ตัวคูณร่วมน้อยของตัวเลขสามจำนวน ตัวคูณร่วมน้อย (LCM) - คำจำกัดความ ตัวอย่าง และคุณสมบัติ

ตัวคูณร่วมน้อยของตัวเลขสองตัวมีความสัมพันธ์โดยตรงกับตัวหารร่วมมากของตัวเลขเหล่านั้น นี้ การเชื่อมต่อระหว่าง GCD และ NOCถูกกำหนดโดยทฤษฎีบทต่อไปนี้

ทฤษฎีบท.

ผลคูณร่วมน้อยของจำนวนเต็มบวกสองตัว a และ b เท่ากับผลคูณของ a และ b หารด้วยตัวหารร่วมมากของ a และ b นั่นคือ LCM(a, b)=a b:GCD(a, b).

การพิสูจน์.

อนุญาต M เป็นผลคูณของจำนวน a และ b นั่นคือ M หารด้วย a ลงตัว และตามคำจำกัดความของการหารลงตัว จะมีจำนวนเต็ม k บางตัวที่ทำให้ความเท่าเทียมกัน M=a·k เป็นจริง แต่ M ก็หารด้วย b ลงตัวเช่นกัน แล้ว a·k ก็หารด้วย b ลงตัว

ลองแสดงว่า gcd(a, b) เป็น d จากนั้นเราสามารถเขียนค่าเท่ากัน a=a 1 ·d และ b=b 1 ·d และ a 1 =a:d และ b 1 =b:d จะเป็นจำนวนเฉพาะที่ค่อนข้างมาก ดังนั้น เงื่อนไขที่ได้รับในย่อหน้าก่อนหน้าที่ว่า a · k หารด้วย b ลงตัวสามารถจัดรูปแบบใหม่ได้ดังนี้: a 1 · d · k หารด้วย b 1 · d และนี่ เนื่องจากคุณสมบัติการหารลงตัว จึงเทียบเท่ากับเงื่อนไข ว่า 1 · k หารด้วย b 1 ลงตัว

คุณต้องเขียนข้อพิสูจน์ที่สำคัญสองประการจากทฤษฎีบทที่พิจารณาด้วย

    ผลคูณร่วมของตัวเลขสองตัวจะเหมือนกับผลคูณของตัวคูณร่วมน้อย

    เป็นเช่นนี้จริง เนื่องจากตัวคูณร่วมใดๆ ของ M ของ a และ b ถูกกำหนดโดยความเท่าเทียมกัน M=LMK(a, b)·t สำหรับค่าจำนวนเต็ม t

    ตัวคูณร่วมน้อยของโคไพรม์ ตัวเลขบวก a และ b เท่ากับผลคูณของมัน

    เหตุผลสำหรับข้อเท็จจริงข้อนี้ค่อนข้างชัดเจน เนื่องจาก a และ b ค่อนข้างเป็นจำนวนเฉพาะ ดังนั้น gcd(a, b)=1 ดังนั้น GCD(a, b)=ab: GCD(a, b)=a b:1=a b.

ตัวคูณร่วมน้อยของตัวเลขสามตัวขึ้นไป

การค้นหาตัวคูณร่วมน้อยของตัวเลขสามจำนวนขึ้นไปสามารถลดลงเป็นการค้นหา LCM ของตัวเลขสองตัวตามลำดับ วิธีการทำถูกระบุไว้ในทฤษฎีบทต่อไปนี้ a 1 , a 2 , …, a k ตรงกับผลคูณร่วมของตัวเลข m k-1 และ a k ดังนั้น จึงตรงกับผลคูณร่วมของตัวเลข m k และเนื่องจากตัวคูณบวกที่น้อยที่สุดของตัวเลข m k คือตัวเลข m k นั่นเอง ดังนั้นตัวคูณร่วมที่น้อยที่สุดของตัวเลข a 1, a 2, ..., a k ก็คือ m k

อ้างอิง.

  • วิเลนคิน เอ็น.ยา. และอื่น ๆ คณิตศาสตร์ ชั้นประถมศึกษาปีที่ 6: หนังสือเรียนสำหรับสถานศึกษาทั่วไป
  • วิโนกราดอฟ ไอ.เอ็ม. พื้นฐานของทฤษฎีจำนวน
  • มิเคโลวิช ช.เอช. ทฤษฎีจำนวน
  • Kulikov L.Ya. และอื่นๆ รวบรวมปัญหาพีชคณิตและทฤษฎีจำนวน: บทช่วยสอนสำหรับนักศึกษาวิชาฟิสิกส์และคณิตศาสตร์ เฉพาะทางของสถาบันการสอน

เครื่องคิดเลขออนไลน์ช่วยให้คุณค้นหาตัวหารร่วมมากและตัวคูณร่วมน้อยของตัวเลขสองตัวหรือจำนวนอื่นๆ ได้อย่างรวดเร็ว

เครื่องคิดเลขสำหรับค้นหา GCD และ LCM

ค้นหา GCD และ LOC

พบ GCD และ LOC: 5806

วิธีใช้เครื่องคิดเลข

  • ป้อนตัวเลขในช่องป้อนข้อมูล
  • หากคุณป้อนอักขระไม่ถูกต้อง ช่องป้อนข้อมูลจะถูกเน้นด้วยสีแดง
  • คลิกปุ่ม "ค้นหา GCD และ LCM"

วิธีใส่ตัวเลข

  • ป้อนตัวเลขโดยคั่นด้วยช่องว่าง จุด หรือลูกน้ำ
  • ความยาวของตัวเลขที่ป้อนไม่ จำกัดดังนั้นการค้นหา GCD และ LCM ของตัวเลขยาวจึงไม่ใช่เรื่องยาก

GCD และ NOC คืออะไร?

ตัวหารร่วมมากตัวเลขหลายตัวเป็นจำนวนเต็มธรรมชาติที่ใหญ่ที่สุด โดยที่ตัวเลขเดิมทั้งหมดหารลงตัวได้โดยไม่มีเศษ ตัวหารร่วมมากใช้อักษรย่อว่า จีซีดี.
ตัวคูณร่วมน้อยมีตัวเลขหลายตัว จำนวนที่น้อยที่สุดซึ่งหารด้วยตัวเลขเดิมแต่ละตัวโดยไม่มีเศษเหลือ ตัวคูณร่วมน้อยใช้อักษรย่อว่า NOC.

จะตรวจสอบได้อย่างไรว่าตัวเลขนั้นหารด้วยอีกจำนวนหนึ่งโดยไม่มีเศษ?

หากต้องการทราบว่าตัวเลขตัวหนึ่งหารด้วยอีกจำนวนหนึ่งลงตัวหรือไม่ คุณสามารถใช้คุณสมบัติบางประการของการหารตัวเลขได้ จากนั้นเมื่อรวมเข้าด้วยกัน คุณจะสามารถตรวจสอบการแบ่งแยกของบางส่วนและชุดค่าผสมได้

สัญญาณบางประการของการหารตัวเลข

1. การทดสอบการหารจำนวนด้วย 2 ลงตัว
ในการพิจารณาว่าตัวเลขหารด้วยสองลงตัวหรือไม่ (ไม่ว่าจะเป็นเลขคู่) ก็เพียงพอแล้วที่จะดูหลักสุดท้ายของตัวเลขนี้: ถ้ามันเท่ากับ 0, 2, 4, 6 หรือ 8 แสดงว่าตัวเลขนั้นเป็นเลขคู่ ซึ่งหมายความว่าหารด้วย 2 ลงตัว.
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 2 ลงตัวหรือไม่
สารละลาย:เราดูที่หลักสุดท้าย: 8 - นั่นหมายความว่าตัวเลขนั้นหารด้วยสองลงตัว

2. การทดสอบการหารจำนวนด้วย 3 ลงตัว
ตัวเลขหารด้วย 3 เมื่อผลรวมของตัวเลขหารด้วย 3 ลงตัว ดังนั้น เพื่อตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ คุณต้องคำนวณผลรวมของตัวเลขและตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ แม้ว่าผลรวมของตัวเลขจะมีขนาดใหญ่มาก คุณก็สามารถทำซ้ำขั้นตอนเดิมอีกครั้งได้
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 3 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 3 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วยสามลงตัว

3. การทดสอบการหารจำนวนด้วย 5 ลงตัว
ตัวเลขหารด้วย 5 ลงตัวเมื่อหลักสุดท้ายเป็นศูนย์หรือห้า
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 5 ลงตัวหรือไม่
สารละลาย:ดูที่หลักสุดท้าย: 8 หมายความว่าตัวเลขหารด้วยห้าไม่ลงตัว

4. การทดสอบการหารจำนวนด้วย 9 ลงตัว
เครื่องหมายนี้คล้ายกับเครื่องหมายหารด้วยสามลงตัวมาก โดยตัวเลขจะหารด้วย 9 ลงตัวเมื่อผลรวมของตัวเลขหารด้วย 9 ลงตัว
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 9 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 9 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วย 9 ลงตัว

วิธีค้นหา GCD และ LCM ของตัวเลขสองตัว

วิธีค้นหา gcd ของตัวเลขสองตัว

ที่สุด ด้วยวิธีง่ายๆการคำนวณตัวหารร่วมมากที่สุดของตัวเลขสองตัวคือการค้นหาตัวหารที่เป็นไปได้ทั้งหมดของตัวเลขเหล่านี้ แล้วเลือกค่าที่มากที่สุด

ลองพิจารณาวิธีนี้โดยใช้ตัวอย่างการค้นหา GCD(28, 36):

  1. เราแยกตัวประกอบตัวเลขทั้งสอง: 28 = 1·2·2·7, 36 = 1·2·2·3·3
  2. เราพบ ปัจจัยทั่วไปนั่นคือตัวเลขทั้งสองจำนวนมี: 1, 2 และ 2
  3. เราคำนวณผลคูณของปัจจัยเหล่านี้: 1 2 2 = 4 - นี่คือตัวหารร่วมมากของตัวเลข 28 และ 36

วิธีค้นหา LCM ของตัวเลขสองตัว

มีวิธีทั่วไปสองวิธีในการค้นหาผลคูณน้อยที่สุดของตัวเลขสองตัว วิธีแรกคือคุณสามารถจดเลขทวีคูณแรกของตัวเลขสองตัว จากนั้นเลือกตัวเลขที่จะเหมือนกันกับตัวเลขทั้งสองและในเวลาเดียวกันก็มีค่าน้อยที่สุด อย่างที่สองคือหา gcd ของตัวเลขเหล่านี้ ลองพิจารณาดูเท่านั้น

ในการคำนวณ LCM คุณต้องคำนวณผลคูณของตัวเลขเดิมแล้วหารด้วย GCD ที่พบก่อนหน้านี้ มาหา LCM สำหรับตัวเลข 28 และ 36 ที่เหมือนกัน:

  1. ค้นหาผลคูณของตัวเลข 28 และ 36: 28·36 = 1008
  2. GCD(28, 36) ตามที่ทราบอยู่แล้ว มีค่าเท่ากับ 4
  3. ล.ซม.(28, 36) = 1008/4 = 252 .

ค้นหา GCD และ LCM สำหรับตัวเลขหลายตัว

ตัวหารร่วมมากสามารถหาได้จากหลายจำนวน ไม่ใช่เพียงสองเท่านั้น ในการนี้ นำจำนวนที่จะหาตัวหารร่วมมากมาแยกตัวประกอบเป็นจำนวนเฉพาะ แล้วจึงหาผลคูณของตัวประกอบร่วม ปัจจัยสำคัญตัวเลขเหล่านี้ คุณยังสามารถใช้ความสัมพันธ์ต่อไปนี้เพื่อค้นหา gcd ของตัวเลขหลายตัวได้: GCD(a, b, c) = GCD(GCD(a, b), c).

ความสัมพันธ์ที่คล้ายกันใช้กับตัวคูณร่วมน้อย: ล.ซม.(a, b, c) = ล.ซม.(ล.ม.(a, b), c)

ตัวอย่าง:ค้นหา GCD และ LCM สำหรับหมายเลข 12, 32 และ 36

  1. ก่อนอื่น ให้แยกตัวประกอบตัวเลข: 12 = 1·2·2·3, 32 = 1·2·2·2·2·2, 36 = 1·2·2·3·3
  2. มาหาปัจจัยร่วม: 1, 2 และ 2
  3. ผลิตภัณฑ์ของพวกเขาจะให้ GCD: 1·2·2 = 4
  4. ทีนี้ เรามาค้นหา LCM กันดีกว่า โดยจะหา LCM(12, 32): 12·32 / 4 = 96 ก่อน
  5. เพื่อค้นหา NOC ของทุกคน ตัวเลขสามตัวคุณต้องหา GCD(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , GCD = 1·2·2·3 = 12 .
  6. ล.ซม.(12, 32, 36) = 96·36 / 12 = 288

นิพจน์ทางคณิตศาสตร์และงานต้องใช้ความรู้เพิ่มเติมมากมาย NOC เป็นหนึ่งในหัวข้อหลัก โดยเฉพาะอย่างยิ่งมักใช้ในหัวข้อนี้ มีการศึกษาในโรงเรียนมัธยมศึกษาตอนปลาย และไม่ยากที่จะเข้าใจเนื้อหา บุคคลที่คุ้นเคยกับพลังและตารางสูตรคูณจะไม่มีปัญหาในการระบุตัวเลขที่จำเป็นและการค้นพบ ผลลัพธ์.

คำนิยาม

ตัวคูณร่วมคือจำนวนที่สามารถหารออกเป็นสองจำนวนได้อย่างสมบูรณ์ในเวลาเดียวกัน (a และ b) ส่วนใหญ่แล้วตัวเลขนี้ได้มาจากการคูณตัวเลขเดิม a และ b ตัวเลขจะต้องหารด้วยตัวเลขทั้งสองพร้อมกันโดยไม่มีการเบี่ยงเบน

NOC เป็นชื่อที่ยอมรับ ชื่อสั้นรวบรวมมาจากตัวอักษรตัวแรก

วิธีรับหมายเลข

วิธีการคูณตัวเลขไม่เหมาะกับการค้นหา LCM เสมอไป แต่จะเหมาะกับตัวเลขหลักเดียวหรือสองหลักมากกว่า เป็นเรื่องปกติที่จะแบ่งปัจจัยออกเป็นหลายปัจจัย ยิ่งมีจำนวนปัจจัยมากเท่าใด ก็จะยิ่งมีปัจจัยมากขึ้นเท่านั้น

ตัวอย่างหมายเลข 1

ตัวอย่างที่ง่ายที่สุด โรงเรียนมักจะใช้ตัวเลขเฉพาะ หลักเดียวหรือสองหลัก เช่น คุณต้องตัดสินใจ งานต่อไปหาตัวคูณร่วมน้อยของตัวเลข 7 และ 3 วิธีแก้ก็ง่ายมาก แค่คูณพวกมันเข้าด้วยกัน ส่งผลให้เราได้เลข 21 จำนวนที่น้อยกว่าแค่ไม่

ตัวอย่างหมายเลข 2

งานเวอร์ชันที่สองนั้นยากกว่ามาก ให้หมายเลข 300 และ 1260 โดยจำเป็นต้องค้นหา LOC เพื่อแก้ไขปัญหา จะดำเนินการต่อไปนี้:

การแยกย่อยตัวเลขตัวแรกและตัวที่สองให้เป็นตัวประกอบอย่างง่าย 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7 ขั้นตอนแรกเสร็จสมบูรณ์

ขั้นตอนที่สองเกี่ยวข้องกับการทำงานกับข้อมูลที่ได้รับแล้ว แต่ละหมายเลขที่ได้รับจะต้องมีส่วนร่วมในการคำนวณผลลัพธ์สุดท้าย สำหรับแต่ละตัวคูณมากที่สุด จำนวนมากเหตุการณ์ที่เกิดขึ้น LCM เป็นตัวเลขทั่วไป ดังนั้นตัวประกอบของตัวเลขจะต้องซ้ำกันในแต่ละตัว แม้แต่ตัวประกอบที่อยู่ในสำเนาเดียวก็ตาม ตัวเลขเริ่มต้นทั้งสองประกอบด้วยตัวเลข 2, 3 และ 5 นิ้ว องศาที่แตกต่างกัน, 7 มีอยู่ในกรณีเดียวเท่านั้น

ในการคำนวณผลลัพธ์สุดท้าย คุณจะต้องนำแต่ละตัวเลขที่มีค่ามากที่สุดของกำลังที่มากที่สุดมาแสดงในสมการ สิ่งที่เหลืออยู่คือการคูณและรับคำตอบ หากกรอกถูกต้อง งานจะแบ่งออกเป็นสองขั้นตอนโดยไม่มีคำอธิบาย:

1) 300 = 2 2 * 3 * 5 2 ; 1260 = 2 2 * 3 2 *5 *7.

2) NOC = 6300.

นั่นคือปัญหาทั้งหมด หากคุณพยายามคำนวณ หมายเลขที่ถูกต้องผ่านการคูณแล้วคำตอบจะไม่ถูกต้องอย่างแน่นอน เนื่องจาก 300 * 1260 = 378,000

การตรวจสอบ:

6300/300 = 21 - ถูกต้อง;

6300/1260 = 5 - ถูกต้อง

ความถูกต้องของผลลัพธ์ที่ได้ถูกกำหนดโดยการตรวจสอบ - หาร LCM ด้วยตัวเลขดั้งเดิมทั้งสองตัว หากตัวเลขเป็นจำนวนเต็มในทั้งสองกรณี แสดงว่าคำตอบนั้นถูกต้อง

NOC หมายถึงอะไรในวิชาคณิตศาสตร์?

ดังที่คุณทราบ ไม่มีฟังก์ชันใดที่ไร้ประโยชน์ในคณิตศาสตร์ ฟังก์ชันนี้ก็ไม่มีข้อยกเว้น จุดประสงค์ทั่วไปของจำนวนนี้คือการลดเศษส่วนให้เป็น ตัวส่วนร่วม- ปกติจะเรียนอะไรในเกรด 5-6 โรงเรียนมัธยมปลาย- นอกจากนี้แล้วยังเป็น ตัวหารร่วมสำหรับทวีคูณทั้งหมด หากมีเงื่อนไขดังกล่าวอยู่ในปัญหา การแสดงออกที่คล้ายกันสามารถค้นหาจำนวนทวีคูณได้ไม่เพียงแต่จากสองจำนวนเท่านั้น แต่ยังรวมถึงหลายจำนวนด้วย มากกว่า- สาม ห้า และอื่นๆ ยังไง ตัวเลขมากขึ้น- เหล่านั้น การกระทำมากขึ้นในงานแต่ไม่ได้เพิ่มความซับซ้อนแต่อย่างใด

ตัวอย่างเช่น เมื่อระบุตัวเลข 250, 600 และ 1500 คุณจะต้องค้นหา LCM ทั่วไป:

1) 250 = 25 * 10 = 5 2 *5 * 2 = 5 3 * 2 - ตัวอย่างนี้อธิบายการแยกตัวประกอบโดยละเอียดโดยไม่มีการลดลง

2) 600 = 60 * 10 = 3 * 2 3 *5 2 ;

3) 1500 = 15 * 100 = 33 * 5 3 *2 2 ;

ในการเขียนนิพจน์จำเป็นต้องระบุปัจจัยทั้งหมดในกรณีนี้คือให้ 2, 5, 3 - สำหรับตัวเลขทั้งหมดนี้จำเป็นต้องกำหนดระดับสูงสุด

ข้อควรสนใจ: ปัจจัยทั้งหมดจะต้องถูกทำให้ง่ายขึ้นโดยสมบูรณ์ หากเป็นไปได้ ให้แยกย่อยเป็นระดับหลักเดียว

การตรวจสอบ:

1) 3000/250 = 12 - ถูกต้อง;

2) 3000/600 = 5 - จริง;

3) 3000/1500 = 2 - ถูกต้อง

วิธีนี้ไม่ต้องการกลอุบายหรือความสามารถระดับอัจฉริยะใด ๆ ทุกอย่างเรียบง่ายและชัดเจน

อีกวิธีหนึ่ง

ในทางคณิตศาสตร์ มีหลายสิ่งเชื่อมโยงกัน หลายสิ่งสามารถแก้ไขได้ด้วยสองวิธีขึ้นไป วิธีเดียวกันคือการค้นหาตัวคูณร่วมน้อย LCM วิธีการต่อไปนี้สามารถใช้ได้ในกรณีของตัวเลขสองหลักธรรมดาและ ตัวเลขหลักเดียว- ตารางจะถูกรวบรวมโดยป้อนตัวคูณในแนวตั้ง ตัวคูณในแนวนอน และผลิตภัณฑ์จะถูกระบุในเซลล์ที่ตัดกันของคอลัมน์ คุณสามารถสะท้อนตารางโดยใช้เส้นจดตัวเลขและเขียนผลลัพธ์ของการคูณตัวเลขนี้ด้วยจำนวนเต็มตั้งแต่ 1 ถึงอนันต์บางครั้ง 3-5 จุดก็เพียงพอแล้วตัวเลขที่สองและตัวต่อมาต้องผ่านกระบวนการคำนวณเดียวกัน ทุกอย่างเกิดขึ้นจนกว่าจะพบตัวคูณร่วม

ด้วยตัวเลข 30, 35, 42 คุณต้องค้นหา LCM ที่เชื่อมต่อกับตัวเลขทั้งหมด:

1) ผลคูณของ 30: 60, 90, 120, 150, 180, 210, 250 เป็นต้น

2) ผลคูณของ 35: 70, 105, 140, 175, 210, 245 เป็นต้น

3) ผลคูณของ 42: 84, 126, 168, 210, 252 เป็นต้น

จะสังเกตได้ว่าตัวเลขทั้งหมดมีความแตกต่างกันมาก โดยตัวเลขทั่วไปเพียงตัวเดียวในนั้นคือ 210 จึงจะเป็น NOC ในกระบวนการที่เกี่ยวข้องกับการคำนวณนี้ ยังมีตัวหารร่วมที่ยิ่งใหญ่ที่สุด ซึ่งคำนวณตามหลักการที่คล้ายกันและมักพบในปัญหาข้างเคียง ความแตกต่างมีขนาดเล็ก แต่ค่อนข้างสำคัญ LCM เกี่ยวข้องกับการคำนวณตัวเลขที่หารด้วยค่าเริ่มต้นที่กำหนดทั้งหมด และ GCD เกี่ยวข้องกับการคำนวณ มูลค่าสูงสุดโดยแบ่งเลขเดิม

ตัวหารร่วมมาก

คำจำกัดความ 2

ถ้าจำนวนธรรมชาติ a หารด้วยจำนวนธรรมชาติ $b$ ลงตัว แล้ว $b$ จะเรียกว่าตัวหารของ $a$ และ $a$ จะเรียกว่าผลคูณของ $b$

ให้ $a$ และ $b$ เป็นจำนวนธรรมชาติ จำนวน $c$ เรียกว่าตัวหารร่วมของทั้ง $a$ และ $b$

เซตของตัวหารร่วมของตัวเลข $a$ และ $b$ นั้นมีจำกัด เนื่องจากไม่มีตัวหารใดมากกว่า $a$ ได้ ซึ่งหมายความว่าในบรรดาตัวหารเหล่านี้จะมีตัวหารที่ใหญ่ที่สุด ซึ่งเรียกว่าตัวหารร่วมมากที่สุดของตัวเลข $a$ และ $b$ และเขียนแทนด้วยสัญลักษณ์ต่อไปนี้:

$GCD\(a;b)\ หรือ \D\(a;b)$

หากต้องการหาตัวหารร่วมมากของตัวเลขสองตัวที่คุณต้องการ:

  1. หาผลคูณของตัวเลขที่พบในขั้นตอนที่ 2 จำนวนที่ได้จะเป็นตัวหารร่วมมากที่ต้องการ

ตัวอย่างที่ 1

ค้นหา gcd ของตัวเลข $121$ และ $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    เลือกตัวเลขที่รวมอยู่ในส่วนขยายของตัวเลขเหล่านี้

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    หาผลคูณของตัวเลขที่พบในขั้นตอนที่ 2 จำนวนที่ได้จะเป็นตัวหารร่วมมากที่ต้องการ

    $GCD=2\cdot 11=22$

ตัวอย่างที่ 2

ค้นหา gcd ของ monomials $63$ และ $81$

เราจะค้นหาตามอัลกอริธึมที่นำเสนอ เมื่อต้องการทำสิ่งนี้:

    ลองแยกตัวเลขให้เป็นตัวประกอบเฉพาะ

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    เราเลือกตัวเลขที่รวมอยู่ในการขยายตัวเลขเหล่านี้

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    ลองหาผลคูณของตัวเลขที่พบในขั้นตอนที่ 2 กัน จำนวนที่ได้จะเป็นตัวหารร่วมมากที่ต้องการ

    $GCD=3\cdot 3=9$

คุณสามารถค้นหา gcd ของตัวเลขสองตัวได้ด้วยวิธีอื่น โดยใช้ชุดตัวหารของตัวเลข

ตัวอย่างที่ 3

ค้นหา gcd ของตัวเลข $48$ และ $60$

สารละลาย:

ลองหาเซตตัวหารของตัวเลข $48$: $\left\((\rm 1,2,3.4.6,8,12,16,24,48)\right\)$

ทีนี้ ลองหาเซตตัวหารของจำนวน $60$:$\ \left\((\rm 1,2,3,4,5,6,10,12,15,20,30,60)\right\) $

ลองหาจุดตัดของชุดเหล่านี้: $\left\((\rm 1,2,3,4,6,12)\right\)$ - ชุดนี้จะกำหนดชุดของตัวหารร่วมของตัวเลข $48$ และ $60 $. องค์ประกอบที่ใหญ่ที่สุดในชุดนี้จะเป็นตัวเลข $12$ ซึ่งหมายความว่าตัวหารร่วมมากที่สุดของตัวเลข $48$ และ $60$ คือ $12$

คำจำกัดความของ NPL

คำจำกัดความ 3

ทวีคูณทั่วไป ตัวเลขธรรมชาติ $a$ และ $b$ เป็นจำนวนธรรมชาติที่เป็นพหุคูณของทั้ง $a$ และ $b$

ผลคูณร่วมของตัวเลขคือตัวเลขที่หารด้วยตัวเลขเดิมโดยไม่มีเศษ ตัวอย่างเช่น สำหรับตัวเลข $25$ และ $50$ ตัวคูณร่วมจะเป็นตัวเลข $50,100,150,200$ เป็นต้น

ตัวคูณร่วมที่น้อยที่สุดจะเรียกว่าตัวคูณร่วมน้อย และจะแสดงแทน LCM$(a;b)$ หรือ K$(a;b).$

หากต้องการค้นหา LCM ของตัวเลขสองตัว คุณต้อง:

  1. แยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ
  2. เขียนตัวประกอบที่เป็นส่วนหนึ่งของจำนวนแรกและเพิ่มปัจจัยที่เป็นส่วนหนึ่งของจำนวนที่สองและไม่ได้เป็นส่วนหนึ่งของจำนวนแรกลงไป

ตัวอย่างที่ 4

ค้นหา LCM ของตัวเลข $99$ และ $77$

เราจะพบตามอัลกอริธึมที่นำเสนอ สำหรับสิ่งนี้

    แยกตัวประกอบตัวเลขให้เป็นตัวประกอบเฉพาะ

    $99=3\cdot 3\cdot 11$

    เขียนปัจจัยที่รวมอยู่ในข้อแรก

    เพิ่มตัวคูณที่เป็นส่วนหนึ่งของวินาทีและไม่ใช่ส่วนหนึ่งของตัวแรก

    หาผลคูณของตัวเลขที่พบในขั้นตอนที่ 2 จำนวนที่ได้จะเป็นตัวคูณร่วมน้อยที่ต้องการ

    $NOK=3\cdot 3\cdot 11\cdot 7=693$

    การรวบรวมรายการตัวหารของตัวเลขมักเป็นงานที่ต้องใช้แรงงานมาก มีวิธีค้นหา GCD ที่เรียกว่าอัลกอริทึมแบบยุคลิด

    ข้อความที่ใช้อัลกอริทึมแบบยุคลิด:

    ถ้า $a$ และ $b$ เป็นจำนวนธรรมชาติ และ $a\vdots b$ แล้ว $D(a;b)=b$

    ถ้า $a$ และ $b$ เป็นจำนวนธรรมชาติเช่นนั้น $b

เมื่อใช้ $D(a;b)= D(a-b;b)$ เราจะสามารถลดจำนวนที่กำลังพิจารณาได้อย่างต่อเนื่องจนกว่าจะถึงคู่ของตัวเลข โดยที่หนึ่งในนั้นหารด้วยอีกจำนวนหนึ่งลงตัว จากนั้นตัวเลขที่น้อยกว่านี้จะเป็นตัวหารร่วมมากที่สุดเท่าที่ต้องการสำหรับตัวเลข $a$ และ $b$

คุณสมบัติของ GCD และ LCM

  1. ตัวคูณร่วมของ $a$ และ $b$ หารด้วย K$(a;b)$ ลงตัว
  2. ถ้า $a\vdots b$ ดังนั้น К$(a;b)=a$
  3. ถ้า K$(a;b)=k$ และ $m$ เป็นจำนวนธรรมชาติ ดังนั้น K$(am;bm)=km$

    ถ้า $d$ เป็นตัวหารร่วมของ $a$ และ $b$ แล้ว K($\frac(a)(d);\frac(b)(d)$)=$\ \frac(k)(d ) $

    ถ้า $a\vdots c$ และ $b\vdots c$ แล้ว $\frac(ab)(c)$ จะเป็นผลคูณร่วมของ $a$ และ $b$

    สำหรับจำนวนธรรมชาติใดๆ $a$ และ $b$ จะถือว่ามีความเท่าเทียมกัน

    $D(a;b)\cdot К(a;b)=ab$

    ตัวหารร่วมของตัวเลข $a$ และ $b$ คือตัวหารของ $D(a;b)$

คำนิยาม.เรียกว่า จำนวนธรรมชาติที่ใหญ่ที่สุดที่สามารถหารด้วยจำนวน a และ b โดยไม่มีเศษเหลือ ตัวหารร่วมมาก (GCD)ตัวเลขเหล่านี้

ลองหาตัวหารร่วมมากของตัวเลข 24 และ 35 กัน
ตัวหารของ 24 คือตัวเลข 1, 2, 3, 4, 6, 8, 12, 24 และตัวหารของ 35 คือตัวเลข 1, 5, 7, 35
เราจะเห็นว่าตัวเลข 24 และ 35 มีตัวหารร่วมเพียงตัวเดียวคือหมายเลข 1 ตัวเลขดังกล่าวเรียกว่า สำคัญซึ่งกันและกัน.

คำนิยาม.เรียกว่าจำนวนธรรมชาติ สำคัญซึ่งกันและกันถ้าตัวหารร่วมมาก (GCD) คือ 1

ตัวหารร่วมมาก (GCD)สามารถหาได้โดยไม่ต้องเขียนตัวหารทั้งหมดของตัวเลขเหล่านี้

แยกตัวประกอบตัวเลข 48 และ 36 เราจะได้:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
จากปัจจัยต่างๆ ที่รวมอยู่ในการขยายตัวเลขตัวแรก เราจะขีดฆ่าปัจจัยที่ไม่รวมอยู่ในการขยายตัวเลขตัวที่สอง (เช่น สองสอง)
ตัวประกอบที่เหลือคือ 2 * 2 * 3 ผลคูณคือ 12 จำนวนนี้คือตัวหารร่วมมากของตัวเลข 48 และ 36 นอกจากนี้ยังพบตัวหารร่วมมากของตัวเลขสามตัวขึ้นไปด้วย

เพื่อค้นหา ตัวหารร่วมมาก

2) จากปัจจัยที่รวมอยู่ในการขยายของตัวเลขใดจำนวนหนึ่งเหล่านี้ ให้ขีดฆ่าปัจจัยที่ไม่รวมอยู่ในการขยายของตัวเลขอื่น
3) ค้นหาผลคูณของปัจจัยที่เหลือ

หากตัวเลขที่ระบุทั้งหมดหารด้วยหนึ่งในนั้นลงตัว แสดงว่าจำนวนนี้คือ ตัวหารร่วมมากตัวเลขที่กำหนด
ตัวอย่างเช่น ตัวหารร่วมที่ยิ่งใหญ่ที่สุดของตัวเลข 15, 45, 75 และ 180 คือเลข 15 เนื่องจากตัวเลขอื่นๆ ทั้งหมดหารด้วยตัวมันเองได้: 45, 75 และ 180

ตัวคูณร่วมน้อย (LCM)

คำนิยาม. ตัวคูณร่วมน้อย (LCM)จำนวนธรรมชาติ a และ b คือจำนวนธรรมชาติที่น้อยที่สุดซึ่งเป็นผลคูณของทั้ง a และ b ตัวคูณร่วมน้อย (LCM) ของตัวเลข 75 และ 60 สามารถหาได้โดยไม่ต้องจดจำนวนทวีคูณของตัวเลขเหล่านี้ติดกัน เมื่อต้องการทำเช่นนี้ ให้แยกตัวประกอบ 75 และ 60 เป็นตัวประกอบเฉพาะ: 75 = 3 * 5 * 5 และ 60 = 2 * 2 * 3 * 5
ลองเขียนปัจจัยที่รวมอยู่ในการขยายตัวเลขตัวแรกและเพิ่มปัจจัยที่ขาดหายไป 2 และ 2 จากการขยายตัวเลขที่สอง (เช่น เรารวมปัจจัยต่างๆ เข้าด้วยกัน)
เราได้ห้าปัจจัย 2 * 2 * 3 * 5 * 5 ซึ่งผลคูณคือ 300 จำนวนนี้เป็นตัวคูณร่วมน้อยของตัวเลข 75 และ 60

นอกจากนี้ยังค้นหาตัวคูณร่วมน้อยของตัวเลขสามตัวขึ้นไปด้วย

ถึง หาตัวคูณร่วมน้อยคุณต้องการจำนวนธรรมชาติหลายจำนวน:
1) แยกปัจจัยเหล่านั้นออกเป็นปัจจัยเฉพาะ
2) เขียนปัจจัยที่รวมอยู่ในการขยายตัวเลขตัวใดตัวหนึ่ง
3) เพิ่มปัจจัยที่ขาดหายไปจากการขยายตัวเลขที่เหลือ
4) ค้นหาผลคูณของปัจจัยผลลัพธ์

โปรดทราบว่าหากตัวเลขตัวใดตัวหนึ่งหารด้วยตัวเลขอื่นๆ ทั้งหมด ตัวเลขนี้จะเป็นตัวคูณร่วมน้อยของตัวเลขเหล่านี้
ตัวอย่างเช่น ตัวคูณร่วมน้อยของตัวเลข 12, 15, 20 และ 60 คือ 60 เพราะหารด้วยตัวเลขเหล่านั้นทั้งหมด

พีทาโกรัส (ศตวรรษที่ 6 ก่อนคริสต์ศักราช) และนักเรียนของเขาศึกษาคำถามเรื่องการหารตัวเลขลงตัว ตัวเลข, เท่ากับผลรวมพวกเขาเรียกตัวหารทั้งหมด (โดยไม่มีตัวเลขนั้นเอง) ว่าเป็นจำนวนสมบูรณ์ ตัวอย่างเช่น ตัวเลข 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) นั้นสมบูรณ์แบบ จำนวนสมบูรณ์ถัดไปคือ 496, 8128, 33,550,336 ชาวพีทาโกรัสรู้เพียงเลขสมบูรณ์สามตัวแรกเท่านั้น ที่สี่ - 8128 - กลายเป็นที่รู้จักในศตวรรษที่ 1 n. จ. ที่ห้า - 33,550,336 - ถูกค้นพบในศตวรรษที่ 15 ภายในปี 1983 ตัวเลขสมบูรณ์ 27 ตัวเป็นที่รู้จักแล้ว แต่นักวิทยาศาสตร์ยังไม่ทราบว่ามีอะไรแปลกหรือไม่ ตัวเลขที่สมบูรณ์แบบ, มีจำนวนสมบูรณ์มากที่สุดหรือไม่?
ความสนใจของนักคณิตศาสตร์โบราณในเรื่องจำนวนเฉพาะเกิดจากการที่จำนวนใดๆ ที่เป็นจำนวนเฉพาะหรือสามารถแสดงเป็นผลคูณได้ หมายเลขเฉพาะกล่าวคือ จำนวนเฉพาะเปรียบเสมือนก้อนอิฐที่ใช้สร้างจำนวนธรรมชาติที่เหลือ
คุณอาจสังเกตเห็นว่าจำนวนเฉพาะในชุดของจำนวนธรรมชาติเกิดขึ้นไม่เท่ากัน ในบางส่วนของอนุกรมจะมีมากกว่า บางส่วนมีน้อยกว่า แต่ยิ่งเราก้าวต่อไป. ชุดตัวเลข, จำนวนเฉพาะที่พบได้น้อยกว่าคือ คำถามเกิดขึ้น: มีจำนวนเฉพาะตัวสุดท้าย (ใหญ่ที่สุด) หรือไม่? ยูคลิด นักคณิตศาสตร์ชาวกรีกโบราณ (ศตวรรษที่ 3 ก่อนคริสต์ศักราช) ในหนังสือของเขาเรื่อง “องค์ประกอบ” ซึ่งเป็นตำราคณิตศาสตร์หลักมาเป็นเวลาสองพันปี ได้พิสูจน์ว่ามีจำนวนเฉพาะจำนวนอนันต์ กล่าวคือ ด้านหลังจำนวนเฉพาะทุกตัวจะมีจำนวนเฉพาะที่มากกว่านั้นอีก ตัวเลข.
ในการค้นหาจำนวนเฉพาะ เอราทอสเธเนส นักคณิตศาสตร์ชาวกรีกอีกคนหนึ่งในยุคเดียวกันได้คิดวิธีนี้ขึ้นมา เขาจดตัวเลขทั้งหมดตั้งแต่ 1 ถึงจำนวนใดจำนวนหนึ่ง แล้วขีดฆ่าตัวหนึ่งซึ่งไม่ใช่จำนวนเฉพาะหรือจำนวนใดออก หมายเลขประกอบจากนั้นขีดฆ่าตัวเลขทั้งหมดที่ตามหลัง 2 ออกไป (ตัวเลขที่เป็นทวีคูณของ 2 เช่น 4, 6, 8 เป็นต้น) ตัวเลขตัวแรกที่เหลือหลังจาก 2 คือ 3 จากนั้น หลังจากสอง ตัวเลขทั้งหมดที่ตามมาหลัง 3 (ตัวเลขที่เป็นทวีคูณของ 3 เช่น 6, 9, 12 เป็นต้น) จะถูกขีดฆ่าออก ท้ายที่สุดแล้วมีเพียงจำนวนเฉพาะเท่านั้นที่ยังคงไม่ถูกข้าม