nok ของตัวเลขคืออะไร วิธีค้นหาตัวคูณร่วมน้อยของตัวเลขสองตัว

ลองพิจารณาแก้ไขปัญหาต่อไปนี้ ก้าวของเด็กชายคือ 75 ซม. และก้าวของเด็กหญิงคือ 60 ซม. จำเป็นต้องค้นหาระยะทางที่น้อยที่สุดที่ทั้งคู่ก้าวเดินเป็นจำนวนเต็ม

สารละลาย.เส้นทางทั้งหมดที่พวกเขาจะผ่านไปจะต้องหารด้วย 60 และ 70 ลงตัว เนื่องจากพวกเขาแต่ละคนจะต้องเดินเป็นจำนวนเต็ม กล่าวอีกนัยหนึ่ง คำตอบต้องเป็นจำนวนทวีคูณของทั้ง 75 และ 60

ก่อนอื่น เราจะเขียนผลคูณทั้งหมดของเลข 75 เราได้:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

ทีนี้ลองเขียนตัวเลขที่จะเป็นตัวคูณของ 60 กัน เราได้:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

ตอนนี้เราพบตัวเลขที่อยู่ในทั้งสองแถวแล้ว

  • ผลคูณร่วมของตัวเลขจะเป็น 300, 600 เป็นต้น

จำนวนที่น้อยที่สุดคือ 300 ในกรณีนี้จะเรียกว่าตัวคูณร่วมน้อยของตัวเลข 75 และ 60

เมื่อกลับไปสู่สภาพของปัญหา ระยะทางที่น้อยที่สุดที่ผู้ชายจะต้องเดินเป็นจำนวนเต็มคือ 300 ซม. เด็กชายจะครอบคลุมเส้นทางนี้ใน 4 ขั้นตอน และเด็กผู้หญิงจะต้องเดิน 5 ก้าว

การหาตัวคูณร่วมน้อย

  • ผลคูณร่วมน้อยของจำนวนธรรมชาติสองตัว a และ b คือจำนวนธรรมชาติที่น้อยที่สุดที่เป็นจำนวนทวีคูณของทั้ง a และ b

เพื่อที่จะหาตัวคูณร่วมน้อยของตัวเลขสองตัวนั้น ไม่จำเป็นต้องจดเลขทวีคูณทั้งหมดของตัวเลขเหล่านี้ติดกัน

คุณสามารถใช้วิธีการต่อไปนี้

วิธีหาตัวคูณร่วมน้อย

ก่อนอื่น คุณต้องแยกตัวประกอบตัวเลขเหล่านี้เป็นตัวประกอบเฉพาะก่อน

  • 60 = 2*2*3*5,
  • 75=3*5*5.

ทีนี้ลองเขียนปัจจัยทั้งหมดที่อยู่ในส่วนขยายของตัวเลขแรก (2,2,3,5) แล้วบวกปัจจัยที่ขาดหายไปทั้งหมดจากการขยายตัวเลขที่สอง (5)

ผลลัพธ์ที่ได้คือชุดของจำนวนเฉพาะ: 2,2,3,5,5 ผลคูณของตัวเลขเหล่านี้จะเป็นตัวประกอบร่วมที่เล็กที่สุดสำหรับตัวเลขเหล่านี้ 2*2*3*5*5 = 300

รูปแบบทั่วไปสำหรับการค้นหาตัวคูณร่วมน้อย

  • 1. แบ่งตัวเลขให้เป็นตัวประกอบเฉพาะ
  • 2. เขียนปัจจัยเฉพาะที่เป็นส่วนหนึ่งของปัจจัยเหล่านั้น
  • 3. เพิ่มปัจจัยเหล่านี้ทั้งหมดที่อยู่ในการขยายตัวของปัจจัยอื่น ๆ แต่ไม่ใช่ในปัจจัยที่เลือก
  • 4. ค้นหาผลคูณของตัวประกอบที่เป็นลายลักษณ์อักษรทั้งหมด

วิธีนี้เป็นสากล สามารถใช้ค้นหาตัวคูณร่วมน้อยของจำนวนธรรมชาติจำนวนเท่าใดก็ได้

ผลคูณคือตัวเลขที่หารด้วยจำนวนที่กำหนดโดยไม่มีเศษ ตัวคูณร่วมน้อย (LCM) ของกลุ่มตัวเลขคือจำนวนที่น้อยที่สุดที่หารด้วยแต่ละตัวเลขในกลุ่มโดยไม่ทิ้งเศษ ในการหาตัวคูณร่วมน้อย คุณต้องหาตัวประกอบเฉพาะของตัวเลขที่กำหนด LCM ยังสามารถคำนวณได้โดยใช้วิธีการอื่นอีกหลายวิธีที่ใช้กับกลุ่มที่มีตัวเลขตั้งแต่สองตัวขึ้นไป

ขั้นตอน

อนุกรมของทวีคูณ

    ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ ณ ที่นี้เหมาะที่สุดเมื่อให้ตัวเลขสองตัว ซึ่งแต่ละตัวมีค่าน้อยกว่า 10 ถ้าให้ตัวเลขมากกว่า ให้ใช้วิธีอื่น

    • เช่น หาตัวคูณร่วมน้อยของ 5 กับ 8 ซึ่งเป็นตัวเลขเล็กๆ คุณจึงใช้วิธีนี้ได้
  1. ผลคูณคือตัวเลขที่หารด้วยจำนวนที่กำหนดโดยไม่มีเศษ หลายรายการสามารถพบได้ในตารางสูตรคูณ

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 5 ได้แก่ 5, 10, 15, 20, 25, 30, 35, 40
  2. เขียนชุดตัวเลขที่เป็นจำนวนทวีคูณของจำนวนแรกทำสิ่งนี้ด้วยการคูณตัวเลขแรกเพื่อเปรียบเทียบตัวเลขสองชุด

    • ตัวอย่างเช่น ตัวเลขที่เป็นทวีคูณของ 8 คือ 8, 16, 24, 32, 40, 48, 56 และ 64
  3. ค้นหาจำนวนที่น้อยที่สุดที่มีอยู่ในชุดทวีคูณทั้งสองชุดคุณอาจต้องเขียนชุดผลคูณยาวๆ เพื่อหาจำนวนทั้งหมด จำนวนที่น้อยที่สุดที่มีอยู่ในตัวคูณทั้งสองชุดคือตัวคูณร่วมน้อย

    • ตัวอย่างเช่น จำนวนที่น้อยที่สุดที่ปรากฏในชุดผลคูณของ 5 และ 8 คือหมายเลข 40 ดังนั้น 40 จึงเป็นจำนวนตัวคูณร่วมน้อยของ 5 และ 8

    การแยกตัวประกอบเฉพาะ

    1. ดูตัวเลขเหล่านี้สิวิธีที่อธิบายไว้ในที่นี้เหมาะที่สุดเมื่อให้ตัวเลขสองตัว ซึ่งแต่ละตัวมีค่ามากกว่า 10 ถ้าให้ตัวเลขน้อยกว่า ให้ใช้วิธีอื่น

      • เช่น ค้นหาตัวคูณร่วมน้อยของตัวเลข 20 และ 84 แต่ละตัวเลขมีค่ามากกว่า 10 คุณจึงใช้วิธีนี้ได้
    2. แยกตัวประกอบจำนวนแรกให้เป็นตัวประกอบเฉพาะ.นั่นคือคุณต้องค้นหาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้ผลลัพธ์เป็นจำนวนที่กำหนด เมื่อคุณพบปัจจัยเฉพาะแล้ว ให้เขียนพวกมันว่ามีความเท่าเทียมกัน

      • ตัวอย่างเช่น, 2 × 10 = 20 (\displaystyle (\mathbf (2) )\times 10=20)และ 2 × 5 = 10 (\displaystyle (\mathbf (2) )\times (\mathbf (5) )=10)- ดังนั้น ตัวประกอบเฉพาะของจำนวน 20 คือตัวเลข 2, 2 และ 5 เขียนเป็นนิพจน์:
    3. แยกตัวประกอบจำนวนที่สองให้เป็นตัวประกอบเฉพาะ.ทำแบบเดียวกับที่คุณแยกตัวประกอบจำนวนแรก นั่นคือ หาจำนวนเฉพาะที่เมื่อคูณแล้วจะได้จำนวนที่กำหนด

      • ตัวอย่างเช่น, 2 × 42 = 84 (\displaystyle (\mathbf (2) )\times 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\times 6=42)และ 3 × 2 = 6 (\displaystyle (\mathbf (3) )\times (\mathbf (2) )=6)- ดังนั้น ตัวประกอบเฉพาะของเลข 84 คือตัวเลข 2, 7, 3 และ 2 เขียนเป็นนิพจน์:
    4. เขียนตัวประกอบร่วมของตัวเลขทั้งสอง.เขียนตัวประกอบเช่นการดำเนินการคูณ ขณะที่คุณเขียนตัวประกอบแต่ละตัว ให้ขีดฆ่าทั้งสองนิพจน์ (นิพจน์ที่อธิบายการแยกตัวประกอบของตัวเลขให้เป็นตัวประกอบเฉพาะ)

      • ตัวอย่างเช่น ตัวเลขทั้งสองมีตัวประกอบร่วมกันคือ 2 ดังนั้นจงเขียน 2 × (\displaystyle 2\times )และขีดฆ่า 2 ในทั้งสองพจน์
      • สิ่งที่ตัวเลขทั้งสองมีเหมือนกันคือตัวประกอบของ 2 อีกตัว ดังนั้นจงเขียนไว้ 2 × 2 (\รูปแบบการแสดงผล 2\คูณ 2)และขีดฆ่า 2 ตัวที่สองในทั้งสองนิพจน์
    5. เพิ่มตัวประกอบที่เหลือในการคูณปัจจัยเหล่านี้เป็นปัจจัยที่ไม่ได้ขีดฆ่าในทั้งสองนิพจน์ กล่าวคือ ปัจจัยที่ไม่เหมือนกันในตัวเลขทั้งสอง

      • ตัวอย่างเช่นในนิพจน์ 20 = 2 × 2 × 5 (\รูปแบบการแสดงผล 20=2\คูณ 2\คูณ 5)สอง (2) ทั้งสองถูกขีดฆ่าเนื่องจากเป็นปัจจัยร่วม ไม่มีการขีดฆ่าตัวประกอบ 5 ดังนั้นเขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5)
      • ในการแสดงออก 84 = 2 × 7 × 3 × 2 (\รูปแบบการแสดงผล 84=2\คูณ 7\คูณ 3\คูณ 2)ทั้งสอง (2) ก็ถูกขีดฆ่าเช่นกัน ไม่มีการขีดฆ่าตัวประกอบ 7 และ 3 ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 2 × 5 × 7 × 3 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3).
    6. คำนวณตัวคูณร่วมน้อย.เมื่อต้องการทำเช่นนี้ ให้คูณตัวเลขในการดำเนินการคูณที่เป็นลายลักษณ์อักษร

      • ตัวอย่างเช่น, 2 × 2 × 5 × 7 × 3 = 420 (\รูปแบบการแสดงผล 2\คูณ 2\คูณ 5\คูณ 7\คูณ 3=420)- ดังนั้นตัวคูณร่วมน้อยของ 20 กับ 84 คือ 420

    การหาปัจจัยร่วมกัน

    1. วาดตารางเหมือนกับเกมโอเอกซ์ตารางดังกล่าวประกอบด้วยเส้นคู่ขนานสองเส้นที่ตัดกัน (ที่มุมฉาก) กับเส้นคู่ขนานอีกสองเส้น นี่จะทำให้คุณมีสามแถวและสามคอลัมน์ (ตารางจะดูเหมือนไอคอน # มาก) เขียนตัวเลขแรกในบรรทัดแรกและคอลัมน์ที่สอง เขียนตัวเลขตัวที่สองในแถวแรกและคอลัมน์ที่สาม

      • เช่น หาตัวคูณร่วมน้อยของตัวเลข 18 และ 30 เขียนเลข 18 ในแถวแรกและคอลัมน์ที่สอง และเขียนเลข 30 ในแถวแรกและคอลัมน์ที่สาม
    2. หาตัวหารร่วมของตัวเลขทั้งสอง.เขียนลงในแถวแรกและคอลัมน์แรก เป็นการดีกว่าที่จะมองหาปัจจัยสำคัญ แต่นี่ไม่ใช่ข้อกำหนด

      • ตัวอย่างเช่น 18 และ 30 เป็นจำนวนคู่ ดังนั้นตัวประกอบร่วมคือ 2 ดังนั้นให้เขียน 2 ในแถวแรกและคอลัมน์แรก
    3. หารแต่ละตัวเลขด้วยตัวหารตัวแรกเขียนผลหารแต่ละส่วนไว้ใต้จำนวนที่เหมาะสม ผลหารเป็นผลจากการหารตัวเลขสองตัว

      • ตัวอย่างเช่น, 18 ۞ 2 = 9 (\displaystyle 18\div 2=9)ดังนั้นเขียน 9 ต่ำกว่า 18
      • 30 ۞ 2 = 15 (\displaystyle 30\div 2=15)ดังนั้นเขียน 15 ลงไปต่ำกว่า 30
    4. หาตัวหารร่วมของผลหารทั้งสอง.หากไม่มีตัวหารดังกล่าว ให้ข้ามสองขั้นตอนถัดไป หรือเขียนตัวหารในแถวที่สองและคอลัมน์แรก

      • เช่น 9 และ 15 หารด้วย 3 ลงตัว ดังนั้นให้เขียน 3 ในแถวที่สองและคอลัมน์แรก
    5. หารแต่ละผลหารด้วยตัวหารที่สอง.เขียนผลการหารแต่ละผลภายใต้ผลหารที่สอดคล้องกัน

      • ตัวอย่างเช่น, 9 ۞ 3 = 3 (\displaystyle 9\div 3=3)ดังนั้นเขียน 3 ใต้ 9.
      • 15 ۞ 3 = 5 (\displaystyle 15\div 3=5)ดังนั้นเขียน 5 ต่ำกว่า 15
    6. หากจำเป็น ให้เพิ่มเซลล์เพิ่มเติมลงในตารางทำซ้ำขั้นตอนที่อธิบายไว้จนกว่าผลหารจะมีตัวหารร่วม

    7. วงกลมตัวเลขในคอลัมน์แรกและแถวสุดท้ายของตารางจากนั้นเขียนตัวเลขที่เลือกเป็นการคูณ

      • ตัวอย่างเช่น ตัวเลข 2 และ 3 อยู่ในคอลัมน์แรก และตัวเลข 3 และ 5 อยู่ในแถวสุดท้าย ดังนั้นให้เขียนการดำเนินการคูณดังนี้: 2 × 3 × 3 × 5 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5).
    8. ค้นหาผลลัพธ์ของการคูณตัวเลขวิธีนี้จะคำนวณตัวคูณร่วมน้อยของตัวเลขที่กำหนดสองตัว

      • ตัวอย่างเช่น, 2 × 3 × 3 × 5 = 90 (\รูปแบบการแสดงผล 2\คูณ 3\คูณ 3\คูณ 5=90)- ดังนั้นตัวคูณร่วมน้อยของ 18 กับ 30 คือ 90

    อัลกอริธึมของยุคลิด

    1. จำคำศัพท์ที่เกี่ยวข้องกับการดำเนินการแบ่งเงินปันผลคือจำนวนที่จะหาร ตัวหารคือจำนวนที่ถูกหารด้วย ผลหารเป็นผลจากการหารตัวเลขสองตัว เศษคือจำนวนที่เหลือเมื่อหารสองจำนวน

      • ตัวอย่างเช่นในนิพจน์ 15 ۞ 6 = 2 (\displaystyle 15\div 6=2)เพลงประกอบละคร 3:
        15 คือเงินปันผล
        6 เป็นตัวหาร
        2 คือความฉลาดทาง
        3 คือส่วนที่เหลือ

ตัวหารร่วมมากและตัวคูณร่วมน้อยเป็นแนวคิดหลักทางคณิตศาสตร์ที่ทำให้การทำงานกับเศษส่วนเป็นเรื่องง่าย LCM และมักใช้เพื่อค้นหาตัวส่วนร่วมของเศษส่วนหลายตัว

แนวคิดพื้นฐาน

ตัวหารของจำนวนเต็ม X คือจำนวนเต็ม Y อีกจำนวนหนึ่ง โดยที่ X หารกันโดยไม่เหลือเศษ ตัวอย่างเช่น ตัวหารของ 4 คือ 2 และ 36 คือ 4, 6, 9 ผลคูณของจำนวนเต็ม X คือตัวเลข Y ที่หารด้วย X ลงตัวโดยไม่มีเศษ ตัวอย่างเช่น 3 เป็นผลคูณของ 15 และ 6 เป็นผลคูณของ 12

สำหรับคู่ตัวเลขใดๆ เราสามารถหาตัวหารร่วมและตัวคูณได้ ตัวอย่างเช่น สำหรับ 6 และ 9 ตัวคูณร่วมคือ 18 และตัวหารร่วมคือ 3 แน่นอนว่าคู่สามารถมีตัวหารและตัวคูณได้หลายตัว ดังนั้นการคำนวณจึงใช้ GCD ตัวหารที่ใหญ่ที่สุดและ LCM ตัวคูณที่เล็กที่สุด

ตัวหารที่น้อยที่สุดนั้นไม่มีความหมาย เนื่องจากสำหรับจำนวนใดๆ ก็ตามจะเป็นหนึ่งเสมอ ผลคูณที่ยิ่งใหญ่ที่สุดก็ไม่มีความหมายเช่นกัน เนื่องจากลำดับของผลคูณไปจนถึงค่าอนันต์

กำลังค้นหา gcd

มีหลายวิธีในการค้นหาตัวหารร่วมมาก วิธีที่มีชื่อเสียงที่สุดคือ:

  • การค้นหาตัวหารตามลำดับ การเลือกตัวร่วมสำหรับคู่ และค้นหาตัวที่ใหญ่ที่สุด
  • การสลายตัวของตัวเลขเป็นปัจจัยที่แบ่งแยกไม่ได้
  • อัลกอริธึมแบบยุคลิด;
  • อัลกอริธึมไบนารี

ปัจจุบันในสถาบันการศึกษา วิธีการที่ได้รับความนิยมมากที่สุดคือการจำแนกออกเป็นปัจจัยเฉพาะและอัลกอริธึมแบบยุคลิด ในทางกลับกันจะใช้เมื่อแก้สมการไดโอแฟนไทน์: จำเป็นต้องค้นหา GCD เพื่อตรวจสอบสมการเพื่อหาความเป็นไปได้ในการแก้ไขเป็นจำนวนเต็ม

การค้นหา NOC

ตัวคูณร่วมน้อยยังถูกกำหนดโดยการแจงนับตามลำดับหรือการแยกตัวประกอบให้เป็นตัวประกอบที่หารไม่ได้ นอกจากนี้ยังง่ายต่อการค้นหา LCM หากได้กำหนดตัวหารที่ยิ่งใหญ่ที่สุดแล้ว สำหรับตัวเลข X และ Y นั้น LCM และ GCD มีความสัมพันธ์กันโดยความสัมพันธ์ต่อไปนี้:

จอแอลซีดี(X,Y) = X × Y / GCD(X,Y)

ตัวอย่างเช่น ถ้า GCM(15,18) = 3 แล้ว LCM(15,18) = 15 × 18 / 3 = 90 ตัวอย่างที่ชัดเจนที่สุดของการใช้ LCM คือการหาตัวส่วนร่วมซึ่งเป็นตัวคูณร่วมน้อยของ เศษส่วนที่กำหนด

ตัวเลขโคไพรม์

ถ้าคู่ของตัวเลขไม่มีตัวหารร่วมกัน คู่ดังกล่าวจะเรียกว่าโคไพรม์ gcd สำหรับคู่ดังกล่าวจะเท่ากับ 1 เสมอ และขึ้นอยู่กับความสัมพันธ์ระหว่างตัวหารและตัวคูณ gcd สำหรับคู่โคไพรม์จะเท่ากับผลคูณของตัวหาร ตัวอย่างเช่น จำนวน 25 และ 28 ค่อนข้างเป็นจำนวนเฉพาะ เนื่องจากไม่มีตัวหารร่วม และ LCM(25, 28) = 700 ซึ่งสอดคล้องกับผลคูณของจำนวนนั้น จำนวนที่แบ่งแยกไม่ได้สองตัวใดๆ จะเป็นจำนวนเฉพาะเสมอ

ตัวหารร่วมและเครื่องคิดเลขหลายตัว

การใช้เครื่องคิดเลขของเราทำให้คุณสามารถคำนวณ GCD และ LCM เพื่อให้ได้ตัวเลขต่างๆ ให้เลือก งานในการคำนวณตัวหารร่วมและตัวคูณพบได้ในวิชาเลขคณิตชั้นประถมศึกษาปีที่ 5 และ 6 แต่ GCD และ LCM เป็นแนวคิดหลักในคณิตศาสตร์ และใช้ในทฤษฎีจำนวน ระนาบ และพีชคณิตเชิงการสื่อสาร

ตัวอย่างชีวิตจริง

ตัวส่วนร่วมของเศษส่วน

ตัวคูณร่วมน้อยใช้ในการค้นหาตัวส่วนร่วมของเศษส่วนหลายตัว สมมติว่าในโจทย์เลขคณิตคุณต้องรวมเศษส่วน 5 ตัว:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

ในการบวกเศษส่วน นิพจน์ต้องถูกลดให้เป็นตัวส่วนร่วม ซึ่งจะช่วยลดปัญหาในการหา LCM เมื่อต้องการทำเช่นนี้ ให้เลือกตัวเลข 5 ตัวในเครื่องคิดเลขและป้อนค่าของตัวส่วนในเซลล์ที่เหมาะสม โปรแกรมจะคำนวณ LCM (8, 9, 12, 15, 18) = 360 ตอนนี้คุณต้องคำนวณตัวประกอบเพิ่มเติมสำหรับแต่ละเศษส่วนซึ่งกำหนดเป็นอัตราส่วนของ LCM ต่อตัวส่วน ดังนั้นตัวคูณเพิ่มเติมจะมีลักษณะดังนี้:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

หลังจากนั้น เราคูณเศษส่วนทั้งหมดด้วยตัวประกอบเพิ่มเติมที่เกี่ยวข้องแล้วได้:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

เราสามารถรวมเศษส่วนดังกล่าวได้อย่างง่ายดายแล้วได้ผลลัพธ์เป็น 159/360 เราลดเศษส่วนลง 3 และดูคำตอบสุดท้าย - 53/120

การแก้สมการไดโอแฟนไทน์เชิงเส้น

สมการไดโอแฟนไทน์เชิงเส้นคือนิพจน์ในรูปแบบ ax + by = d ถ้าอัตราส่วน d / gcd(a, b) เป็นจำนวนเต็ม สมการก็จะแก้ได้ในจำนวนเต็ม ลองตรวจสอบสมการสองสามสมการเพื่อดูว่าสมการเหล่านี้มีค่าเฉลยเป็นจำนวนเต็มหรือไม่ ก่อนอื่น ลองตรวจสอบสมการ 150x + 8y = 37 เมื่อใช้เครื่องคิดเลข เราจะพบว่า GCD (150.8) = 2 หาร 37/2 = 18.5 ตัวเลขไม่ใช่จำนวนเต็ม ดังนั้นสมการจึงไม่มีรากของจำนวนเต็ม

ลองตรวจสอบสมการ 1320x + 1760y = 10120 ใช้เครื่องคิดเลขหา GCD(1320, 1760) = 440 หาร 10120/440 = 23 ผลลัพธ์ที่ได้คือจำนวนเต็ม ดังนั้น สมการไดโอแฟนไทน์จึงแก้ได้ด้วยสัมประสิทธิ์จำนวนเต็ม .

บทสรุป

GCD และ LCM มีบทบาทสำคัญในทฤษฎีจำนวน และแนวความคิดเองก็มีการใช้กันอย่างแพร่หลายในสาขาคณิตศาสตร์ที่หลากหลาย ใช้เครื่องคิดเลขของเราคำนวณตัวหารที่มากที่สุดและผลคูณน้อยที่สุดของจำนวนตัวเลขใดๆ ก็ได้

หมายเลขที่สอง: ข=

ตัวคั่นหลักพันไม่มีตัวคั่นช่องว่าง "´

ผลลัพธ์:

ตัวหารร่วมมาก gcd( ,)=6

ตัวคูณร่วมน้อยของ LCM( ,)=468

เรียกว่าจำนวนธรรมชาติที่ใหญ่ที่สุดโดยการนำจำนวน a และ b มาหารกันโดยไม่มีเศษเหลือ ตัวหารร่วมมาก(GCD) ของตัวเลขเหล่านี้ เขียนแทนด้วย gcd(a,b), (a,b), gcd(a,b) หรือ hcf(a,b)

ตัวคูณร่วมน้อย LCM ของจำนวนเต็มสองตัว a และ b คือจำนวนธรรมชาติที่น้อยที่สุดที่หารด้วย a และ b ลงตัวโดยไม่มีเศษ แสดงว่า LCM(a,b) หรือ lcm(a,b)

เรียกจำนวนเต็ม a และ b สำคัญซึ่งกันและกันถ้าไม่มีตัวหารร่วมกันนอกจาก +1 และ −1

ตัวหารร่วมมาก

ให้เลขบวกสองตัวมา 1 และ 2 1) จำเป็นต้องค้นหาตัวหารร่วมของตัวเลขเหล่านี้ เช่น หาตัวเลขดังกล่าว λ ซึ่งแบ่งตัวเลข 1 และ 2 ในเวลาเดียวกัน มาอธิบายอัลกอริทึมกัน

1) ในบทความนี้ เราจะเข้าใจว่าคำว่า number เป็นจำนวนเต็ม

อนุญาต 1 ≥ 2 และปล่อยให้

ที่ไหน 1 , 3 เป็นจำนวนเต็มบางตัว 3 < 2 (ส่วนที่เหลือของดิวิชั่น 1 ต่อ 2 ควรน้อยกว่านี้ 2).

สมมุติว่า λ แบ่ง 1 และ 2 แล้ว λ แบ่ง 1 2 และ λ แบ่ง 1 − 1 2 = 3 (ข้อความที่ 2 ของบทความ “การหารของตัวเลข การทดสอบการหารลงตัว”) ตามมาด้วยตัวหารร่วมทุกตัว 1 และ 2 คือตัวหารร่วม 2 และ 3. สิ่งที่ตรงกันข้ามก็เป็นจริงเช่นกันหาก λ ตัวหารร่วม 2 และ 3 แล้ว 1 2 และ 1 = 1 2 + 3 ก็หารด้วย λ - ดังนั้นตัวหารร่วม 2 และ 3 เป็นตัวหารร่วมด้วย 1 และ 2. เพราะ 3 < 2 ≤ 1 แล้วเราก็บอกได้ว่าคำตอบของโจทย์การหาตัวหารร่วมของตัวเลข 1 และ 2 ลดเหลือเป็นปัญหาที่ง่ายกว่าในการหาตัวหารร่วมของตัวเลข 2 และ 3 .

ถ้า 3 ≠0 เราก็หารได้ 2 บน 3. แล้ว

,

ที่ไหน 1 และ 4 เป็นจำนวนเต็มบางตัว ( เหลืออีก 4 นัดจากดิวิชั่น 2 บน 3 ( 4 < 3)). ด้วยเหตุผลเดียวกัน เราก็ได้ข้อสรุปว่าตัวหารร่วมของตัวเลข 3 และ 4 เกิดขึ้นพร้อมกับตัวหารร่วมของตัวเลข 2 และ 3 และยังมีตัวหารร่วมด้วย 1 และ 2. เพราะ 1 , 2 , 3 , 4, ... คือจำนวนที่ลดลงอย่างต่อเนื่อง และเนื่องจากมีจำนวนเต็มระหว่างจำนวนจำกัด 2 และ 0 จากนั้นในบางขั้นตอน n, ส่วนที่เหลือของการแบ่ง ไม่มี n+1 จะเท่ากับศูนย์ ( n+2 =0)

.

ตัวหารร่วมทุกตัว λ ตัวเลข 1 และ 2 เป็นตัวหารของตัวเลขด้วย 2 และ 3 , 3 และ 4 , .... และ n+1 . บทสนทนาก็เป็นจริงเช่นกัน นั่นคือตัวหารร่วมของตัวเลข และ n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน n−1 และ ไม่ , .... , 2 และ 3 , 1 และ 2. แต่ตัวหารร่วมของตัวเลข และ n+1 คือตัวเลข n+1 เพราะ และ n+1 หารด้วย n+1 (จำไว้ว่า n+2 =0) เพราะฉะนั้น n+1 ก็เป็นตัวหารของตัวเลขเช่นกัน 1 และ 2 .

โปรดทราบว่าหมายเลข n+1 เป็นตัวหารที่มากที่สุดของตัวเลข และ n+1 เนื่องจากตัวหารที่ยิ่งใหญ่ที่สุด n+1 คือตัวมันเอง n+1 . ถ้า n+1 สามารถแสดงเป็นผลคูณของจำนวนเต็มได้ จากนั้นตัวเลขเหล่านี้ก็เป็นตัวหารร่วมของตัวเลขเช่นกัน 1 และ 2. ตัวเลข เรียกว่า n+1 ตัวหารร่วมมากตัวเลข 1 และ 2 .

ตัวเลข 1 และ 2 อาจเป็นจำนวนบวกหรือลบก็ได้ ถ้าตัวเลขตัวใดตัวหนึ่งมีค่าเท่ากับศูนย์ ตัวหารร่วมมากของตัวเลขเหล่านี้จะเท่ากับค่าสัมบูรณ์ของอีกจำนวนหนึ่ง ตัวหารร่วมมากที่สุดของจำนวนศูนย์นั้นไม่ได้ถูกกำหนดไว้

อัลกอริทึมข้างต้นเรียกว่า อัลกอริทึมแบบยุคลิดเพื่อหาตัวหารร่วมมากของจำนวนเต็มสองตัว

ตัวอย่างการหาตัวหารร่วมมากของตัวเลขสองตัว

ค้นหาตัวหารร่วมมากของตัวเลขสองตัว 630 และ 434

  • ขั้นตอนที่ 1 หารตัวเลข 630 ด้วย 434 ส่วนที่เหลือคือ 196
  • ขั้นตอนที่ 2 หารตัวเลข 434 ด้วย 196 ส่วนที่เหลือคือ 42
  • ขั้นตอนที่ 3 หารตัวเลข 196 ด้วย 42 ส่วนที่เหลือคือ 28
  • ขั้นตอนที่ 4 หารตัวเลข 42 ด้วย 28 ส่วนที่เหลือคือ 14
  • ขั้นตอนที่ 5 หารตัวเลข 28 ด้วย 14 ส่วนที่เหลือคือ 0

ในขั้นตอนที่ 5 ส่วนที่เหลือของการหารคือ 0 ดังนั้น ตัวหารร่วมมากของตัวเลข 630 และ 434 จึงเป็น 14 โปรดทราบว่าตัวเลข 2 และ 7 ก็เป็นตัวหารของตัวเลข 630 และ 434 เช่นกัน

ตัวเลขโคไพรม์

คำนิยาม 1. ให้ตัวหารร่วมมากของตัวเลข 1 และ 2 เท่ากับหนึ่ง จากนั้นจึงเรียกหมายเลขเหล่านี้ หมายเลขโคไพรม์โดยไม่มีตัวหารร่วมกัน

ทฤษฎีบท 1. ถ้า 1 และ 2 หมายเลขโคไพรม์ และ λ ตัวเลขจำนวนหนึ่ง แล้วก็ตัวหารร่วมของตัวเลข แล 1 และ 2 เป็นตัวหารร่วมของตัวเลขด้วย λ และ 2 .

การพิสูจน์. พิจารณาอัลกอริทึมแบบยุคลิดในการค้นหาตัวหารร่วมมากของตัวเลข 1 และ 2 (ดูด้านบน)

.

จากเงื่อนไขของทฤษฎีบท จะได้ว่าตัวหารร่วมมากของจำนวนนั้นเป็นไปตามนั้น 1 และ 2 และดังนั้น และ n+1 คือ 1 นั่นคือ n+1 = 1

ลองคูณความเท่าเทียมกันทั้งหมดนี้ด้วย λ , แล้ว

.

ให้ตัวหารร่วม 1 λ และ 2 ใช่ δ - แล้ว δ มาเป็นตัวคูณใน 1 λ , 1 2 λ และใน 1 λ - 1 2 λ = 3 λ (ดู "การหารตัวเลข" คำแถลง 2) ต่อไป δ มาเป็นตัวคูณใน 2 λ และ 2 3 λ และดังนั้นจึงรวมเป็นปัจจัยใน 2 λ - 2 3 λ = 4 λ .

เมื่อให้เหตุผลเช่นนี้ เราก็มั่นใจว่า δ มาเป็นตัวคูณใน n−1 λ และ n−1 n λ และด้วยเหตุนี้จึงเข้า n−1 λ n−1 n λ = n+1 λ - เพราะ n+1 =1 แล้ว δ มาเป็นตัวคูณใน λ - ดังนั้นจำนวน δ เป็นตัวหารร่วมของตัวเลข λ และ 2 .

ให้เราพิจารณากรณีพิเศษของทฤษฎีบท 1

ผลที่ตามมา 1. อนุญาต และ จำนวนเฉพาะค่อนข้างมาก - แล้วผลิตภัณฑ์ของพวกเขา เครื่องปรับอากาศเป็นจำนวนเฉพาะเทียบกับ .

จริงหรือ. จากทฤษฎีบท 1 เครื่องปรับอากาศและ มีตัวหารร่วมเหมือนกันกับ และ - แต่ตัวเลข และ ค่อนข้างง่าย เช่น มีตัวหารร่วมเพียงตัวเดียวคือ 1. แล้ว เครื่องปรับอากาศและ มีตัวหารร่วมร่วมตัวเดียวคือ 1 ดังนั้น เครื่องปรับอากาศและ เรียบง่ายซึ่งกันและกัน

ผลที่ตามมา 2. อนุญาต และ ตัวเลขโคไพรม์แล้วปล่อยให้ แบ่ง อาก้า- แล้ว แบ่งและ เค.

จริงหรือ. จากเงื่อนไขการอนุมัติ อาก้าและ มีตัวหารร่วมกัน - โดยอาศัยทฤษฎีบทที่ 1 จะต้องเป็นตัวหารร่วม และ เค- เพราะฉะนั้น แบ่ง เค.

ข้อพิสูจน์ที่ 1 สามารถสรุปได้

ผลที่ตามมา 3. 1. ให้ตัวเลข 1 , 2 , 3 , ..., m เป็นจำนวนเฉพาะสัมพันธ์กับจำนวน - แล้ว 1 2 , 1 2 · 3 , ..., 1 2 3 ··· m ผลคูณของจำนวนเหล่านี้เป็นจำนวนเฉพาะสัมพันธ์กับจำนวนนั้น .

2. ขอให้เรามีตัวเลขสองแถว

โดยให้ทุกจำนวนในชุดแรกเป็นจำนวนเฉพาะในอัตราส่วนของทุกจำนวนในชุดที่สอง แล้วสินค้า

คุณต้องค้นหาตัวเลขที่หารด้วยตัวเลขเหล่านี้แต่ละตัว

ถ้าจำนวนนั้นหารด้วย 1 ก็จะมีรูปแบบ ซา 1 ที่ไหน หมายเลขบางอย่าง ถ้า ถามเป็นตัวหารร่วมมากของตัวเลข 1 และ 2 แล้ว

ที่ไหน 1 เป็นจำนวนเต็ม แล้ว

เป็น ผลคูณร่วมน้อยของตัวเลข 1 และ 2 .

1 และ 2 ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 และ 2:

เราจำเป็นต้องหาตัวคูณร่วมน้อยของจำนวนเหล่านี้

จากที่กล่าวมาข้างต้นจะเป็นไปตามจำนวนทวีคูณใดๆ 1 , 2 , 3 ต้องเป็นจำนวนทวีคูณ ε และ 3 และกลับ. ให้ตัวคูณร่วมน้อยของตัวเลข ε และ 3 ใช่ ε 1. ต่อไปเป็นทวีคูณของตัวเลข 1 , 2 , 3 , 4 ต้องเป็นจำนวนทวีคูณ ε 1 และ 4. ให้ตัวคูณร่วมน้อยของตัวเลข ε 1 และ 4 ใช่ ε 2. ดังนั้นเราจึงพบว่ามีจำนวนทวีคูณทั้งหมด 1 , 2 , 3 ,..., m ตรงกับผลคูณของจำนวนหนึ่ง ε n ซึ่งเรียกว่าตัวคูณร่วมน้อยของจำนวนที่กำหนด

ในกรณีพิเศษเมื่อมีตัวเลข 1 , 2 , 3 ,..., m ค่อนข้างเป็นจำนวนเฉพาะ จากนั้นก็เป็นตัวคูณร่วมน้อยของจำนวนนั้น 1 , 2 ดังแสดงข้างต้น มีรูปแบบ (3) ต่อไปตั้งแต่ 3 ไพรม์สัมพันธ์กับตัวเลข 1 , 2 แล้ว 3 จำนวนเฉพาะ 1 · 2 (ข้อพิสูจน์ 1) หมายถึงตัวคูณร่วมน้อยของตัวเลข 1 , 2 , 3 เป็นตัวเลข 1 · 2 · 3. เมื่อพิจารณาในทำนองเดียวกัน เราก็ได้ข้อความต่อไปนี้

คำแถลง 1. ตัวคูณร่วมน้อยของจำนวนโคไพรม์ 1 , 2 , 3 ,..., m เท่ากับผลคูณของมัน 1 · 2 · 3 ··· ม.

คำแถลง 2. จำนวนใดๆ ที่หารด้วยจำนวนโคไพรม์แต่ละตัวลงตัว 1 , 2 , 3 ,..., m ก็หารด้วยผลคูณของมันได้เช่นกัน 1 · 2 · 3 ··· ม.

เครื่องคิดเลขออนไลน์ช่วยให้คุณค้นหาตัวหารร่วมมากและตัวคูณร่วมน้อยของตัวเลขสองตัวหรือจำนวนอื่นๆ ได้อย่างรวดเร็ว

เครื่องคิดเลขสำหรับค้นหา GCD และ LCM

ค้นหา GCD และ LOC

พบ GCD และ LOC: 5806

วิธีใช้เครื่องคิดเลข

  • ป้อนตัวเลขในช่องป้อนข้อมูล
  • หากคุณป้อนอักขระไม่ถูกต้อง ช่องป้อนข้อมูลจะถูกเน้นด้วยสีแดง
  • คลิกปุ่ม "ค้นหา GCD และ LCM"

วิธีใส่ตัวเลข

  • ป้อนตัวเลขโดยคั่นด้วยช่องว่าง จุด หรือลูกน้ำ
  • ความยาวของตัวเลขที่ป้อนไม่ จำกัดดังนั้นการค้นหา GCD และ LCM ของตัวเลขยาวจึงไม่ใช่เรื่องยาก

GCD และ NOC คืออะไร?

ตัวหารร่วมมากตัวเลขหลายตัวเป็นจำนวนเต็มธรรมชาติที่ใหญ่ที่สุด โดยที่ตัวเลขเดิมทั้งหมดหารลงตัวได้โดยไม่มีเศษ ตัวหารร่วมมากใช้อักษรย่อว่า จีซีดี.
ตัวคูณร่วมน้อยตัวเลขหลายตัวคือจำนวนที่น้อยที่สุดที่หารด้วยตัวเลขเดิมแต่ละตัวโดยไม่มีเศษเหลือ ตัวคูณร่วมน้อยใช้อักษรย่อว่า NOC.

จะตรวจสอบได้อย่างไรว่าตัวเลขนั้นหารด้วยอีกจำนวนหนึ่งโดยไม่มีเศษ?

หากต้องการทราบว่าตัวเลขตัวหนึ่งหารด้วยอีกจำนวนหนึ่งลงตัวหรือไม่ คุณสามารถใช้คุณสมบัติบางประการของการหารตัวเลขได้ จากนั้นเมื่อรวมเข้าด้วยกัน คุณจะสามารถตรวจสอบการแบ่งแยกของบางส่วนและชุดค่าผสมได้

สัญญาณบางประการของการหารตัวเลข

1. การทดสอบการหารจำนวนด้วย 2 ลงตัว
ในการพิจารณาว่าตัวเลขหารด้วยสองลงตัวหรือไม่ (ไม่ว่าจะเป็นเลขคู่) ก็เพียงพอแล้วที่จะดูหลักสุดท้ายของตัวเลขนี้: ถ้ามันเท่ากับ 0, 2, 4, 6 หรือ 8 แสดงว่าตัวเลขนั้นเป็นเลขคู่ ซึ่งหมายความว่าหารด้วย 2 ลงตัว.
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 2 ลงตัวหรือไม่
สารละลาย:เราดูที่หลักสุดท้าย: 8 - นั่นหมายความว่าตัวเลขนั้นหารด้วยสองลงตัว

2. การทดสอบการหารจำนวนด้วย 3 ลงตัว
ตัวเลขหารด้วย 3 ลงตัวเมื่อผลรวมของตัวเลขหารด้วย 3 ลงตัว ดังนั้น เพื่อตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ คุณต้องคำนวณผลรวมของตัวเลขและตรวจสอบว่าตัวเลขหารด้วย 3 ลงตัวหรือไม่ แม้ว่าผลรวมของตัวเลขจะมีขนาดใหญ่มาก คุณก็สามารถทำซ้ำขั้นตอนเดิมอีกครั้งได้
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 3 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 3 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วยสามลงตัว

3. การทดสอบการหารจำนวนด้วย 5 ลงตัว
ตัวเลขหารด้วย 5 ได้เมื่อหลักสุดท้ายเป็นศูนย์หรือห้า
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 5 ลงตัวหรือไม่
สารละลาย:ดูที่หลักสุดท้าย: 8 หมายความว่าตัวเลขหารด้วยห้าไม่ลงตัว

4. การทดสอบการหารจำนวนด้วย 9 ลงตัว
เครื่องหมายนี้คล้ายกับเครื่องหมายหารด้วยสามลงตัวมาก โดยตัวเลขจะหารด้วย 9 ลงตัวเมื่อผลรวมของตัวเลขหารด้วย 9 ลงตัว
ตัวอย่าง:ตรวจสอบว่าตัวเลข 34938 หารด้วย 9 ลงตัวหรือไม่
สารละลาย:เรานับผลรวมของตัวเลข: 3+4+9+3+8 = 27 27 หารด้วย 9 ลงตัว ซึ่งหมายความว่าตัวเลขนั้นหารด้วย 9 ลงตัว

วิธีค้นหา GCD และ LCM ของตัวเลขสองตัว

วิธีค้นหา gcd ของตัวเลขสองตัว

วิธีที่ง่ายที่สุดในการคำนวณตัวหารร่วมมากของตัวเลขสองตัวคือค้นหาตัวหารที่เป็นไปได้ทั้งหมดของตัวเลขเหล่านั้น แล้วเลือกตัวที่มากที่สุด

ลองพิจารณาวิธีนี้โดยใช้ตัวอย่างการค้นหา GCD(28, 36):

  1. เราแยกตัวประกอบตัวเลขทั้งสอง: 28 = 1·2·2·7, 36 = 1·2·2·3·3
  2. เราพบตัวประกอบร่วม นั่นคือ ตัวเลขทั้งสองมี: 1, 2 และ 2
  3. เราคำนวณผลคูณของปัจจัยเหล่านี้: 1 2 2 = 4 - นี่คือตัวหารร่วมมากของตัวเลข 28 และ 36

วิธีค้นหา LCM ของตัวเลขสองตัว

มีสองวิธีที่ใช้กันทั่วไปในการค้นหาผลคูณน้อยที่สุดของตัวเลขสองตัว วิธีแรกคือคุณสามารถจดเลขทวีคูณแรกของตัวเลขสองตัว จากนั้นเลือกตัวเลขที่จะเหมือนกันกับตัวเลขทั้งสองและในเวลาเดียวกันก็มีค่าน้อยที่สุด อย่างที่สองคือหา gcd ของตัวเลขเหล่านี้ ลองพิจารณาดูเท่านั้น

ในการคำนวณ LCM คุณต้องคำนวณผลคูณของตัวเลขเดิมแล้วหารด้วย GCD ที่พบก่อนหน้านี้ มาหา LCM สำหรับตัวเลข 28 และ 36 ที่เหมือนกัน:

  1. ค้นหาผลคูณของตัวเลข 28 และ 36: 28·36 = 1008
  2. GCD(28, 36) ตามที่ทราบอยู่แล้ว มีค่าเท่ากับ 4
  3. ล.ซม.(28, 36) = 1008/4 = 252 .

ค้นหา GCD และ LCM สำหรับตัวเลขหลายตัว

ตัวหารร่วมมากสามารถหาได้จากหลายจำนวน ไม่ใช่เพียงสองเท่านั้น เมื่อต้องการทำเช่นนี้ ตัวเลขที่จะหาได้สำหรับตัวหารร่วมมากจะถูกแบ่งออกเป็นตัวประกอบเฉพาะ จากนั้นจึงหาผลคูณของตัวประกอบร่วมเฉพาะของตัวเลขเหล่านี้ คุณยังสามารถใช้ความสัมพันธ์ต่อไปนี้เพื่อค้นหา gcd ของตัวเลขหลายตัวได้: GCD(a, b, c) = GCD(GCD(a, b), c).

ความสัมพันธ์ที่คล้ายกันใช้กับตัวคูณร่วมน้อย: ล.ซม.(a, b, c) = ล.ซม.(ล.ม.(a, b), c)

ตัวอย่าง:ค้นหา GCD และ LCM สำหรับหมายเลข 12, 32 และ 36

  1. อันดับแรก แยกตัวประกอบตัวเลขก่อน: 12 = 1·2·2·3, 32 = 1·2·2·2·2·2, 36 = 1·2·2·3·3
  2. มาหาปัจจัยร่วม: 1, 2 และ 2
  3. ผลิตภัณฑ์ของพวกเขาจะให้ GCD: 1·2·2 = 4
  4. ทีนี้ เรามาค้นหา LCM กันดีกว่า โดยจะหา LCM(12, 32): 12·32 / 4 = 96 ก่อน
  5. หากต้องการค้นหา LCM ของตัวเลขทั้งสามตัว คุณต้องค้นหา GCD(96, 36): 96 = 1·2·2·2·2·2·3 , 36 = 1·2·2·3·3 , GCD = 1·2· 2 3 = 12.
  6. ล.ซม.(12, 32, 36) = 96·36 / 12 = 288