ลอการิทึมเท่ากับฐาน 0 คืออะไร คำจำกัดความของลอการิทึมและคุณสมบัติของมัน: ทฤษฎีและการแก้ปัญหา

นิพจน์ลอการิทึม, การแก้ตัวอย่าง ในบทความนี้ เราจะดูปัญหาที่เกี่ยวข้องกับการแก้ลอการิทึม งานถามคำถามในการค้นหาความหมายของสำนวน ควรสังเกตว่าแนวคิดของลอการิทึมถูกใช้ในงานหลายอย่างและการทำความเข้าใจความหมายของมันเป็นสิ่งสำคัญอย่างยิ่ง สำหรับการตรวจสอบ Unified State จะใช้ลอการิทึมในการแก้สมการ ปัญหาที่ประยุกต์ในงานที่เกี่ยวข้องกับการศึกษาหน้าที่ด้วย

ให้เรายกตัวอย่างเพื่อทำความเข้าใจความหมายของลอการิทึม:


ข้อมูลประจำตัวลอการิทึมพื้นฐาน:

คุณสมบัติของลอการิทึมที่ต้องจำไว้เสมอ:

*ลอการิทึมของผลิตภัณฑ์ เท่ากับผลรวมลอการิทึมของปัจจัย

* * *

*ลอการิทึมของผลหาร (เศษส่วน) เท่ากับความแตกต่างระหว่างลอการิทึมของปัจจัย

* * *

*ลอการิทึมของดีกรี เท่ากับสินค้าเลขชี้กำลังด้วยลอการิทึมของฐาน

* * *

*การเปลี่ยนไปสู่รากฐานใหม่

* * *

คุณสมบัติเพิ่มเติม:

* * *

การคำนวณลอการิทึมมีความสัมพันธ์อย่างใกล้ชิดกับการใช้คุณสมบัติของเลขชี้กำลัง

เรามาแสดงรายการบางส่วนกัน:

สาระสำคัญ ของทรัพย์สินนี้อยู่ในความจริงที่ว่าเมื่อโอนตัวเศษไปยังตัวส่วนและในทางกลับกันเครื่องหมายของเลขชี้กำลังจะเปลี่ยนไปในทางตรงกันข้าม ตัวอย่างเช่น:

ข้อพิสูจน์จากคุณสมบัตินี้:

* * *

เมื่อยกกำลังเป็นกำลัง ฐานจะยังคงเหมือนเดิม แต่เลขชี้กำลังจะถูกคูณ

* * *

อย่างที่คุณเห็น แนวคิดของลอการิทึมนั้นเรียบง่าย สิ่งสำคัญคือสิ่งที่จำเป็น แนวปฏิบัติที่ดีซึ่งให้ทักษะบางอย่าง แน่นอนว่าต้องมีความรู้เรื่องสูตรด้วย หากทักษะในการแปลงลอการิทึมเบื้องต้นยังไม่ได้รับการพัฒนา เมื่อแก้ไขงานง่าย ๆ คุณก็อาจทำผิดพลาดได้ง่าย

ฝึกฝน แก้ตัวอย่างที่ง่ายที่สุดจากหลักสูตรคณิตศาสตร์ก่อน จากนั้นจึงไปยังตัวอย่างที่ซับซ้อนมากขึ้น ในอนาคต ฉันจะแสดงให้เห็นอย่างแน่นอนว่าลอการิทึม "น่าเกลียด" ได้รับการแก้ไขอย่างไร สิ่งเหล่านี้จะไม่ปรากฏในการสอบ Unified State แต่เป็นที่สนใจ อย่าพลาด!

นั่นคือทั้งหมด! ขอให้โชคดี!

ขอแสดงความนับถือ Alexander Krutitskikh

ป.ล. ฉันจะขอบคุณถ้าคุณบอกฉันเกี่ยวกับเว็บไซต์บนโซเชียลเน็ตเวิร์ก

การรักษาความเป็นส่วนตัวของคุณเป็นสิ่งสำคัญสำหรับเรา ด้วยเหตุนี้ เราจึงได้พัฒนานโยบายความเป็นส่วนตัวที่อธิบายถึงวิธีที่เราใช้และจัดเก็บข้อมูลของคุณ โปรดตรวจสอบหลักปฏิบัติด้านความเป็นส่วนตัวของเราและแจ้งให้เราทราบหากคุณมีคำถามใดๆ

การรวบรวมและการใช้ข้อมูลส่วนบุคคล

ข้อมูลส่วนบุคคลหมายถึงข้อมูลที่สามารถใช้เพื่อระบุหรือติดต่อบุคคลใดบุคคลหนึ่งโดยเฉพาะ

คุณอาจถูกขอให้ให้ข้อมูลส่วนบุคคลของคุณได้ตลอดเวลาเมื่อคุณติดต่อเรา

ด้านล่างนี้คือตัวอย่างบางส่วนของประเภทของข้อมูลส่วนบุคคลที่เราอาจรวบรวมและวิธีที่เราอาจใช้ข้อมูลดังกล่าว

เราเก็บรวบรวมข้อมูลส่วนบุคคลอะไรบ้าง:

  • เมื่อคุณส่งคำขอบนเว็บไซต์ เราอาจรวบรวมข้อมูลต่าง ๆ รวมถึงชื่อ หมายเลขโทรศัพท์ ที่อยู่ของคุณ อีเมลฯลฯ

เราใช้ข้อมูลส่วนบุคคลของคุณอย่างไร:

  • รวบรวมโดยเรา ข้อมูลส่วนบุคคลช่วยให้เราสามารถติดต่อคุณและแจ้งให้คุณทราบได้ ข้อเสนอที่ไม่ซ้ำใครโปรโมชั่นและกิจกรรมอื่น ๆ และกิจกรรมที่กำลังจะเกิดขึ้น
  • ในบางครั้ง เราอาจใช้ข้อมูลส่วนบุคคลของคุณเพื่อส่งประกาศและการสื่อสารที่สำคัญ
  • เรายังอาจใช้ข้อมูลส่วนบุคคลเพื่อวัตถุประสงค์ภายใน เช่น การตรวจสอบ การวิเคราะห์ข้อมูล และ การศึกษาต่างๆเพื่อปรับปรุงบริการที่เรามอบให้และให้คำแนะนำเกี่ยวกับบริการของเรา
  • หากคุณเข้าร่วมการจับรางวัล การประกวด หรือการส่งเสริมการขายที่คล้ายกัน เราอาจใช้ข้อมูลที่คุณให้ไว้เพื่อจัดการโปรแกรมดังกล่าว

การเปิดเผยข้อมูลแก่บุคคลที่สาม

เราไม่เปิดเผยข้อมูลที่ได้รับจากคุณต่อบุคคลที่สาม

ข้อยกเว้น:

  • หากจำเป็นตามกฎหมาย ขั้นตอนการพิจารณาคดี, วี การทดลองและ/หรือตามคำขอสาธารณะหรือการร้องขอจาก หน่วยงานภาครัฐในอาณาเขตของสหพันธรัฐรัสเซีย - เปิดเผยข้อมูลส่วนบุคคลของคุณ เรายังอาจเปิดเผยข้อมูลเกี่ยวกับคุณหากเราพิจารณาว่าการเปิดเผยดังกล่าวมีความจำเป็นหรือเหมาะสมเพื่อความปลอดภัย การบังคับใช้กฎหมาย หรือวัตถุประสงค์ที่สำคัญสาธารณะอื่น ๆ
  • ในกรณีของการปรับโครงสร้างองค์กร การควบรวมกิจการ หรือการขาย เราอาจถ่ายโอนข้อมูลส่วนบุคคลที่เรารวบรวมไปยังบุคคลที่สามที่รับช่วงต่อที่เกี่ยวข้อง

การคุ้มครองข้อมูลส่วนบุคคล

เราใช้ความระมัดระวัง - รวมถึงการบริหารจัดการ ทางเทคนิค และทางกายภาพ - เพื่อปกป้องข้อมูลส่วนบุคคลของคุณจากการสูญหาย การโจรกรรม และการใช้งานในทางที่ผิด รวมถึงการเข้าถึง การเปิดเผย การเปลี่ยนแปลง และการทำลายโดยไม่ได้รับอนุญาต

การเคารพความเป็นส่วนตัวของคุณในระดับบริษัท

เพื่อให้มั่นใจว่าข้อมูลส่วนบุคคลของคุณปลอดภัย เราจะสื่อสารมาตรฐานความเป็นส่วนตัวและความปลอดภัยให้กับพนักงานของเรา และบังคับใช้หลักปฏิบัติด้านความเป็นส่วนตัวอย่างเคร่งครัด

\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

มาอธิบายให้ง่ายกว่านี้กันดีกว่า ตัวอย่างเช่น \(\log_(2)(8)\) เท่ากับพลังซึ่งจะต้องยก \(2\) ขึ้นเพื่อให้ได้ \(8\) จากนี้จะเห็นชัดเจนว่า \(\log_(2)(8)=3\)

ตัวอย่าง:

\(\log_(5)(25)=2\)

เพราะ \(5^(2)=25\)

\(\log_(3)(81)=4\)

เพราะ \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

เพราะ \(2^(-5)=\)\(\frac(1)(32)\)

อาร์กิวเมนต์และฐานของลอการิทึม

ลอการิทึมใดๆ มี “กายวิภาคศาสตร์” ดังต่อไปนี้:

อาร์กิวเมนต์ของลอการิทึมมักจะเขียนที่ระดับของมัน และฐานจะเขียนเป็นตัวห้อยใกล้กับเครื่องหมายลอการิทึม และรายการนี้อ่านได้ดังนี้: "ลอการิทึมของยี่สิบห้าถึงฐานห้า"

วิธีการคำนวณลอการิทึม?

ในการคำนวณลอการิทึมคุณต้องตอบคำถาม: ควรยกฐานให้ยกกำลังเท่าใดจึงจะได้รับอาร์กิวเมนต์?

ตัวอย่างเช่น, คำนวณลอการิทึม: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) จ) \(\log_(3)(\sqrt(3))\)

a) \(4\) ต้องยกกำลังเท่าใดจึงจะได้ \(16\)? เห็นได้ชัดว่าคนที่สอง นั่นเป็นเหตุผล:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(\sqrt(5)\) ต้องยกกำลังเท่าใดจึงจะได้ \(1\)? พลังอะไรที่ทำให้ใครก็ตามเป็นอันดับหนึ่ง? แน่นอนเป็นศูนย์!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(7)\)? ประการแรก จำนวนใดๆ ที่กำลังยกกำลังแรกจะเท่ากับตัวมันเอง

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(3\) ต้องยกกำลังเท่าใดจึงจะได้ \(\sqrt(3)\)? จากที่เรารู้ว่ามันคืออะไร พลังเศษส่วนและนั่นหมายความว่า รากที่สองคือพลังของ \(\frac(1)(2)\)

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

ตัวอย่าง : คำนวณลอการิทึม \(\log_(4\sqrt(2))(8)\)

สารละลาย :

\(\log_(4\sqrt(2))(8)=x\)

เราจำเป็นต้องหาค่าลอการิทึม แสดงว่ามันเป็น x ตอนนี้ลองใช้คำจำกัดความของลอการิทึม:
\(\log_(a)(c)=b\) \(\ลูกศรซ้าย\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

อะไรเชื่อมต่อ \(4\sqrt(2)\) และ \(8\)? สอง เนื่องจากตัวเลขทั้งสองสามารถแสดงด้วยสองได้:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

ทางด้านซ้าย เราใช้คุณสมบัติของดีกรี: \(a^(m)\cdot a^(n)=a^(m+n)\) และ \((a^(m))^(n)= เป็น^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

ฐานเท่ากัน เราจะก้าวไปสู่ความเท่าเทียมกันของตัวบ่งชี้

\(\frac(5x)(2)\) \(=3\)


คูณทั้งสองข้างของสมการด้วย \(\frac(2)(5)\)


ผลลัพธ์ที่ได้คือค่าของลอการิทึม

คำตอบ : \(\log_(4\sqrt(2))(8)=1,2\)

เหตุใดลอการิทึมจึงถูกประดิษฐ์ขึ้น?

เพื่อให้เข้าใจสิ่งนี้ เรามาแก้สมการกัน: \(3^(x)=9\) เพียงจับคู่ \(x\) เพื่อให้สมการทำงานได้ แน่นอน \(x=2\)

ตอนนี้แก้สมการ: \(3^(x)=8\).ทำไม เท่ากับ x- นั่นคือประเด็น

คนที่ฉลาดที่สุดจะพูดว่า: “X น้อยกว่าสองนิดหน่อย” จะเขียนตัวเลขนี้ได้อย่างไร? เพื่อตอบคำถามนี้ จึงมีการประดิษฐ์ลอการิทึมขึ้น ต้องขอบคุณเขาที่ทำให้คำตอบตรงนี้สามารถเขียนได้เป็น \(x=\log_(3)(8)\)

ฉันอยากจะเน้นว่า \(\log_(3)(8)\) ชอบ ลอการิทึมใดๆ ก็เป็นเพียงตัวเลข- ใช่ มันดูแปลกแต่มันสั้น เพราะถ้าเราอยากจะเขียนมันออกมาในรูปแบบ ทศนิยมจากนั้นจะมีลักษณะดังนี้: \(1.892789260714.....\)

ตัวอย่าง : แก้สมการ \(4^(5x-4)=10\)

สารละลาย :

\(4^(5x-4)=10\)

\(4^(5x-4)\) และ \(10\) ไม่สามารถนำมาเป็นฐานเดียวกันได้ ซึ่งหมายความว่าคุณไม่สามารถทำได้หากไม่มีลอการิทึม

ลองใช้คำจำกัดความของลอการิทึม:
\(a^(b)=c\) \(\ลูกศรซ้าย\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

ลองพลิกสมการเพื่อให้ X อยู่ทางซ้าย

\(5x-4=\log_(4)(10)\)

ก่อนเรา. ลองย้าย \(4\) ไปทางขวากัน

และอย่ากลัวลอการิทึม ให้ปฏิบัติเหมือนเลขธรรมดา

\(5x=\log_(4)(10)+4\)

หารสมการด้วย 5

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


นี่คือรากของเรา ใช่ มันดูผิดปกติแต่พวกเขาไม่ได้เลือกคำตอบ

คำตอบ : \(\frac(\log_(4)(10)+4)(5)\)

ลอการิทึมทศนิยมและลอการิทึมธรรมชาติ

ตามที่ระบุไว้ในคำจำกัดความของลอการิทึม ฐานของมันคือค่าใดก็ได้ จำนวนบวกยกเว้นหน่วย \((a>0, a\neq1)\) และในบรรดาฐานที่เป็นไปได้ทั้งหมด มี 2 ฐานที่เกิดขึ้นบ่อยมากจนมีการประดิษฐ์สัญกรณ์สั้นพิเศษสำหรับลอการิทึม:

ลอการิทึมธรรมชาติ: ลอการิทึมที่มีฐานเป็นเลขของออยเลอร์ \(e\) (เท่ากับประมาณ \(2.7182818…\)) และลอการิทึมเขียนเป็น \(\ln(a)\)

นั่นคือ \(\ln(a)\) เหมือนกับ \(\log_(e)(a)\)

ลอการิทึมทศนิยม: ลอการิทึมที่มีฐานเป็น 10 จะถูกเขียนเป็น \(\lg(a)\)

นั่นคือ \(\lg(a)\) เหมือนกับ \(\log_(10)(a)\)โดยที่ \(a\) คือตัวเลขจำนวนหนึ่ง

เอกลักษณ์ลอการิทึมพื้นฐาน

ลอการิทึมมีคุณสมบัติหลายอย่าง หนึ่งในนั้นเรียกว่า "Basic Logarithmic Identity" และมีลักษณะดังนี้:

\(a^(\log_(ก)(c))=c\)

คุณสมบัตินี้เป็นไปตามคำจำกัดความโดยตรง เรามาดูกันว่าสูตรนี้เกิดขึ้นได้อย่างไร

ให้เรานึกถึงสัญกรณ์สั้น ๆ เกี่ยวกับคำจำกัดความของลอการิทึม:

ถ้า \(a^(b)=c\) ดังนั้น \(\log_(a)(c)=b\)

นั่นคือ \(b\) เหมือนกับ \(\log_(a)(c)\) จากนั้นเราสามารถเขียน \(\log_(a)(c)\) แทน \(b\) ในสูตร \(a^(b)=c\) มันกลายเป็น \(a^(\log_(a)(c))=c\) - ข้อมูลประจำตัวลอการิทึมหลัก

คุณสามารถค้นหาคุณสมบัติอื่นๆ ของลอการิทึมได้ ด้วยความช่วยเหลือของพวกเขา คุณสามารถลดความซับซ้อนและคำนวณค่าของนิพจน์ด้วยลอการิทึมซึ่งยากต่อการคำนวณโดยตรง

ตัวอย่าง : ค้นหาค่าของนิพจน์ \(36^(\log_(6)(5))\)

สารละลาย :

คำตอบ : \(25\)

จะเขียนตัวเลขเป็นลอการิทึมได้อย่างไร?

ตามที่กล่าวไว้ข้างต้น ลอการิทึมใดๆ ก็เป็นเพียงตัวเลขเท่านั้น การสนทนาก็เป็นจริงเช่นกัน โดยตัวเลขใดๆ ก็ตามสามารถเขียนเป็นลอการิทึมได้ ตัวอย่างเช่น เรารู้ว่า \(\log_(2)(4)\) เท่ากับสอง จากนั้นแทนที่จะเขียนสองรายการ คุณสามารถเขียน \(\log_(2)(4)\) ได้

แต่ \(\log_(3)(9)\) ก็เท่ากับ \(2\) เช่นกัน ซึ่งหมายความว่าเราสามารถเขียน \(2=\log_(3)(9)\) ได้เช่นกัน ในทำนองเดียวกันด้วย \(\log_(5)(25)\) และด้วย \(\log_(9)(81)\) ฯลฯ นั่นคือปรากฎว่า

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

ดังนั้น หากจำเป็น เราก็สามารถเขียนสองตัวเป็นลอการิทึมโดยมีฐานใดๆ ก็ได้ (ไม่ว่าจะเป็นในสมการ ในนิพจน์ หรือในอสมการ) เราก็แค่เขียนฐานกำลังสองเป็นอาร์กิวเมนต์

เช่นเดียวกับทริปเปิล โดยสามารถเขียนเป็น \(\log_(2)(8)\) หรือเป็น \(\log_(3)(27)\) หรือเป็น \(\log_(4)( 64) \)... ที่นี่เราเขียนฐานในคิวบ์เป็นอาร์กิวเมนต์:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

และด้วยสี่:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

และด้วยลบหนึ่ง:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1 )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\) \(...\)

และหนึ่งในสาม:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

จำนวนใดๆ \(a\) สามารถแสดงเป็นลอการิทึมที่มีฐาน \(b\): \(a=\log_(b)(b^(a))\)

ตัวอย่าง : ค้นหาความหมายของสำนวน \(\frac(\log_(2)(14))(1+\log_(2)(7))\)

สารละลาย :

คำตอบ : \(1\)

ลอการิทึมของตัวเลข เอ็น ขึ้นอยู่กับ เรียกว่าเลขชี้กำลัง เอ็กซ์ ที่คุณต้องสร้าง เพื่อรับหมายเลข เอ็น

โดยมีเงื่อนไขว่า
,
,

จากคำจำกัดความของลอการิทึมจะได้ดังนี้
, เช่น.
- ความเท่าเทียมกันนี้เป็นพื้นฐาน เอกลักษณ์ลอการิทึม.

ลอการิทึมที่มีฐาน 10 เรียกว่าลอการิทึมฐานสิบ แทน
เขียน
.

ลอการิทึมถึงฐาน เรียกว่าเป็นธรรมชาติและถูกกำหนดไว้
.

คุณสมบัติพื้นฐานของลอการิทึม

    ลอการิทึมของ 1 เท่ากับศูนย์สำหรับฐานใดๆ

    ลอการิทึมของผลิตภัณฑ์เท่ากับผลรวมของลอการิทึมของปัจจัย

3) ลอการิทึมของผลหารเท่ากับผลต่างของลอการิทึม


ปัจจัย
เรียกว่าโมดูลัสของการเปลี่ยนผ่านจากลอการิทึมเป็นฐาน เป็นลอการิทึมที่ฐาน .

การใช้คุณสมบัติ 2-5 มักจะเป็นไปได้ที่จะลดลอการิทึมของนิพจน์ที่ซับซ้อนให้เหลือผลลัพธ์ของการดำเนินการทางคณิตศาสตร์อย่างง่ายกับลอการิทึม

ตัวอย่างเช่น,

การแปลงลอการิทึมดังกล่าวเรียกว่าลอการิทึม การแปลงผกผันกับลอการิทึมเรียกว่าศักยภาพ

บทที่ 2 องค์ประกอบของคณิตศาสตร์ชั้นสูง

1. ข้อจำกัด

ขีดจำกัดของฟังก์ชัน
เป็นจำนวนจำกัด A ถ้า เช่น xx 0 สำหรับแต่ละที่กำหนดไว้ล่วงหน้า
มีจำนวนดังกล่าว
ทันทีที่
, ที่
.

ฟังก์ชันที่มีขีดจำกัดจะแตกต่างจากฟังก์ชันนี้ด้วยจำนวนที่น้อยมาก:
ที่ไหน- b.m.v. เช่น
.

ตัวอย่าง. พิจารณาฟังก์ชัน
.

เมื่อมุ่งมั่น
, การทำงาน มีแนวโน้มที่จะเป็นศูนย์:

1.1. ทฤษฎีบทพื้นฐานเกี่ยวกับขีดจำกัด

    ขีดจำกัด ค่าคงที่เท่ากับค่าคงที่นี้

.

    ขีดจำกัดจำนวนเงิน (ส่วนต่าง) จำนวนจำกัดฟังก์ชันจะเท่ากับผลรวม (ผลต่าง) ของขีดจำกัดของฟังก์ชันเหล่านี้

    ขีดจำกัดของผลคูณของฟังก์ชันจำนวนจำกัดจะเท่ากับผลคูณของขีดจำกัดของฟังก์ชันเหล่านี้

    ขีดจำกัดของผลหารของสองฟังก์ชันจะเท่ากับผลหารของขีดจำกัดของฟังก์ชันเหล่านี้ ถ้าขีดจำกัดของตัวส่วนไม่เป็นศูนย์

ขีดจำกัดอันมหัศจรรย์

,
, ที่ไหน

1.2. ตัวอย่างการคำนวณขีดจำกัด

อย่างไรก็ตาม ไม่ใช่ทุกขีดจำกัดจะคำนวณได้ง่ายนัก บ่อยครั้งที่การคำนวณขีดจำกัดลงมาเพื่อเผยให้เห็นความไม่แน่นอนของประเภท: หรือ .

.

2. อนุพันธ์ของฟังก์ชัน

ให้เรามีหน้าที่
ต่อเนื่องในส่วนนี้
.

การโต้แย้ง เพิ่มขึ้นบ้าง
- จากนั้นฟังก์ชันจะได้รับการเพิ่มขึ้น
.

ค่าอาร์กิวเมนต์ สอดคล้องกับค่าฟังก์ชัน
.

ค่าอาร์กิวเมนต์
สอดคล้องกับค่าฟังก์ชัน

เพราะฉะนั้น, .

ให้เราหาลิมิตของอัตราส่วนนี้กันที่
- หากมีขีดจำกัดนี้จะเรียกว่าอนุพันธ์ของฟังก์ชันที่กำหนด

คำจำกัดความ 3 อนุพันธ์ของฟังก์ชันที่กำหนด
โดยการโต้แย้ง เรียกว่าขีดจำกัดของอัตราส่วนของการเพิ่มขึ้นของฟังก์ชันต่อการเพิ่มขึ้นของอาร์กิวเมนต์ เมื่อการเพิ่มขึ้นของอาร์กิวเมนต์มีแนวโน้มเป็นศูนย์โดยพลการ

อนุพันธ์ของฟังก์ชัน
สามารถกำหนดได้ดังนี้:

; ; ; .

คำจำกัดความที่ 4 เรียกว่าการดำเนินการหาอนุพันธ์ของฟังก์ชัน ความแตกต่าง

2.1. ความหมายทางกลของอนุพันธ์

ขอให้เราพิจารณาการเคลื่อนที่เป็นเส้นตรงของวัตถุแข็งเกร็งหรือจุดวัสดุ

ปล่อยให้ ณ จุดใดจุดหนึ่ง จุดเคลื่อนที่
อยู่ในระยะไกล จากตำแหน่งเริ่มต้น
.

หลังจากนั้นช่วงระยะเวลาหนึ่ง
เธอขยับไปไกล
- ทัศนคติ =- ความเร็วเฉลี่ยจุดวัสดุ
- ให้เราหาขีดจำกัดของอัตราส่วนนี้โดยคำนึงถึงสิ่งนั้น
.

ดังนั้นคำจำกัดความ ความเร็วทันทีการเคลื่อนที่ของจุดวัตถุลงมาเพื่อค้นหาอนุพันธ์ของเส้นทางเทียบกับเวลา

2.2. ความหมายทางเรขาคณิตอนุพันธ์

ขอให้เรามีฟังก์ชันที่กำหนดไว้แบบกราฟิก
.

ข้าว. 1. ความหมายทางเรขาคณิตของอนุพันธ์

ถ้า
แล้วชี้
,จะเคลื่อนที่ไปตามโค้งเข้าใกล้จุดนั้น
.

เพราะฉะนั้น
, เช่น. มูลค่าของอนุพันธ์สำหรับมูลค่าที่กำหนดของการโต้แย้ง เป็นตัวเลขเท่ากับค่าแทนเจนต์ของมุมที่เกิดจากแทนเจนต์ ณ จุดที่กำหนดโดยมีทิศทางบวกของแกน
.

2.3. ตารางสูตรหาอนุพันธ์พื้นฐาน

ฟังก์ชั่นพลังงาน

ฟังก์ชันเลขชี้กำลัง

ฟังก์ชันลอการิทึม

ฟังก์ชันตรีโกณมิติ

ฟังก์ชันตรีโกณมิติผกผัน

2.4. กฎของความแตกต่าง

อนุพันธ์ของ

อนุพันธ์ของผลรวม (ผลต่าง) ของฟังก์ชัน


อนุพันธ์ของผลิตภัณฑ์ของสองฟังก์ชัน


อนุพันธ์ของผลหารของสองฟังก์ชัน


2.5. อนุพันธ์ของ ฟังก์ชั่นที่ซับซ้อน.

ปล่อยให้ฟังก์ชันได้รับ
จึงสามารถแสดงออกมาในรูปได้

และ
โดยที่ตัวแปร ก็เป็นข้อโต้แย้งระดับกลางแล้ว

อนุพันธ์ของฟังก์ชันเชิงซ้อนเท่ากับผลคูณของอนุพันธ์ของฟังก์ชันที่กำหนด เทียบกับอาร์กิวเมนต์ตัวกลางและอนุพันธ์ของอาร์กิวเมนต์ตัวกลางเทียบกับ x

ตัวอย่างที่ 1

ตัวอย่างที่ 2

3. ฟังก์ชันดิฟเฟอเรนเชียล

ให้มี
, หาอนุพันธ์ได้ในบางช่วง
และปล่อยให้ ที่ ฟังก์ชันนี้มีอนุพันธ์

,

แล้วเราก็สามารถเขียนได้

(1),

ที่ไหน - ปริมาณที่ไม่มีที่สิ้นสุด

ตั้งแต่เมื่อไหร่

คูณเงื่อนไขความเท่าเทียมกันทั้งหมด (1) ด้วย
เรามี:

ที่ไหน
- บีเอ็มวี ลำดับที่สูงขึ้น

ขนาด
เรียกว่าดิฟเฟอเรนเชียลของฟังก์ชัน
และถูกกำหนดไว้

.

3.1. ค่าเรขาคณิตของส่วนต่าง

ปล่อยให้ฟังก์ชันได้รับ
.

รูปที่ 2. ความหมายทางเรขาคณิตของดิฟเฟอเรนเชียล

.

แน่นอนว่าดิฟเฟอเรนเชียลของฟังก์ชัน
เท่ากับการเพิ่มขึ้นของพิกัดของแทนเจนต์ที่จุดที่กำหนด

3.2. อนุพันธ์และส่วนต่างของคำสั่งต่างๆ

ถ้ามี
, แล้ว
เรียกว่าอนุพันธ์อันดับหนึ่ง

อนุพันธ์ของอนุพันธ์อันดับ 1 เรียกว่าอนุพันธ์อันดับ 2 และเขียนเป็นลายลักษณ์อักษร
.

อนุพันธ์ลำดับที่ n ของฟังก์ชัน
เรียกว่าอนุพันธ์ลำดับที่ (n-1) และเขียนว่า:

.

ดิฟเฟอเรนเชียลของดิฟเฟอเรนเชียลของฟังก์ชันเรียกว่าดิฟเฟอเรนเชียลลำดับที่สองหรือดิฟเฟอเรนเชียลลำดับที่สอง

.

.

3.3 การแก้ปัญหาทางชีววิทยาโดยใช้ความแตกต่าง

ภารกิจที่ 1 การศึกษาพบว่าการเจริญเติบโตของอาณานิคมของจุลินทรีย์เป็นไปตามกฎหมาย
, ที่ไหน เอ็น – จำนวนจุลินทรีย์ (เป็นพัน) ที – เวลา (วัน)

b) ประชากรในอาณานิคมจะเพิ่มขึ้นหรือลดลงในช่วงเวลานี้?

คำตอบ. ขนาดของอาณานิคมจะเพิ่มขึ้น

ภารกิจที่ 2 น้ำในทะเลสาบได้รับการทดสอบเป็นระยะเพื่อติดตามปริมาณแบคทีเรียที่ทำให้เกิดโรค ผ่าน ที วันหลังการทดสอบ ความเข้มข้นของแบคทีเรียจะถูกกำหนดโดยอัตราส่วน

.

ทะเลสาบจะมีความเข้มข้นของแบคทีเรียขั้นต่ำเมื่อใดและจะสามารถว่ายน้ำได้หรือไม่?

วิธีแก้ไข: ฟังก์ชันถึงค่าสูงสุดหรือต่ำสุดเมื่ออนุพันธ์ของฟังก์ชันเป็นศูนย์

,

ลองพิจารณาว่าสูงสุดหรือต่ำสุดจะอยู่ใน 6 วัน เมื่อต้องการทำเช่นนี้ ลองใช้อนุพันธ์อันดับสองกัน


คำตอบ: หลังจากผ่านไป 6 วัน แบคทีเรียจะมีความเข้มข้นน้อยที่สุด

(จากภาษากรีก γόγος - "คำ", "ความสัมพันธ์" และ ἀριθμός - "ตัวเลข") ขึ้นอยู่กับ (บันทึก α ) เรียกว่าตัวเลขดังกล่าว , และ = นั่นคือ บันทึกบันทึก α =และ ข=กเทียบเท่ากัน ลอการิทึมสมเหตุสมผลถ้า a > 0, a ≠ 1, b > 0

กล่าวอีกนัยหนึ่ง ลอการิทึมตัวเลข ขึ้นอยู่กับ กำหนดเป็นเลขชี้กำลังซึ่งจะต้องยกจำนวนขึ้น เพื่อรับหมายเลข (ลอการิทึมมีอยู่เฉพาะสำหรับจำนวนบวกเท่านั้น)

จากสูตรนี้ จะได้ว่าการคำนวณ x= log α เทียบเท่ากับการแก้สมการ a x =b

ตัวอย่างเช่น:

บันทึก 2 8 = 3 เพราะ 8 = 2 3

ให้เราเน้นว่าการกำหนดลอการิทึมที่ระบุทำให้สามารถกำหนดได้ทันที ค่าลอการิทึมเมื่อตัวเลขใต้เครื่องหมายลอการิทึมทำหน้าที่เป็นกำลังหนึ่งของฐาน ที่จริงแล้ว การกำหนดลอการิทึมทำให้สามารถพิสูจน์ได้ว่าถ้า ข=คแล้วตามด้วยลอการิทึมของตัวเลข ขึ้นอยู่กับ เท่ากับ กับ- เป็นที่ชัดเจนว่าหัวข้อของลอการิทึมมีความเกี่ยวข้องอย่างใกล้ชิดกับหัวข้อ พลังของตัวเลข.

เรียกว่าการคำนวณลอการิทึม ลอการิทึม- ลอการิทึมคือ การดำเนินการทางคณิตศาสตร์กำลังหาลอการิทึม เมื่อพิจารณาลอการิทึม ผลคูณของปัจจัยจะถูกแปลงเป็นผลรวมของพจน์

ศักยภาพคือการดำเนินการทางคณิตศาสตร์ผกผันของลอการิทึม ในระหว่างการเพิ่มศักยภาพ ฐานที่กำหนดจะถูกยกขึ้นตามระดับของการแสดงออกซึ่งจะดำเนินการเพิ่มศักยภาพ ในกรณีนี้ ผลรวมของพจน์จะเปลี่ยนเป็นผลคูณของปัจจัย

ลอการิทึมจริงที่มีฐาน 2 (ไบนารี่) มักใช้กันบ่อยครั้ง e เลขออยเลอร์ e mut 2.718 ( ลอการิทึมธรรมชาติ) และ 10 (ทศนิยม)

บน ในขั้นตอนนี้ขอแนะนำให้พิจารณา ตัวอย่างลอการิทึมบันทึก 7 2 , ln 5, lg0.0001.

และรายการ lg(-3), log -3 3.2, log -1 -4.3 ไม่สมเหตุสมผลเนื่องจากในตอนแรกจะมีการวางจำนวนลบไว้ใต้เครื่องหมายลอการิทึมในวินาที - จำนวนลบในฐานและในสาม - ทั้งจำนวนลบภายใต้เครื่องหมายลอการิทึมและหน่วยในฐาน

เงื่อนไขในการกำหนดลอการิทึม

ควรพิจารณาแยกเงื่อนไข a > 0, a ≠ 1, b > 0.ภายใต้ที่เราได้รับ คำจำกัดความของลอการิทึมลองพิจารณาว่าเหตุใดจึงมีการใช้ข้อจำกัดเหล่านี้ ความเท่าเทียมกันของรูปแบบ x = log α จะช่วยเราในเรื่องนี้ เรียกว่าเอกลักษณ์ลอการิทึมพื้นฐาน ซึ่งตามมาจากคำจำกัดความของลอการิทึมที่ระบุข้างต้นโดยตรง

เอาล่ะเอาเงื่อนไข ก≠1- เนื่องจากหนึ่งต่อกำลังใด ๆ เท่ากับหนึ่ง ความเท่าเทียมกัน x=log α จะอยู่ได้ก็ต่อเมื่อเท่านั้น ข=1แต่บันทึก 1 1 จะเป็นจำนวนจริงใดๆ เราดำเนินการเพื่อขจัดความคลุมเครือนี้ ก≠1.

ให้เราพิสูจน์ความจำเป็นของเงื่อนไข ก>0- ที่ ก=0ตามสูตรของลอการิทึมจะมีได้ก็ต่อเมื่อ ข=0- และตามนั้น เข้าสู่ระบบ 0 0สามารถเป็นจำนวนจริงใดๆ ที่ไม่ใช่ศูนย์ได้ เนื่องจากศูนย์ถึงกำลังที่ไม่เป็นศูนย์ใดๆ จะเป็นศูนย์ ความคลุมเครือนี้สามารถกำจัดได้ตามเงื่อนไข ก≠0- และเมื่อไร ก<0 เราจะต้องปฏิเสธการวิเคราะห์ค่าลอการิทึมที่เป็นตรรกยะและอตรรกยะ เนื่องจากระดับที่มีเลขชี้กำลังที่เป็นตรรกยะและอตรรกยะถูกกำหนดไว้สำหรับฐานที่ไม่เป็นลบเท่านั้น ด้วยเหตุนี้จึงมีการกำหนดเงื่อนไขไว้ ก>0.

และ เงื่อนไขสุดท้าย ข>0ตามมาด้วยความไม่เท่าเทียมกัน ก>0เนื่องจาก x=log α และค่าของดีกรีที่มีฐานบวก เป็นบวกเสมอ

คุณสมบัติของลอการิทึม

ลอการิทึมโดดเด่นด้วยความโดดเด่น คุณสมบัติซึ่งนำไปสู่การใช้อย่างแพร่หลายเพื่ออำนวยความสะดวกในการคำนวณที่ต้องใช้ความอุตสาหะอย่างมาก เมื่อย้าย "สู่โลกแห่งลอการิทึม" การคูณจะถูกเปลี่ยนแปลงไปอีกมากมาย พับง่ายการหารคือการลบ และการยกกำลังและการแยกรากจะถูกแปลงตามลำดับเป็นการคูณและการหารด้วยเลขชี้กำลัง

การกำหนดลอการิทึมและตารางค่า (สำหรับ ฟังก์ชันตรีโกณมิติ) ได้รับการตีพิมพ์ครั้งแรกในปี 1614 โดยนักคณิตศาสตร์ชาวสก็อต จอห์น เนเปียร์ ตารางลอการิทึมที่ขยายและให้รายละเอียดโดยนักวิทยาศาสตร์คนอื่นๆ ถูกนำมาใช้กันอย่างแพร่หลายในการคำนวณทางวิทยาศาสตร์และวิศวกรรม และยังคงมีความเกี่ยวข้องจนกระทั่งมีการใช้เครื่องคิดเลขอิเล็กทรอนิกส์และคอมพิวเตอร์