Logariti ni nini sawa na msingi 0. Ufafanuzi wa logariti na sifa zake: nadharia na utatuzi wa matatizo.

Maneno ya Logarithmic, kutatua mifano. Katika makala hii tutaangalia matatizo yanayohusiana na kutatua logarithms. Majukumu yanauliza swali la kupata maana ya usemi. Ikumbukwe kwamba dhana ya logarithm hutumiwa katika kazi nyingi na kuelewa maana yake ni muhimu sana. Kuhusu Mtihani wa Jimbo Iliyounganishwa, logariti hutumika wakati wa kusuluhisha milinganyo, in matatizo yaliyotumika, pia katika kazi zinazohusiana na utafiti wa kazi.

Wacha tutoe mifano ili kuelewa maana halisi ya logarithm:


Utambulisho wa msingi wa logarithmic:

Sifa za logarithm ambazo lazima zikumbukwe kila wakati:

* Logarithm ya bidhaa sawa na jumla logarithms ya sababu.

* * *

*Logariti ya nukuu (sehemu) ni sawa na tofauti kati ya logariti za vipengele.

* * *

*Logariti ya shahada sawa na bidhaa kielelezo kwa logariti ya msingi wake.

* * *

* Mpito kwa msingi mpya

* * *

Sifa zaidi:

* * *

Hesabu ya logarithms inahusiana kwa karibu na matumizi ya mali ya vielelezo.

Hebu tuorodhe baadhi yao:

kiini ya mali hii iko katika ukweli kwamba wakati wa kuhamisha nambari kwa denominator na kinyume chake, ishara ya kielelezo hubadilika kinyume chake. Kwa mfano:

Muhtasari kutoka kwa mali hii:

* * *

Wakati wa kuinua nguvu kwa nguvu, msingi unabaki sawa, lakini vielelezo vinazidishwa.

* * *

Kama umeona, wazo la logarithm yenyewe ni rahisi. Jambo kuu ni nini kinachohitajika mazoezi mazuri, ambayo inatoa ujuzi fulani. Bila shaka, ujuzi wa fomula unahitajika. Ikiwa ujuzi wa kubadilisha logarithms za msingi haujatengenezwa, basi wakati wa kutatua kazi rahisi unaweza kufanya makosa kwa urahisi.

Fanya mazoezi, suluhisha mifano rahisi zaidi kutoka kwa kozi ya hisabati kwanza, kisha uende kwa ile ngumu zaidi. Katika siku zijazo, hakika nitaonyesha jinsi logarithmu "za kutisha" zinavyotatuliwa; hazitaonekana kwenye Mtihani wa Jimbo Pamoja, lakini zinavutia, usizikose!

Ni hayo tu! Bahati nzuri kwako!

Kwa dhati, Alexander Krutitskikh

P.S: Ningeshukuru ukiniambia kuhusu tovuti kwenye mitandao ya kijamii.

Kudumisha faragha yako ni muhimu kwetu. Kwa sababu hii, tumeunda Sera ya Faragha ambayo inaeleza jinsi tunavyotumia na kuhifadhi maelezo yako. Tafadhali kagua desturi zetu za faragha na utujulishe ikiwa una maswali yoyote.

Ukusanyaji na matumizi ya taarifa za kibinafsi

Taarifa za kibinafsi hurejelea data inayoweza kutumiwa kutambua au kuwasiliana na mtu mahususi.

Unaweza kuulizwa kutoa maelezo yako ya kibinafsi wakati wowote unapowasiliana nasi.

Ifuatayo ni baadhi ya mifano ya aina za taarifa za kibinafsi ambazo tunaweza kukusanya na jinsi tunavyoweza kutumia taarifa hizo.

Ni taarifa gani za kibinafsi tunazokusanya:

  • Unapotuma maombi kwenye tovuti, tunaweza kukusanya taarifa mbalimbali, ikiwa ni pamoja na jina lako, nambari ya simu, anwani Barua pepe na kadhalika.

Jinsi tunavyotumia maelezo yako ya kibinafsi:

  • Imekusanywa na sisi habari za kibinafsi inaturuhusu kuwasiliana nawe na kukujulisha kuhusu matoleo ya kipekee, matangazo na matukio mengine na matukio yajayo.
  • Mara kwa mara, tunaweza kutumia taarifa zako za kibinafsi kutuma arifa na mawasiliano muhimu.
  • Tunaweza pia kutumia taarifa za kibinafsi kwa madhumuni ya ndani kama vile ukaguzi, uchambuzi wa data na masomo mbalimbali ili kuboresha huduma tunazotoa na kukupa mapendekezo kuhusu huduma zetu.
  • Ukishiriki katika droo ya zawadi, shindano au ukuzaji kama huo, tunaweza kutumia maelezo unayotoa ili kusimamia programu kama hizo.

Ufichuaji wa habari kwa wahusika wengine

Hatufichui taarifa zilizopokelewa kutoka kwako kwa wahusika wengine.

Vighairi:

  • Ikiwa ni lazima, kwa mujibu wa sheria, utaratibu wa mahakama, V jaribio, na/au kulingana na maombi ya umma au maombi kutoka mashirika ya serikali kwenye eneo la Shirikisho la Urusi - kufichua maelezo yako ya kibinafsi. Tunaweza pia kufichua maelezo kukuhusu ikiwa tutatambua kuwa ufichuzi kama huo ni muhimu au unafaa kwa usalama, utekelezaji wa sheria au madhumuni mengine ya umuhimu wa umma.
  • Katika tukio la kupanga upya, kuunganishwa, au mauzo, tunaweza kuhamisha maelezo ya kibinafsi tunayokusanya kwa mrithi husika.

Ulinzi wa habari za kibinafsi

Tunachukua tahadhari - ikiwa ni pamoja na usimamizi, kiufundi na kimwili - ili kulinda taarifa zako za kibinafsi dhidi ya upotevu, wizi na matumizi mabaya, pamoja na ufikiaji usioidhinishwa, ufichuzi, mabadiliko na uharibifu.

Kuheshimu faragha yako katika kiwango cha kampuni

Ili kuhakikisha kuwa maelezo yako ya kibinafsi ni salama, tunawasiliana na viwango vya faragha na usalama kwa wafanyakazi wetu na kutekeleza kwa uthabiti kanuni za ufaragha.

\(a^(b)=c\) \(\Mshale wa kushoto\) \(\logi_(a)(c)=b\)

Hebu tueleze kwa urahisi zaidi. Kwa mfano, \(\logi_(2)(8)\) sawa na nguvu, ambayo \(2\) lazima ipandishwe ili kupata \(8\). Kutokana na hili ni wazi kuwa \(\log_(2)(8)=3\).

Mifano:

\(\logi_(5)(25)=2\)

kwa sababu \(5^(2)=25\)

\(\logi_(3)(81)=4\)

kwa sababu \(3^(4)=81\)

\(\logi_(2)\)\(\frac(1)(32)\) \(=-5\)

kwa sababu \(2^(-5)=\)\(\frac(1)(32)\)

Hoja na msingi wa logarithm

Logarithm yoyote ina "anatomia" ifuatayo:

Hoja ya logarithmu kawaida huandikwa katika kiwango chake, na msingi huandikwa kwa hati karibu na ishara ya logarithmu. Na ingizo hili linasomeka hivi: "logariti ya ishirini na tano hadi tano."

Jinsi ya kuhesabu logarithm?

Ili kuhesabu logarithm, unahitaji kujibu swali: kwa nguvu gani msingi unapaswa kuinuliwa ili kupata hoja?

Kwa mfano, hesabu logariti: a) \(\logi_(4)(16)\) b) \(\logi_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) Ni kwa mamlaka gani lazima \(4\) inyanyuliwe ili kupata \(16\)? Ni wazi ya pili. Ndiyo maana:

\(\logi_(4)(16)=2\)

\(\logi_(3)\)\(\frac(1)(3)\) \(=-1\)

c) Ni kwa nguvu gani \(\sqrt(5)\) inapaswa kuinuliwa ili kupata \(1\)? Ni nguvu gani hufanya nambari yoyote ya kwanza? Sifuri, bila shaka!

\(\logi_(\sqrt(5))(1)=0\)

d) Ni kwa nguvu gani \(\sqrt(7)\) inapaswa kuinuliwa ili kupata \(\sqrt(7)\)? Kwanza, nambari yoyote kwa nguvu ya kwanza ni sawa na yenyewe.

\(\logi_(\sqrt(7))(\sqrt(7))=1\)

e) Ni kwa uwezo gani \(3\) lazima inyanyuliwe ili kupata \(\sqrt(3)\)? Kutoka tunajua ni nini nguvu ya sehemu, na hiyo inamaanisha Kipeo ni nguvu ya \(\frac(1)(2)\) .

\(\logi_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Mfano : Kokotoa logariti \(\log_(4\sqrt(2))(8)\)

Suluhisho :

\(\logi_(4\sqrt(2))(8)=x\)

Tunahitaji kupata thamani ya logariti, wacha tuiashiria kama x. Sasa hebu tutumie ufafanuzi wa logarithm:
\(\logi_(a)(c)=b\) \(\Mshale wa kushoto\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

Ni nini kinachounganisha \(4\sqrt(2)\) na \(8\)? Mbili, kwa sababu nambari zote mbili zinaweza kuwakilishwa na mbili:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Upande wa kushoto tunatumia sifa za shahada: \(a^(m)\cdot a^(n)=a^(m+n)\) na \((a^(m))^(n)= a^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Misingi ni sawa, tunaendelea na usawa wa viashiria

\(\frac(5x)(2)\) \(=3\)


Zidisha pande zote mbili za mlinganyo kwa \(\frac(2)(5)\)


Mzizi unaotokana ni thamani ya logarithm

Jibu : \(\logi_(4\sqrt(2))(8)=1,2\)

Kwa nini logarithm ilivumbuliwa?

Ili kuelewa hili, hebu tusuluhishe mlinganyo: \(3^(x)=9\). Linganisha tu \(x\) ili kufanya usawa ufanye kazi. Bila shaka, \(x=2\).

Sasa suluhisha mlingano: \(3^(x)=8\).Kwa nini sawa na x? Hiyo ndiyo hatua.

Wenye akili zaidi watasema: "X ni chini kidogo ya mbili." Jinsi ya kuandika nambari hii kwa usahihi? Ili kujibu swali hili, logarithm iligunduliwa. Shukrani kwake, jibu hapa linaweza kuandikwa kama \(x=\log_(3)(8)\).

Ninataka kusisitiza kwamba \(\log_(3)(8)\), kama logarithm yoyote ni nambari tu. Ndiyo, inaonekana isiyo ya kawaida, lakini ni fupi. Kwa sababu ikiwa tunataka kuiandika kwa fomu Nukta, basi ingeonekana kama hii: \(1.892789260714.....\)

Mfano : Tatua mlingano \(4^(5x-4)=10\)

Suluhisho :

\(4^(5x-4)=10\)

\(4^(5x-4)\) na \(10\) haziwezi kuletwa kwenye msingi sawa. Hii inamaanisha kuwa huwezi kufanya bila logarithm.

Wacha tutumie ufafanuzi wa logarithm:
\(a^(b)=c\) \(\Mshale wa kushoto\) \(\logi_(a)(c)=b\)

\(\logi_(4)(10)=5x-4\)

Wacha tugeuze equation ili X iko upande wa kushoto

\(5x-4=\logi_(4)(10)\)

Mbele yetu. Hebu tusogeze \(4\) kulia.

Na usiogope logarithm, ichukue kama nambari ya kawaida.

\(5x=\logi_(4)(10)+4\)

Gawanya mlinganyo kwa 5

\(x=\)\(\frac(\logi_(4)(10)+4)(5)\)


Huu ndio mzizi wetu. Ndiyo, inaonekana isiyo ya kawaida, lakini hawachagui jibu.

Jibu : \(\frac(\log_(4)(10)+4)(5)\)

Logariti za decimal na asili

Kama ilivyoelezwa katika ufafanuzi wa logarithm, msingi wake unaweza kuwa wowote nambari chanya, isipokuwa kwa kitengo \((a>0, a\neq1)\). Na kati ya besi zote zinazowezekana, kuna mbili ambazo hutokea mara nyingi sana kwamba nukuu fupi maalum iligunduliwa kwa logarithms nao:

Logariti asilia: logariti ambayo msingi wake ni nambari ya Euler \(e\) (sawa na takriban \(2.7182818…\)), na logariti imeandikwa kama \(\ln(a)\).

Hiyo ni, \(\ln(a)\) ni sawa na \(\logi_(e)(a)\)

Logarithmu ya Desimali: Logariti ambayo msingi wake ni 10 umeandikwa \(\lg(a)\).

Hiyo ni, \(\lg(a)\) ni sawa na \(\logi_(10)(a)\), ambapo \(a\) ni nambari fulani.

Utambulisho wa msingi wa logarithmic

Logarithms ina sifa nyingi. Mmoja wao anaitwa "Kitambulisho cha Msingi cha Logarithmic" na inaonekana kama hii:

\(a^(\logi_(a)(c))=c\)

Mali hii inafuata moja kwa moja kutoka kwa ufafanuzi. Wacha tuone jinsi fomula hii ilitokea.

Wacha tukumbuke nukuu fupi ya ufafanuzi wa logarithm:

ikiwa \(a^(b)=c\), basi \(\logi_(a)(c)=b\)

Yaani \(b\) ni sawa na \(\logi_(a)(c)\). Kisha tunaweza kuandika \(\log_(a)(c)\) badala ya \(b\) katika fomula \(a^(b)=c\). Ilibadilika \(a^(\log_(a)(c))=c\) - kitambulisho kikuu cha logarithmic.

Unaweza kupata sifa zingine za logarithms. Kwa msaada wao, unaweza kurahisisha na kuhesabu maadili ya misemo na logarithms, ambayo ni ngumu kuhesabu moja kwa moja.

Mfano : Tafuta thamani ya usemi \(36^(\log_(6)(5))\)

Suluhisho :

Jibu : \(25\)

Jinsi ya kuandika nambari kama logarithm?

Kama ilivyoelezwa hapo juu, logarithm yoyote ni nambari tu. Mazungumzo pia ni kweli: nambari yoyote inaweza kuandikwa kama logarithm. Kwa mfano, tunajua kwamba \(\log_(2)(4)\) ni sawa na mbili. Kisha badala ya mbili unaweza kuandika \(\log_(2)(4)\).

Lakini \(\log_(3)(9)\) pia ni sawa na \(2\), ambayo inamaanisha tunaweza pia kuandika \(2=\log_(3)(9)\) . Vivyo hivyo na \(\logi_(5)(25)\), na \(\log_(9)(81)\), nk. Hiyo ni, inageuka

\(2=\logi_(2)(4)=\logi_(3)(9)=\logi_(4)(16)=\logi_(5)(25)=\logi_(6)(36)=\ kumbukumbu_(7)(49)...\)

Kwa hivyo, ikiwa tunahitaji, tunaweza kuandika mbili kama logariti na msingi wowote mahali popote (iwe katika mlingano, katika usemi, au kwa usawa) - tunaandika tu msingi wa mraba kama hoja.

Ni sawa na mara tatu - inaweza kuandikwa kama \(\logi_(2)(8)\), au kama \(\log_(3)(27)\), au kama \(\logi_(4)( 64) \)... Hapa tunaandika msingi katika mchemraba kama hoja:

\(3=\logi_(2)(8)=\logi_(3)(27)=\logi_(4)(64)=\logi_(5)(125)=\logi_(6)(216)=\ kumbukumbu_(7)(343)...\)

Na nne:

\(4=\logi_(2)(16)=\logi_(3)(81)=\logi_(4)(256)=\logi_(5)(625)=\logi_(6)(1296)=\ kumbukumbu_(7)(2401)...\)

Na minus moja:

\(-1=\) \(\logi_(2)\)\(\frac(1)(2)\) \(=\) \(\logi_(3)\)\(\frac(1)( 3)\) \(=\) \(\logi_(4)\)\(\frac(1)(4)\) \(=\) \(\logi_(5)\)\(\frac(1) )(5)\) \(=\) \(\logi_(6)\)\(\frac(1)(6)\) \(=\) \(\logi_(7)\)\(\frac (1)(7)\) \(...\)

Na theluthi moja:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\logi_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Nambari yoyote \(a\) inaweza kuwakilishwa kama logariti yenye msingi \(b\): \(a=\log_(b)(b^(a))\)

Mfano : Tafuta maana ya usemi \(\frac(\logi_(2)(14))(1+\logi_(2)(7))\)

Suluhisho :

Jibu : \(1\)

Logarithm ya nambari N kulingana na A inayoitwa kielelezo X , ambayo unahitaji kujenga A ili kupata nambari N

Isipokuwa hivyo
,
,

Kutoka kwa ufafanuzi wa logarithm inafuata hiyo
, i.e.
- usawa huu ni msingi kitambulisho cha logarithmic.

Logariti hadi msingi 10 huitwa logariti za desimali. Badala ya
andika
.

Logarithm kwa msingi e huitwa asili na huteuliwa
.

Mali ya msingi ya logarithms.

    Logariti ya moja ni sawa na sifuri kwa msingi wowote.

    Logariti ya bidhaa ni sawa na jumla ya logariti za vipengele.

3) Logariti ya mgawo ni sawa na tofauti ya logariti


Sababu
inayoitwa moduli ya mpito kutoka logariti hadi msingi a kwa logarithm kwenye msingi b .

Kutumia mali 2-5, mara nyingi inawezekana kupunguza logarithm ya usemi tata kwa matokeo ya shughuli rahisi za hesabu kwenye logarithms.

Kwa mfano,

Mabadiliko kama haya ya logarithm huitwa logarithms. Mabadiliko kinyume na logarithmu huitwa potentiation.

Sura ya 2. Vipengele vya hisabati ya juu.

1. Mipaka

Kikomo cha chaguo la kukokotoa
ni nambari A ikiwa, kama xx 0 kwa kila iliyoamuliwa mapema
, kuna idadi kama hiyo
hiyo mara tu
, Hiyo
.

Chaguo za kukokotoa ambazo zina kikomo hutofautiana nayo kwa kiasi kisicho na kikomo:
, wapi- b.m.v., i.e.
.

Mfano. Fikiria kazi
.

Wakati wa kujitahidi
, kazi y inaelekea sifuri:

1.1. Nadharia za msingi kuhusu mipaka.

    Kikomo thamani ya kudumu sawa na thamani hii ya kudumu

.

    Kiasi (tofauti) kikomo nambari ya mwisho kazi ni sawa na jumla (tofauti) ya mipaka ya kazi hizi.

    Kikomo cha bidhaa cha idadi ya mwisho ya kazi ni sawa na bidhaa ya mipaka ya kazi hizi.

    Kikomo cha mgawo wa kazi mbili ni sawa na mgawo wa mipaka ya kazi hizi ikiwa kikomo cha denominator sio sifuri.

Mipaka ya Ajabu

,
, Wapi

1.2. Kikomo cha Mifano ya Kukokotoa

Walakini, sio mipaka yote inayohesabiwa kwa urahisi. Mara nyingi zaidi, kuhesabu kikomo kunashuka hadi kufichua kutokuwa na uhakika wa aina: au .

.

2. Nyingi ya kitendakazi

Hebu tuwe na kazi
, inayoendelea kwenye sehemu
.

Hoja alipata ongezeko fulani
. Kisha kazi itapokea nyongeza
.

Thamani ya hoja inalingana na thamani ya chaguo la kukokotoa
.

Thamani ya hoja
inalingana na thamani ya chaguo la kukokotoa.

Kwa hivyo,.

Wacha tupate kikomo cha uwiano huu
. Ikiwa kikomo hiki kipo, basi inaitwa derivative ya kazi iliyotolewa.

Ufafanuzi wa 3 Nyingine ya chaguo za kukokotoa zilizotolewa
kwa hoja inaitwa kikomo cha uwiano wa nyongeza ya chaguo za kukokotoa hadi ongezeko la hoja, wakati nyongeza ya hoja kiholela inaelekea sifuri.

Nyingi ya chaguo za kukokotoa
inaweza kuteuliwa kama ifuatavyo:

; ; ; .

Ufafanuzi 4Uendeshaji wa kutafuta derivative ya kitendakazi huitwa utofautishaji.

2.1. Maana ya mitambo ya derivative.

Wacha tuzingatie mwendo wa mstatili wa sehemu fulani ngumu ya mwili au nyenzo.

Wacha kwa wakati fulani hatua ya kusonga
alikuwa kwa mbali kutoka nafasi ya kuanzia
.

Baada ya muda fulani
akasogea mbali
. Mtazamo =- kasi ya wastani nyenzo uhakika
. Hebu tupate kikomo cha uwiano huu, kwa kuzingatia hilo
.

Kwa hiyo, ufafanuzi kasi ya papo hapo mwendo wa nyenzo unashuka hadi kupata derivative ya njia kwa heshima na wakati.

2.2. Maana ya kijiometri derivative

Hebu tuwe na kazi iliyofafanuliwa kwa michoro
.

Mchele. 1. Maana ya kijiometri ya derivative

Kama
, kisha onyesha
, itasonga kando ya curve, inakaribia hatua
.

Kwa hivyo
, i.e. thamani ya derivative kwa thamani fulani ya hoja kiidadi sawa na tanjiti ya pembe inayoundwa na tanjiti katika sehemu fulani yenye mwelekeo chanya wa mhimili.
.

2.3. Jedwali la kanuni za kimsingi za utofautishaji.

Kazi ya nguvu

Utendakazi wa kielelezo

Utendaji wa logarithmic

Kazi ya Trigonometric

Kitendaji kinyume cha trigonometriki

2.4. Kanuni za kutofautisha.

Inayotokana na

Inatokana na jumla (tofauti) ya chaguo za kukokotoa


Derivative ya bidhaa ya kazi mbili


Inayotokana na mgawo wa vitendaji viwili


2.5. Inayotokana na kazi ngumu.

Acha kazi itolewe
hivi kwamba inaweza kuwakilishwa katika fomu

Na
, ambapo kutofautiana ni hoja ya kati, basi

Nyingine ya chaguo za kukokotoa changamani ni sawa na bidhaa ya kinyambulisho cha chaguo la kukokotoa la kukokotoa kwa heshima na hoja ya kati na kinyago cha hoja ya kati kwa heshima na x.

Mfano 1.

Mfano 2.

3. Kazi tofauti.

Hebu iwepo
, inaweza kutofautishwa kwa muda fulani
acha iende katika kipengele hiki cha kukokotoa kina derivative

,

basi tunaweza kuandika

(1),

Wapi - idadi isiyo na kikomo,

tangu lini

Kuzidisha masharti yote ya usawa (1) kwa
tuna:

Wapi
- b.m.v. hali ya juu.

Ukubwa
inayoitwa tofauti ya kazi
na imeteuliwa

.

3.1. Thamani ya kijiometri ya tofauti.

Acha kazi itolewe
.

Mtini.2. Maana ya kijiometri ya tofauti.

.

Ni wazi, tofauti ya kazi
ni sawa na ongezeko la mratibu wa tanjiti katika hatua fulani.

3.2. Derivatives na tofauti za maagizo mbalimbali.

Ikiwa huko
, Kisha
inaitwa derivative ya kwanza.

Derivative ya derivative ya kwanza inaitwa derivative ya mpangilio wa pili na imeandikwa
.

Inatokana na mpangilio wa nth wa chaguo za kukokotoa
inaitwa derivative ya mpangilio (n-1) na imeandikwa:

.

Tofauti ya tofauti ya kazi inaitwa tofauti ya pili au ya pili ya utaratibu.

.

.

3.3 Kutatua matatizo ya kibiolojia kwa kutumia upambanuzi.

Jukumu la 1. Uchunguzi umeonyesha kwamba ukuaji wa koloni ya microorganisms hutii sheria
, Wapi N - idadi ya vijidudu (kwa maelfu); t - wakati (siku).

b) Je, watu wa koloni wataongezeka au kupungua katika kipindi hiki?

Jibu. Saizi ya koloni itaongezeka.

Kazi ya 2. Maji katika ziwa hujaribiwa mara kwa mara ili kufuatilia maudhui ya bakteria ya pathogenic. Kupitia t siku baada ya kupima, mkusanyiko wa bakteria imedhamiriwa na uwiano

.

Ni lini ziwa litakuwa na mkusanyiko wa chini wa bakteria na itawezekana kuogelea ndani yake?

Suluhisho: Chaguo za kukokotoa hufikia kiwango cha juu au chini wakati kitoweo chake ni sifuri.

,

Wacha tubainishe idadi ya juu au chini itakuwa ndani ya siku 6. Ili kufanya hivyo, hebu tuchukue derivative ya pili.


Jibu: Baada ya siku 6 kutakuwa na mkusanyiko wa chini wa bakteria.

(kutoka kwa Kigiriki λόγος - "neno", "uhusiano" na ἀριθμός - "idadi") nambari b kulingana na a(logi α b) inaitwa nambari kama hiyo c, Na b= a c, yaani, kumbukumbu za kumbukumbu α b=c Na b=ac ni sawa. Logariti inaeleweka ikiwa a > 0, a ≠ 1, b > 0.

Kwa maneno mengine logarithm nambari b kulingana na A imeundwa kama kipeo ambapo nambari lazima iongezwe a ili kupata nambari b(logarithm ipo kwa nambari chanya pekee).

Kutoka kwa uundaji huu inafuata kwamba hesabu x= logi α b, ni sawa na kusuluhisha mlinganyo a x =b.

Kwa mfano:

logi 2 8 = 3 kwa sababu 8 = 2 3 .

Hebu tusisitize kwamba uundaji ulioonyeshwa wa logarithm hufanya iwezekanavyo kuamua mara moja thamani ya logarithm, wakati nambari iliyo chini ya ishara ya logarithmu inafanya kazi kama nguvu fulani ya msingi. Hakika, uundaji wa logarithm hufanya iwezekane kuhalalisha kwamba ikiwa b=a c, kisha logariti ya nambari b kulingana na a sawa Na. Pia ni wazi kwamba mada ya logarithms inahusiana kwa karibu na mada nguvu za nambari.

Kuhesabu logarithm inaitwa logarithm. Logarithm ni operesheni ya hisabati kuchukua logarithm. Wakati wa kuchukua logarithm, bidhaa za mambo hubadilishwa kuwa jumla ya maneno.

Uwezo ni uendeshaji kinyume cha hisabati wa logarithm. Wakati wa uwezo, msingi fulani huinuliwa hadi kiwango cha kujieleza ambacho uwezo unafanywa. Katika kesi hii, jumla ya maneno hubadilishwa kuwa bidhaa ya sababu.

Logarithmu halisi zilizo na besi 2 (binary) hutumiwa mara nyingi, e Euler nambari e ≈ 2.718 ( logarithm asili) na 10 (desimali).

Washa katika hatua hii inashauriwa kuzingatia sampuli za logarithm kumbukumbu 72 , ln 5, lg0.0001.

Na maingizo lg(-3), logi -3 3.2, logi -1 -4.3 hayana maana, kwani katika kwanza yao nambari hasi imewekwa chini ya ishara ya logarithm, kwa pili - nambari hasi katika msingi, na katika tatu - nambari hasi chini ya ishara ya logarithm na kitengo katika msingi.

Masharti ya kuamua logarithm.

Inafaa kuzingatia kando masharti a > 0, a ≠ 1, b > 0. ambayo tunapata ufafanuzi wa logarithm. Hebu tuchunguze kwa nini vikwazo hivi vilichukuliwa. Usawa wa fomu x = logi α itatusaidia na hili b, inayoitwa kitambulisho cha msingi cha logarithmic, ambacho hufuata moja kwa moja kutoka kwa ufafanuzi wa logarithm iliyotolewa hapo juu.

Hebu tuchukue hali a≠1. Kwa kuwa moja kwa nguvu yoyote ni sawa na moja, basi usawa x=logi α b inaweza kuwepo tu wakati b=1, lakini logi 1 1 itakuwa nambari yoyote halisi. Ili kuondoa utata huu, tunachukua a≠1.

Hebu tuthibitishe umuhimu wa hali hiyo a>0. Katika a=0 kulingana na uundaji wa logarithm inaweza kuwepo tu wakati b=0. Na ipasavyo basi logi 0 inaweza kuwa nambari yoyote halisi isiyo ya sifuri, kwani sifuri kwa nguvu yoyote isiyo ya sifuri ni sifuri. Utata huu unaweza kuondolewa na hali hiyo a≠0. Na lini a<0 itabidi tukatae uchanganuzi wa maadili ya kimantiki na yasiyo na mantiki ya logariti, kwa kuwa shahada yenye kielelezo cha busara na kisicho na maana hufafanuliwa tu kwa misingi isiyo hasi. Ni kwa sababu hii kwamba hali hiyo imeainishwa a>0.

NA hali ya mwisho b>0 hufuata kutoka kwa usawa a>0, kwa kuwa x=logi α b, na thamani ya shahada yenye msingi chanya a daima chanya.

Vipengele vya logarithms.

Logarithms sifa ya kutofautisha vipengele, ambayo ilisababisha matumizi yao kuenea ili kuwezesha kwa kiasi kikubwa mahesabu yenye uchungu. Wakati wa kuhamia "ulimwengu wa logarithms," kuzidisha kunabadilishwa na mengi zaidi kukunja kwa urahisi, mgawanyiko ni kutoa, na ufafanuzi na uchimbaji wa mizizi hubadilishwa, kwa mtiririko huo, kuwa kuzidisha na kugawanya na kielelezo.

Uundaji wa logariti na jedwali la maadili yao (kwa kazi za trigonometric) ilichapishwa kwa mara ya kwanza mwaka wa 1614 na mwanahisabati wa Uskoti John Napier. Jedwali za logarithmic, zilizopanuliwa na kuelezewa kwa kina na wanasayansi wengine, zilitumiwa sana katika hesabu za kisayansi na uhandisi, na zilibaki muhimu hadi matumizi ya vikokotoo vya kielektroniki na kompyuta.