Промышленное получение кислорода. Химические и физические свойства, применение и получение кислорода

Вопрос № 2 Как получают кислород в лаборатории ив промышленности? Напишите уравнения соответствующих реакций. Чем отличаются эти способы друг от друга?

Ответ:

В лаборатории кислород можно получить следующими способами:

1) Разложение перекиси водорода в присутствии катализатора (оксида марганца

2) Разложение бертолетовой соли (хлората калия):

3) Разложение перманганата калия:

В промышленности кислород получают из воздуха, в котором его содержится около 20% по объему. Воздух сжижают под давлением и при сильном охлаждении. Кислород и азот (второй основной компонент воздуха) имеют разные температуры кипения. Поэтому их можно разделить перегонкой: азот имеет более низкую температуру кипения, чем кислород, поэтому азот испаряется раньше кислорода.

Отличия промышленных и лабораторных способов получения кислорода:

1) Все лабораторные способы получения кислорода химические, то есть при этом происходит превращение одних веществ в другие. Процесс получения кислорода из воздуха - физический процесс, поскольку превращение одних веществ в другие не происходит.

2) Из воздуха кислорода можно получать в гораздо больших количествах.

Кислород появился в земной атмосфере с возникновением зелёных растений и фотосинтезирующих бактерий. Благодаря кислороду аэробными организмами осуществляется дыхание или окисление. Важно получение кислорода в промышленности – он используется в металлургии, медицине, авиации, народном хозяйстве и других отраслях.

Свойства

Кислород - восьмой элемент периодической таблицы Менделеева. Это газ, поддерживающий горение и осуществляющий окисление веществ.

Рис. 1. Кислород в таблице Менделеева.

Официально кислород был открыт в 1774 году. Английский химик Джозеф Пристли выделил элемент из оксида ртути:

2HgO → 2Hg + O 2 .

Однако Пристли не знал, что кислород является частью воздуха. Свойства и нахождение в атмосфере кислорода позже уставил коллега Пристли - французский химик Антуан Лавуазье.

Общая характеристика кислорода:

  • бесцветный газ;
  • не имеет запаха и вкуса;
  • тяжелее воздуха;
  • молекула состоит из двух атомов кислорода (О 2);
  • в жидком состоянии имеет бледно-голубой цвет;
  • плохо растворим в воде;
  • является сильным окислителем.

Рис. 2. Жидкий кислород.

Присутствие кислорода легко проверить, опустив в сосуд с газом тлеющую лучину. При наличии кислорода лучина вспыхивает.

Как получают

Известно несколько способов получения кислорода из различных соединений в промышленных и лабораторных условиях. В промышленности кислород получают из воздуха путём его сжижения под давлением и при температуре в -183°С. Жидкий воздух подвергают испарению, т.е. постепенно нагревают. При -196°C азот начинает улетучиваться, а кислород сохраняет жидкое состояние.

В лаборатории кислород образуется из солей, пероксида водорода и в результате электролиза. Разложение солей происходит при нагревании. Например, хлорат калия или бертолетову соль нагревают до 500°С, а перманганат калия или марганцовку - до 240°С:

  • 2KClO 3 → 2KCl + 3O 2 ;
  • 2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 .

Рис. 3. Нагревание бертолетовой соли.

Также можно получить кислород путём нагревания селитры или нитрата калия:

2KNO 3 → 2KNO 2 + O 2 .

При разложении пероксида водорода используется оксид марганца (IV) - MnO 2 , углерод или порошок железа в качестве катализатора. Общее уравнение выглядит следующим образом:

2Н 2 О 2 → 2Н 2 О + О 2 .

Электролизу подвергается раствор гидроксида натрия. В результате образуется вода и кислород:

4NaOH → (электролиз) 4Na + 2H 2 O + O 2 .

Также кислород с помощью электролиза выделяют из воды, разложив её на водород и кислород:

2H 2 O → 2H 2 + O 2 .

На атомных подводных лодках кислород получали из пироксида натрия - 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 . Способ интересен тем, что вместе с выделением кислорода поглощается углекислый газ.

Как применяют

Собирание и распознавание необходимо для выделения чистого кислорода, использующегося в промышленности для окисления веществ, а также для поддержания дыхания в космосе, под водой, в задымлённых помещениях (кислород необходим пожарным). В медицине баллоны кислорода помогают дышать пациентам с затруднённым дыханием. Также кислород используется для лечения респираторных заболеваний.

Кислород применяют для сжигания топлива - угля, нефти, природного газа. Кислород широко применяется в металлургии и машиностроении, например, для плавки, резки и сварки металла.

Средняя оценка: 4.9 . Всего получено оценок: 220.

>> Получение кислорода

Получение кислорода

В этом параграфе речь идет:

> об открытии кислорода;
> о получении кислорода в промышленности и лаборатории;
> о реакциях разложения.

Открытие кислорода.

Дж. Пристли получал этот газ из соединения, название которого - меркурий(II) оксид. Ученый использовал стеклянную линзу, с помощью которой фокусировал на веществе солнечный свет.

В современном исполнении этот опыт изображен на рисунке 54. При нагревании меркурий(||) оксид (порошок желтого цвета) превращается в ртуть и кислород. Ртуть выделяется в газообразном состоянии и конденсируется на стенках пробирки в виде серебристых капель. Кислород собирается над водой во второй пробирке.

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Калий перманганат KMnO 4 (бытовое название марганцовка; вещество является распространенным дезинфицирующим средством)

Калий хлорат KClO 3 (тривиальное название - бертолетова соль, в честь французского химика конца XVIII - начала XIX в. К.-Л. Бертолле)

Небольшое количество катализатора - манган (IV) оксида MnO 2 - добавляют к калий хлорату для того, чтобы разложение соединения происходило с выделением кислорода 1 .

Лабораторный опыт № 8

Получение кислорода разложением гидроген пероксида H 2 O 2

Налейте в пробирку 2 мл раствора гидроген пероксида (традиционное название этого вещества - перекись водорода). Зажгите длинную лучинку и погасите ее (как вы это делаете со спичкой), что бы она едва тлела.
Насыпьте в пробирку с раствором гидроген оксида немного катализатора - черного порошка манган (IV) оксида. Наблюдайте бурное выделение газа. С помощью тлеющей лучинки убедитесь в том, что этот газ - кислород.

Составьте уравнение реакции разложения гидроген пероксида, которым продуктом реакции является вода.

В лаборатории кислород можно также получить разложением натрий нитрата NaNO 3 или калий нитрата KNO 3 2 . Соединения при нагревании сначала плавятся, а затем разлагаются:



1 При нагревании соединения без катализатора происходит другая реакция

2 Эти вещества используют в качестве удобрений. Их общее название - селитры.


Схема 7. Лабораторные методы получения кислорода

Превратите схемы реакций в химические уравнения.

Сведения о том, как получают кислород в лаборатории, собраны в схеме 7.

Кислород вместе с водородом являются продуктами разложения воды под действием электрического тока:

В природе кислород образуется вследствие фотосинтеза в зеленых листьях растений. Упрощенная схема этого процесса такова:

Выводы

Кислород был открыт в конце XVIII в. несколькими учеными .

Кислород получают в промышленности из воздуха, а в лаборатории - с помощью реакций разложения некоторых оксигенсодержащих соединений. Во время реакции разложения из одного вещества образуются два или более веществ.

129. Как получают кислород в промышленности? Почему для этого не используют калий перманганат или гидроген пероксид?

130. Какие реакции называют реакциями разложения?

131. Превратите в химические уравнения такие схемы реакций:


132. Что такое катализатор? Как он может влиять на протекание хими­ческих реакций? (Для ответа используйте также материал § 15.)

133. На рисунке 55 изображен момент разложения белого твердого вещества, которое имеет формулу Cd(NO3)2. Внимательно рассмотрите рисунок и опишите все, что происходит во время реакции. Почему вспыхивает тлеющая лучинка? Составьте соответствующее химическое уравнение.

134. Массовая доля Оксигена в остатке после нагревания калий нитрата KNO 3 составила 40 %. Полностью ли разложилось это соединение?

Рис. 55. Разложение вещества при нагревании

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

План:

    История открытия

    Происхождение названия

    Нахождение в природе

    Получение

    Физические свойства

    Химические свойства

    Применение

    Биологическая роль кислорода

    Токсические производные кислорода

10. Изотопы

Кислород

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород.Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

  1. История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

  1. Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

  1. Нахождение в природе

Кислород - самый распространённый на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47,4 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своём составе содержат кислород.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле - около 65 %.

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.