рядків додамо відповідні елементи першого рядка помножені на , і відповідно:

Далі отриману матрицю перетворимо так, щоб у другому стовпці всі елементи, починаючи з третього, стали нульовими. Це відповідатиме виключенню невідомої змінної x 2 . Для цього до елементів третього та четвертого рядків додамо відповідні елементи першого рядка матриці, помножені відповідно на і :

Залишилося виключити невідому змінну x 3 із останнього рівняння системи. Для цього до елементів останнього рядка отриманої матриці додамо відповідні елементи передостаннього рядка, помножені на :

Слід зазначити, що ця матриця відповідає системі лінійних рівнянь

яка була отримана раніше після прямого ходу.

Настав час зворотного ходу. У матричній формі запису зворотний хід методу Гауса передбачає таке перетворення отриманої матриці, щоб матриця, зазначена на малюнку

стала діагональною, тобто, набула вигляду

де – деякі числа.

Ці перетворення аналогічні перетворенням прямого ходу методу Гаусса, але виконуються не від першого рядка до останнього, а від останнього до першого.

Додамо до елементів третього, другого та першого рядків відповідні елементи останнього рядка, помножені на , на та на відповідно:

Тепер додамо до елементів другого та першого рядків відповідні елементи третього рядка, помножені на і відповідно:

На останньому кроці зворотного ходу методу Гауса до елементів першого рядка додаємо відповідні елементи другого рядка, помножені на :

Отримана матриця відповідає системі рівнянь , звідки знаходимо невідомі змінні

Відповідь:

ЗВЕРНІТЬ УВАГУ.

При використанні методу Гауса для вирішення систем лінійних рівнянь алгебри слід уникати наближених обчислень, так як це може призвести до абсолютно невірних результатів. Рекомендуємо не округляти десяткові дроби. Краще від десяткових дробів переходити до звичайних дробів.

приклад.

Розв'яжіть систему з трьох рівнянь методом Гауса .

Рішення.

Зазначимо, що в цьому прикладі невідомі змінні мають інше позначення (не x 1 x 2 x 3 а x, y, z). Перейдемо до звичайних дробів:

Виключимо невідому x з другого та третього рівнянь системи:

В отриманій системі у другому рівнянні відсутня невідома змінна y, а в третьому рівнянні y присутня, тому, переставимо місцями друге та третє рівняння:

На цьому прямий хід методу Гауса закінчено (з третього рівняння не потрібно виключати y, оскільки цієї невідомої змінної вже немає).

Приступаємо до зворотного ходу.

З останнього рівняння знаходимо ,
з передостаннього


з першого рівняння маємо

Відповідь:

X = 10, y = 5, z = -20.

Рішення систем лінійних рівнянь алгебри, в яких число рівнянь не збігається з числом невідомих або основна матриця системи вироджена, методом Гаусса.

Системи рівнянь, основна матриця яких прямокутна або квадратна вироджена, можуть мати рішень, можуть мати єдине рішення, а можуть мати безліч рішень.

Зараз ми розберемося, як метод Гауса дозволяє встановити спільність чи несумісність системи лінійних рівнянь, а разі її спільності визначити всі рішення (чи одне єдине рішення).

У принципі, процес виключення невідомих змінних у разі таких СЛАУ залишається таким самим. Однак слід докладно зупинитись на деяких ситуаціях, які можуть виникнути.

Переходимо до найважливішого етапу.

Отже, припустимо, що система лінійних рівнянь алгебри після завершення прямого ходу методу Гаусса набула вигляду і жодне рівняння не звелося до (у цьому випадку ми зробили б висновок про несумісність системи). Виникає логічне питання: Що робити далі?

Випишемо невідомі змінні, які стоять на першому місці всіх рівнянь отриманої системи:

У прикладі це x 1 , x 4 і x 5 . У лівих частинах рівнянь системи залишаємо лише ті доданки, які містять виписані невідомі змінні x 1 , x 4 і x 5 , решту доданків переносимо у праву частину рівнянь із протилежним знаком:

Надамо невідомим змінним, які перебувають у правих частинах рівнянь, довільні значення , де - довільні числа:

Після цього в правих частинах всіх рівнянь нашої СЛАУ знаходяться числа і можна починати зворотний хід методу Гауса.

З останнього рівнянь системи маємо, з передостаннього рівняння знаходимо, з першого рівняння отримуємо

Рішенням системи рівнянь є сукупність значень невідомих змінних

Надаючи числам різні значення, ми будемо отримувати різні рішення системи рівнянь. Тобто наша система рівнянь має безліч рішень.

Відповідь:

де - Довільні числа.

Для закріплення матеріалу докладно розберемо рішення ще кількох прикладів.

приклад.

Розв'яжіть однорідну систему лінійних алгебраїчних рівнянь методом Гауса.

Рішення.

Виключимо невідому змінну x з другого та третього рівнянь системи. Для цього до лівої та правої частини другого рівняння додамо відповідно ліву та праву частини першого рівняння, помножені на , а до лівої та правої частини третього рівняння - ліву та праву частини першого рівняння, помножені на :

Тепер виключимо y із третього рівняння отриманої системи рівнянь:

Отримана СЛАУ рівносильна системі .

Залишаємо в лівій частині рівнянь системи тільки доданки, що містять невідомі змінні x і y, а доданки з невідомою змінною z переносимо в праву частину:

Метод Гаусса, званий також методом послідовного виключення невідомих, ось у чому. За допомогою елементарних перетворень систему лінійних рівнянь призводять до такого виду, щоб її матриця з коефіцієнтів виявилася трапецієподібною (те ж саме, що трикутною або ступінчастою) або близькою до трапецієподібної (прямий хід методу Гаусса, далі – просто прямий хід). Приклад такої системи та її рішення – на малюнку зверху.

У такій системі останнє рівняння містить лише одну змінну та її значення можна однозначно знайти. Потім значення цієї змінної підставлять у попереднє рівняння ( зворотний хід методу Гауса , Далі - просто зворотний хід), з якого знаходять попередню змінну, і так далі.

У трапецієподібній (трикутній) системі, як бачимо, третє рівняння вже не містить змінних yі x, а друге рівняння - змінною x .

Після того, як матриця системи набула трапецієподібної форми, вже не важко розібратися в питанні про спільність системи, визначити число рішень і знайти самі рішення.

Переваги методу:

  1. при вирішенні систем лінійних рівнянь з числом рівнянь і невідомих більше трьох метод Гауса не такий громіздкий, як метод Крамера, оскільки при вирішенні методом Гауса необхідно менше обчислень;
  2. методом Гауса можна вирішувати невизначені системи лінійних рівнянь, тобто мають спільне рішення (і ми розберемо їх на цьому уроці), а, використовуючи метод Крамера, можна лише констатувати, що система невизначена;
  3. можна вирішувати системи лінійних рівнянь, у яких число невідомих не дорівнює кількості рівнянь (також розберемо їх на цьому уроці);
  4. метод заснований на елементарних (шкільних) методах – методі підстановки невідомих та методі складання рівнянь, яких ми торкнулися у відповідній статті.

Щоб всі перейнялися простотою, з якою вирішуються трапецієподібні (трикутні, ступінчасті) системи лінійних рівнянь, наведемо рішення такої системи із застосуванням зворотного ходу. Швидке рішення цієї системи було показано на зображенні на початку уроку.

приклад 1.Розв'язати систему лінійних рівнянь, застосовуючи зворотний хід:

Рішення. У цій трапецієподібній системі змінна zоднозначно з третього рівняння. Підставляємо її значення у друге рівняння та отримуємо значення зміною y:

Тепер нам відомі значення вже двох змінних - zі y. Підставляємо їх у перше рівняння та отримуємо значення змінної x:

Із попередніх кроків виписуємо рішення системи рівнянь:

Щоб отримати таку трапецієподібну систему лінійних рівнянь, яку ми вирішили дуже просто, потрібно застосовувати прямий хід, пов'язаний із елементарними перетвореннями системи лінійних рівнянь. Це також не дуже складно.

Елементарні перетворення системи лінійних рівнянь

Повторюючи шкільний метод алгебраїчного складання рівнянь системи, ми з'ясували, що одного з рівнянь системи можна додавати інше рівняння системи, причому кожне з рівнянь може бути помножено деякі числа. В результаті отримуємо систему лінійних рівнянь, еквівалентну даній. У ній вже одне рівняння містило лише одну змінну, підставляючи значення якої інші рівнянь, ми приходимо до рішення. Таке додавання - одне із видів елементарного перетворення системи. При використанні методу Гауса можемо користуватися кількома видами перетворень.

На анімації вище показано, як система рівнянь поступово перетворюється на трапецієподібну. Тобто таку, яку ви бачили на першій анімації і самі переконалися в тому, що з неї просто знайти значення всіх невідомих. Про те, як виконати таке перетворення і, звичайно, приклади, йтиметься далі.

При вирішенні систем лінійних рівнянь з будь-яким числом рівнянь та невідомих у системі рівнянь та у розширеній матриці системи можна, можливо:

  1. переставляти місцями рядки (це і було згадано на початку цієї статті);
  2. якщо внаслідок інших перетворень з'явилися рівні або пропорційні рядки, їх можна видалити, крім одного;
  3. видаляти "нульові" рядки, де всі коефіцієнти дорівнюють нулю;
  4. будь-який рядок множити чи ділити на деяке число;
  5. до будь-якого рядка додавати інший рядок, помножений на деяке число.

В результаті перетворень отримуємо систему лінійних рівнянь, еквівалентну даній.

Алгоритм та приклади вирішення методом Гауса системи лінійних рівнянь із квадратною матрицею системи

Розглянемо спочатку рішення систем лінійних рівнянь, у яких число невідомих дорівнює кількості рівнянь. Матриця такої системи - квадратна, тобто в ній число рядків дорівнює числу стовпців.

приклад 2.Розв'язати методом Гауса систему лінійних рівнянь

Вирішуючи системи лінійних рівнянь шкільними методами, ми почленно множили одне з рівнянь на деяке число, те щоб коефіцієнти за першої змінної у двох рівняннях були протилежними числами. При додаванні рівнянь відбувається виключення цієї змінної. Аналогічно діє метод Гаусса.

Для спрощення зовнішнього вигляду рішення складемо розширену матрицю системи:

У цій матриці зліва до вертикальної межі розташовані коефіцієнти при невідомих, а праворуч після вертикальної межі - вільні члени.

Для зручності розподілу коефіцієнтів при змінних (щоб отримати розподіл на одиницю) переставимо місцями перший і другий рядки матриці системи. Отримаємо систему, еквівалентну даній, тому що в системі лінійних рівнянь можна переставляти місцями рівняння:

За допомогою нового першого рівняння виключимо змінну xз другого та всіх наступних рівнянь. Для цього до другого рядка матриці додамо перший рядок, помножений на (у нашому випадку на ), до третього рядка – перший рядок, помножений на (у нашому випадку на ).

Це можливо, оскільки

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь перший рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті отримаємо матрицю еквівалентну даній системі нової системи рівнянь, в якій усі рівняння, починаючи з другого не містять змінну x :

Для спрощення другого рядка отриманої системи помножимо її і отримаємо знову матрицю системи рівнянь, еквівалентної даній системі:

Тепер, зберігаючи перше рівняння отриманої системи без змін, за допомогою другого рівняння виключаємо змінну y із усіх наступних рівнянь. Для цього до третього рядка матриці системи додамо другий рядок, помножений на (у нашому випадку на ).

Якби в нашій системі рівнянь було більше трьох, то слід додавати і до всіх наступних рівнянь другий рядок, помножений на відношення відповідних коефіцієнтів, взятих зі знаком мінус.

В результаті знову отримаємо матрицю системи, еквівалентної даній системі лінійних рівнянь:

Ми отримали еквівалентну дану трапецієподібну систему лінійних рівнянь:

Якщо кількість рівнянь і змінних більше, ніж у прикладі, процес послідовного виключення змінних триває до того часу, поки матриця системи стане трапецієподібної, як і нашому демо-примере.

Рішення знайдемо "з кінця" - зворотний хід. Для цього з останнього рівняння визначимо z:
.
Підставивши це значення у попереднє рівняння, знайдемо y:

З першого рівняння знайдемо x:

Відповідь: розв'язання даної системи рівнянь - .

: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення. Якщо ж система має безліч рішень, то такою буде і відповідь, і це вже предмет п'ятої частини цього уроку.

Вирішити систему лінійних рівнянь методом Гауса самостійно, а потім переглянути рішення

Перед нами знову приклад спільної та певної системи лінійних рівнянь, у якій число рівнянь дорівнює числу невідомих. Відмінність від нашого демо-прикладу з алгоритму - тут уже чотири рівняння та чотири невідомі.

приклад 4.Розв'язати систему лінійних рівнянь методом Гауса:

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Проведемо підготовчі роботи. Щоб було зручніше з відношенням коефіцієнтів, потрібно отримати одиницю у другому стовпці другого рядка. Для цього з другого рядка віднімемо третій, а отриманий в результаті другий рядок помножимо на -1.

Проведемо тепер власне виняток змінної із третього та четвертого рівнянь. Для цього до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на . Отримуємо розширену матрицю трапецієподібної форми.

Отримали систему рівнянь, якою еквівалентна задана система:

Отже, отримана та дана системи є спільними та певними. Остаточне рішення знаходимо «з кінця». З четвертого рівняння можемо виразити значення змінної " ікс четверте " :

Це значення підставляємо у третє рівняння системи та отримуємо

,

,

Зрештою, підстановка значень

У перше рівняння дає

,

звідки знаходимо "ікс перше":

Відповідь: дана система рівнянь має єдине рішення .

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера: у цьому випадку буде видана та сама відповідь, якщо система має однозначне рішення.

Рішення методом Гауса прикладних задач на прикладі задачі на сплави

Системи лінійних рівнянь використовуються для моделювання реальних об'єктів фізичного світу. Вирішимо одне з таких завдань – на сплави. Аналогічні завдання - завдання на суміші, вартість або питома вага окремих товарів у групі товарів тощо.

Приклад 5.Три шматки сплаву мають загальну масу 150 кг. Перший сплав містить 60% міді, другий – 30%, третій – 10%. При цьому у другому та третьому сплавах разом узятих міді на 28,4 кг менше, ніж у першому сплаві, а у третьому сплаві міді на 6,2 кг менше, ніж у другому. Знайти масу кожного шматка металу.

Рішення. Складаємо систему лінійних рівнянь:

Помножуємо друге та третє рівняння на 10, отримуємо еквівалентну систему лінійних рівнянь:

Складаємо розширену матрицю системи:

Увага, прямий перебіг. Шляхом додавання (у нашому випадку - віднімання) одного рядка, помноженого на число (застосовуємо двічі) з розширеною матрицею системи відбуваються наступні перетворення:

Прямий хід завершився. Отримали розширену матрицю трапецієподібної форми.

Застосовуємо зворотний перебіг. Знаходимо рішення з кінця. Бачимо, що .

З другого рівняння знаходимо

Із третього рівняння -

Перевірити рішення системи можна і на калькуляторі, що вирішує методом Крамера: в цьому випадку буде видана відповідь, якщо система має однозначне рішення.

Про простоту методу Гауса говорить хоча б той факт, що німецькому математику Карлу Фрідріху Гауссу на його винахід знадобилося лише 15 хвилин. Крім методу його імені з творчості Гауса відомо вислів "Не слід змішувати те, що нам здається неймовірним і неприродним, з абсолютно неможливим" - свого роду коротка інструкція щодо здійснення відкриттів.

У багатьох прикладних завданнях може і не бути третього обмеження, тобто третього рівняння, тоді доводиться вирішувати методом Гауса систему двох рівнянь із трьома невідомими, або ж навпаки – невідомих менше, ніж рівнянь. Вирішення таких систем рівнянь ми зараз і приступимо.

За допомогою методу Гауса можна встановити, спільна чи несумісна будь-яка система nлінійних рівнянь з nзмінними.

Метод Гауса і системи лінійних рівнянь, що мають безліч рішень

Наступний приклад - спільна, але невизначена система лінійних рівнянь, тобто має безліч рішень.

Після виконання перетворень у розширеній матриці системи (перестановки рядків, множення та поділу рядків на деяке число, додатку до одного рядка інший) могли з'явитися рядки виду

Якщо у всіх рівняннях мають вигляд

Вільні члени рівні нулю, це означає, що система невизначена, тобто має безліч рішень, а рівняння цього виду – «зайві» та їх виключаємо з системи.

Приклад 6.

Рішення. Складемо розширену матрицю системи. Потім за допомогою першого рівняння виключимо змінну наступних рівнянь. Для цього до другого, третього та четвертого рядків додамо перший, помножений відповідно на :

Тепер другий рядок додамо до третього та четвертого.

В результаті приходимо до системи

Останні два рівняння перетворилися на рівняння виду. Ці рівняння задовольняються за будь-яких значень невідомих і їх можна відкинути.

Щоб задовольнити друге рівняння, ми можемо і вибрати довільні значення , тоді значення для визначиться вже однозначно: . З першого рівняння значення також знаходиться однозначно: .

Як задана, і остання системи спільні, але невизначені, і формули

за довільних і дають нам всі рішення заданої системи.

Метод Гауса та системи лінійних рівнянь, що не мають рішень

Наступний приклад - несумісна система лінійних рівнянь, тобто така, що не має рішень. Відповідь такі завдання так і формулюється: система немає рішень.

Як уже говорилося у зв'язку з першим прикладом, після виконання перетворень у розширеній матриці системи могли з'явитися рядки виду

відповідні рівняння виду

Якщо серед них є хоча б одне рівняння з відмінним від нуля вільним членом (тобто ), то дана система рівнянь є несумісною, тобто немає рішень і на цьому її рішення закінчено.

Приклад 7.Розв'язати методом Гауса систему лінійних рівнянь:

Рішення. Складаємо розширену матрицю системи. За допомогою першого рівняння виключаємо з наступних рівнянь змінну. Для цього до другого рядка додаємо перший, помножений на , до третього рядка - перший, помножений на , до четвертого - перший, помножений на .

Тепер потрібно за допомогою другого рівняння виключити змінну з наступних рівнянь. Щоб отримати цілі відносини коефіцієнтів, поміняємо місцями другий і третій рядки розширеної матриці системи.

Для виключення з третього і четвертого рівняння до третього рядка додамо другий, помножений на , а до четвертого - другий, помножений на .

Тепер за допомогою третього рівняння виключимо змінну із четвертого рівняння. Для цього до четвертого рядка додамо третій, помножений на .

Задана система еквівалентна таким чином наступній:

Отримана система несумісна, оскільки її останнє рівняння може бути задоволене ніякими значеннями невідомих. Отже, ця система не має рішень.

2. Модифікації методу Гаусса

Метод Гаусса із вибором головного елемента. Основним обмеженням методу Гаусса є припущення у тому, що це елементи , куди виробляється розподіл кожному кроці прямого ходу, не дорівнюють нулю. Ці елементи називаються головними елементами та розташовуються на головній діагоналі матриці A.

Якщо на деякому кроці прямого ходу головний елемент = 0, подальше рішення системи неможливе. Якщо головний елемент має мале значення, близьке до нуля, то можливе сильне зростання похибки через різке зростання абсолютної величини отримуваних у результаті розподілу коефіцієнтів. У таких ситуаціях метод Гауса стає нестійким.

Виключити подібні випадки дозволяє метод Гаусса з вибором головного елемента.

Ідея цього методу полягає в наступному. На деякому k-му кроці прямого ходу з рівнянь виключається не наступна за номером змінна x k , а така змінна, коефіцієнт при якій є найбільшим за абсолютною величиною. Цим гарантується відсутність поділу на нуль та збереження стійкості методу.

Якщо на k-му кроці як головний елемент вибирається ¹ , то в матриці A¢ повинні бути переставлені місцями рядки c номерами k та p та стовпці з номерами k та q.

Перестановка рядків не впливає рішення, оскільки відповідає перестановці місцями рівнянь у системі, але перестановка стовпців означає зміна нумерації змінних. Тому інформація про всі стовпці, що переставляються, повинна зберігатися, щоб після завершення зворотного ходу можна було б відновити вихідну нумерацію змінних.

Існують дві простіші модифікації методу Гауса:

З вибором головного елемента по стовпцю;

З вибором головного елемента рядка.

У першому випадку як головний елемент вибирається найбільший по абсолютній величині елемент k-го рядка (серед елементів , i = ). У другому - найбільший за абсолютною величиною елемент k-го стовпця (серед елементів , i =). Найбільшого поширення набула перший підхід, оскільки тут не змінюється нумерація змінних.

Слід зазначити, що зазначені модифікації стосуються лише прямого ходу методу Гаусса. Зворотний хід виконується без змін, але після отримання рішення може знадобитися відновити вихідну нумерацію змінних.

LU-розкладання. У сучасному математичному забезпеченні ЕОМ метод Гаусса реалізується з використанням LU-розкладання, під яким розуміють уявлення матриці коефіцієнтів A у вигляді добутку A = LU двох матриць L та U, де L – нижня трикутна матриця, U – верхня трикутна матриця

Якщо LU-розклад отримано, то рішення вихідної системи рівнянь (2) зводиться до послідовного вирішення двох наступних систем рівнянь з трикутними матрицями коефіцієнтів

лінійний рівняння алгебри чисельний


де Y = - Вектор допоміжних змінних.

Такий підхід дозволяє багаторазово вирішувати системи лінійних рівнянь із різними правими частинами B. При цьому найбільш трудомістка частина (LU-розкладання матриці A) виконується лише один раз. Ця процедура відповідає прямому ходу методу Гауса та має оцінку трудомісткості O(n 3). Подальше рішення систем рівнянь (6) і (7) може виконуватися багаторазово (для різних B), причому рішення кожної їх відповідає зворотному ходу методу Гаусса і має оцінку обчислювальної складності O(n 2).

Для отримання LU розкладання можна скористатися наступним алгоритмом.

1. Для вихідної системи (1) виконати прямий хід методу Гаусса та отримати систему рівнянь трикутного вигляду (5).

2. Визначити елементи матриці U за правилом

u ij = C ij (i = ; j = )

3. Обчислити елементи матриці L за правилами

Розрахункові формули для вирішення системи (6) мають такий вигляд:

y 1 = b 1 / l 11;

Розрахункові формули для вирішення системи (7)

(i = n – 1, n – 2, …, 1).




У цьому власне перебування зворотної матриці – процес досить трудомісткий та її програмування навряд можна назвати елементарним завданням. Тому практично частіше застосовують чисельні методи розв'язання систем лінійних рівнянь. До чисельних методів розв'язання систем лінійних рівнянь відносять такі як метод Гаусса, метод Крамера, ітеративні методи. У методі Гауса, наприклад, працюють над...

35437 x4=0.58554 5 x1=1.3179137 x2=-1.59467 x3=0.35371 x4=0.58462 6 x1=1.3181515 x2=-1.59506 x3=0.35455 інтегрування 5.1. Методи чисельного диференціювання 5.1.1. Припустимо, що в околиці точки xiфункція F (x) диференційована достатня кількість разів. ...




На мові Turbo Pascal 7.0 для вирішення систем лінійних рівнянь алгебри, використовуючи метод простої ітерації. 1.2 Математичне формулювання задачі Нехай А – невироджена матриця і потрібно вирішити систему, де діагональні елементи матриці А ненульові. 1.3 Огляд існуючих чисельних методів розв'язання задач Метод Гаусса У методі Гаусса матриця СЛАУ за допомогою рівносильних...

Числа). Далі за формулами (2) послідовно знаходяться xn-1 xn-2 ,…, x1 при i=n-1, n-2,...,1 відповідно. Таким чином, рішення рівнянь виду (1) описуємо способом, званим методом прогонки, зводиться до обчислень за трьома простими формулами: знаходження так званих прогонкових коефіцієнтів δi, λiпо формулах (3) при i=1,2,…,n (пряме прогонування) і потім невідомих xi по...