Последовательность процесса реализации наследственной информации. Особенности реализации наследственной информации у эукариот

Важнейшие функции организма - обмен веществ, рост, развитие, передача наследственности, движение и др. - осуществляются в результате множества химических реакций с участием белков, нуклеиновых кислот и других биологически активных веществ. При этом в клетках непрерывно синтезируются разнообразные соединения: строительные белки, белки-ферменты, гормоны. В ходе обмена эти вещества изнашиваются и разрушаются, а вместо них образуются новые. Поскольку белки создают материальную основу жизни и ускоряют все реакции обмена веществ, жизнедеятельность клетки и организма в целом определяется способностью клеток синтезировать специфические белки. Их первичная структура предопределена генетическим кодом в молекулеДНК.

Молекулы белков состоят из десятков и сотен аминокислот (точнее, из аминокислотных остатков). Например, в молекуле гемоглобина их около 600, и они распределены в четыре полипептидные цепочки; в молекуле рибонуклеазы таких аминокислот 124 и т. д.

Главная роль в определении первичной структуры белка принадлежит молекулам ДНК. Разные ее участки кодируют синтез разных белков, следовательно, одна молекула ДНК участвует в синтезе многих индивидуальных белков. Свойства белков зависят от последовательности аминокислот в полипептидной цепи. В свою очередь чередование аминокислот определяется последовательностью нуклеотидов в ДНК, и каждой аминокислоте соответствует определенный триплет. Экспериментально доказано, что, например, участок ДНК с триплетом ААЦ соответствует аминокислоте лейцину, триплет АЦЦ - триптофану, триплет АЦА-цистеину и т.д. Распределив молекулу ДНК на триплеты, можно представить, какие аминокислоты и в какой последовательности будут располагаться в молекуле белка. Совокупность триплетов составляет материальную основу генов, а каждый ген содержит информацию о структуре специфического белка (ген - это основная биологическая единица наследственности; в химическом отношении ген есть участок ДНК, включающий несколько сотен пар нуклеотидов).

Генетический код - исторически сложившаяся организация молекул ДНК и РНК, при которой последовательность нуклеотидов в них несет информацию о последовательности аминокислот в белковых молекулах. Свойства кода: триплетность (кодон), неперекрываемость (кодоны следуют друг за другом), специфичность (один кодон может определять в полииептидной цепи только одну аминокислоту), универсальность (у всех живых организмов один и тот же кодон обусловливает включение в полипептид одну и ту же аминокислоту), избыточность (для большинства аминокислот существует несколько кодонов). Триплеты, не несущие информации об аминокислотах, являются стоп триплетами, обозначающими место начала синтеза и-РНК. (В.Б. Захаров. Биология. Справочные материалы. М.,1997)

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником служит и РНК, на которую нуклеотидная последовательность переписывается, в точном соответствии с таковой на ДНК - по принципу комплементарности. Этот процесс получил название транскрипции и протекает как реакция матричного синтеза. Он характерен только для живых структур и лежит в основе важнейшего свойства живого - самовоспроизведения. Биосинтезу белка предшествует матричный синтез иРНК на нити ДНК. Возникшая при этом иРНК выходит из ядра клетки в цитоплазму, где на нее нанизываются рибосомы, сюда же с помощью тРЙК доставляются аминокислоты.

Синтез белка - сложный многоступенчатый процесс, в котором участвуют ДНК, иРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Вначале аминокисдоты в цитоплазме активируются с помощью ферментов и присоединяются к тРНК (к участку, где расположен нуклеотид ЦЦА). На следующем этапе идет соединение аминокислот в таком порядке, в каком чередование нуклеотидов с ДНК передано на иРНК. Этот этап называется трансляцией. На нити иРНК размещается не одна рибосома, а группа их - такой комплекс называется полисома (Н.Е. Ковалев, Л.Д. Шевчук, О.И. Щуренко. Биология для подготовительных отделений медицинских институтов).

Схема Биосинтез белка

Синтез белка состоит из двух этапов - транскрипции и трансляции.

I. Транскрипция (переписывание) - биосинтез молекул РНК, осуществляется в хромосомах на молекулах ДНК по принципу матричного синтеза. При помощи ферментов на соответствующих участках молекулы ДНК (генах) синтезируются все виды РНК (иРНК, рРНК, тРНК). Синтезируется 20 разновидностей тРНК, так как в биосинтезе белка принимают участие 20 аминокислот. Затем иРНК и тРНК выходят в цитоплазму, рРНК встраивается в субъединицы рибосом, которые также выходят в цитоплазму.

II. Трансляция (передача) - синтез полипептидных цепей белков, осуществляется в рибосомах. Она сопровождается следующими событиями:

1. Образование функционального центра рибосомы - ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) - центр узнавания аминокислоты и П (пептидный) - центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарностн возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс "кодон рРНК и тРНК с аминокислотой" перемещается в активный центр П, где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматиче-ской сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) --> РНК (трансляция) --> белок.

Завершив один цикл, полисомы могут принять участие в синтезе новых молекул белка.

Отделившаяся от рибосомы молекула белка имеет вид нити, которая биологически неактивна. Биологически функциональной она становится после того, как молекула приобретает вторичную, третичную и четвертичную структуру, т. е. определенную пространственно специфическую конфигурацию. Вторичная и последующие структуры белковой молекулы предопределены в информации, заложенной в чередовании аминокислот, т. е. в первичной структуре белка. Иначе говоря, программа образования глобулы, ее уникальная конфигурация определяются первичной структурой молекулы, которая в свою очередь строится под контролем соответствующего гена.

Скорость синтеза белка обусловлена многими факторами: температурой среды, концентрацией водородных ионов, количеством конечного продукта синтеза, присутствием свободных аминокислот, ионов магния, состоянием рибосом и др.

Сложившиеся представления о внутриклеточном переносе генетической информации по схеме ДНК->РНК->белок, предложенной Ф. Криком, принято называть «центральной догмой » молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как общий перенос, известна и другая форма реализации генетической информации (специализированный перенос), обнаруженная при инфицировании клетки РНК-co держащими вирусами. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы, кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно, специализированный перенос генетической информации осуществляется по схеме РНК-»ДНК-»РНК-»белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК на матрице ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности матричной нити ДНК (5’, переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5’->3’ на основе комплементарного соответствия дезоксирибонуклеотидов цепи ДНК рибонуклеотидам РНК (А - У, Г - Ц, Т - А, Ц - Г). Вторая цепь ДНК, комплементарная матричной, называется кодирующей («-»-цепь).

В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы клеточной РНК. Единица транскрипции получила название «транскриптон». На рисунке 1.4 представлена структура прокариотического транскриптона.

Рис. 1.4.

Процесс транскрипции катализируется РНК-полимеразой, представляющей собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций.

Транскрипцию принято подразделять на три основных стадии: инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса). Рассмотрим данный процесс на примере прокариотической клетки.

Инициация транскрипции осуществляется РНК-полимеразой в состоянии холофермента, т.е. в присутствии всех субъединиц (двух а, формирующих каркас РНК-полимеразы; р, катализирующей полимеризацию РНК; Р’, обеспечивающей неспецифическое связывание с ДНК; со, участвующей в сборке фермента и защищающей его от разрушения; о, распознающей промотор и связывающейся с промотором). Фермент связывается с участком ДНК, называемым промотором (рис. 1.5) и расположенным перед стартовой точкой, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции. Промоторы большинства генов прокариот имеют в своем составе универсальную последовательность 5’-ТАТААТ-3’ (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка десяти нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5’-ТТГАЦА-3’) обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы одно- нитевого 3’-5’-фрагмента ДНК. После синтеза короткого (длиной до десяти нуклеотидов) фрагмента РНК, G-субъединица отсоединяется, и РНК-полимераза переходит в состояние кор-фермента.


Рис. 1.5.

На этапе элонгации кор-фермент продвигается по ДНК-матрице, расплетая ее и наращивая цепь РНК в направлении 5’->3’. Вслед за продвижением РНК-полимеразы восстанавливается исходная вторичная структура ДНК. Процесс продолжается вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, на которой оканчивается синтез транскрипта, и он отсоединяется от матрицы. Существуют два основных способа терминации. При р-независимой терминации на синтезируемой РНК формируется шпилька, препятствующая дальнейшей работе РНК-полимеразы, и транскрипция прекращается, p-зависимая терминация осуществляется с участием р-белка, который присоединяется к определенным участкам синтезируемой РНК и с затратой энергии АТФ способствует диссоциации гибрида РНК с матричной нитью ДНК. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. Вместе с тем у прокариот возможен синтез полигенной молекулы мРНК, которая кодирует синтез не одного, а двух и большего числа полипептидных цепочек. В этом случае происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Однако полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

В отличие от прокариот, в клетках которых имеется РНК-поли- мераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот обнаружены ядерные РНК-полимеразы трех типов (I, II, III), а также РНК-полимеразы клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК (5,8S, 18S, 28S), РНК-полимераза II обеспечивает синтез мРНК, мяРНК и микроРНК, а РНК-полимераза III осуществляет синтез тРНК и 5S рРНК.

Разные типы РНК-полимераз инициируют транскрипцию с разных промоторов. Так, промотор для РНК-полимеразы II (рис. 1.6) содержит универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-моти- вы). При этом та или иная промоторная область может включать либо одну из указанных последовательностей, либо комбинацию двух или трех таких последовательностей. Также для инициации транскрипции эукариотические РНК-полимеразы нуждаются в белках - факторах транскрипции.


Рис. 1.6.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. На рисунке 1.7 представлена структура эукариотического транскриптона. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула РНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).


Рис. 1.7.

Процессинг мРНК у эукариот включает три этапа: кэпирование, полиаденилирование и сплайсинг. Модификация 5’-конца, называемая копированием, представляет собой присоединение к 5’-концу транскрипта гуанозинтрифосфата (ГТФ) необычной 5’-5’- связью. Реакция катализируется ферментом гуанилилтрансферазой. Затем происходит метилирование присоединенного гуанина и первых нуклеотидов транскрипта. Функциями «кэпа» (от англ, cap - колпачок, шапочка), вероятно, являются защита 5’-конца мРНК от ферментативной деградации, взаимодействие с рибосомой при инициации трансляции и транспорт мРНК из ядра. Модификация З’-конца (по- лиаденилирование) - это присоединение к З’-концу РНК-транскрип- та от 100 до 300 остатков адениловой кислоты. Процесс катализируется ферментом polyA-полимеразой. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на З’-конце мРНК сигнальной последовательности ААУААА. Предполагается, что полиадениловый «хвост» обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды. Третий этап процессинга - сплайсинг состоит в ферментативном разрезании первичного транскрипта с последующим удалением его интронных участков и воссоединением экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В сплайсинге принимают участие короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и первичного транскрипта способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания нитронов из гяРНК.

Следует отметить, что у эукариот процессингу подвергается большинство типов РНК, в то время как у прокариот мРНК процессингу не подвергается, и трансляция синтезируемой молекулы мРНК может начаться до завершения транскрипции.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5’ -> 3’). В клетках прокариот генетический материал (ДНК) находится в цитоплазме, что определяет сопряженность процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5’-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции и трансляции разделены в пространстве и во времени в связи с процессингом молекул РНК и необходимостью их последующей транспортировки из ядра в цитоплазму, где будет осуществляться синтез полипептида.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основных стадии: инициацию, элонгацию и терминацию.

Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК и белков (рис. 1.8). В составе рибосомы имеются две структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т.е. по коэффициенту седиментации (величине S). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).


Рис. 1.8.

Рибосомы прокариот состоят из большой и малой субъединиц с величинами 50S и 30S соответственно, тогда как у эукариот эти субъединицы крупнее (60S и 40S). Поскольку процесс трансляции более детально был исследован у бактерий, то и здесь мы его рассмотрим на примере прокариот. Как видно из рис. 1.8, в рибосоме содержатся несколько активных центров: A-участок (аминоацильный), P-участок (пептидильный), Е-участок (для выхода пустой тРНК) и участок связывания мРНК.

В процесс трансляции вовлечены также молекулы тРНК, функции которых состоят в участии в транспорте аминокислот из цитозоля к рибосомам и в распознавании кодона мРНК. Молекула тРНК, имеющая вторичную структуру в форме «клеверного листа», содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном молекулы мРНК, и акцепторный участок (на З’-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.3). Каждая аминокислота, участвующая в процессе трансляции, прежде чем переместиться к рибосоме, должна присоединиться к определенной тРНК с помощью соответствующего варианта фермента аминоацил-тРНК-синтетазы с использованием энергии молекул АТФ. Образование комплекса аминоацил-тРНК проходит в два этапа.

  • 1. Активация аминокислоты: Аминокислота + АТФ -> аминоа- цил-АМФ + РР.
  • 2. Присоединение аминокислоты к тРНК: Аминоацил-АМФ + + тРНК -> аминоацил-тРНК + АМФ.

Инициация трансляции у прокариот сопровождается диссоциацией рибосомы на две субъединицы. Затем 5-8 нуклеотидная последовательность, расположенная на 5’-конце молекулы мРНК (последовательность Шайна - Далъгарно) связывается с определенной областью малой субъединицы рибосомы таким образом, что в P-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы. Функциональная особенность такого P-участка во время инициации состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий - формилметионин. Поскольку синтез полипептида всегда начинается с N-конца и идет в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот - с N-метионина. Однако в дальнейшем эти аминокислоты, как правило, ферментативно отщепляются во время процессинга белковой молекулы. После образования инициирующего комплекса в «недостроенном» P-участке становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к «достраиванию» Р-участка и А-участка.

Процесс элонгации начинается с доставки следующей аминоацил-тРНК в A-участок рибосомы и присоединения на основе принципа комплементарности ее антикодона к соответствующему кодону мРНК, находящемуся в этом участке. Затем образуется пептидная связь между инициирующей (первой в цепочке) и последующей (второй) аминокислотами, после чего происходит перемещение рибосомы на один кодон мРНК в направлении 5’ -» 3’, что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК) и от инициирующей аминокислоты и выходом ее в цитоплазму через Е-участок.

При этом вторая по счету аминоацил-тРНК передвигается из А-участ- ка в P-участок, а освободившийся A-участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы «триплетными шагами» по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

И инициация, и элонгация трансляции осуществляются с участием вспомогательных белковых факторов. На сегодняшний день у прокариот описано по три таких фактора для каждого из этапов синтеза белка.

Терминация трансляции связана с вхождением одного из трех известных стоп-кодонов мРНК (УАА, УАГ, УГА) в A-участок рибосомы. Поскольку эти кодоны не несут информации о какой-либо аминокислоте, но узнаются соответствующими факторами терминации, процесс синтеза полипептида прекращается, и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5’-ко- нец мРНК может вступать в контакт со следующей рибосомой, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом, в результате чего формируется структура, называемая полисомой и представляющая собой несколько рибосом, одновременно транслирующих одну молекулу мРНК.

Механизм синтеза полипептида в эукариотической клетке принципиально схож с таковым у прокариот. Однако отличаются вовлеченные в процесс белковые факторы.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы. На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной струк- зв туры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно привести молекулу гемоглобина человека, состоящую из двух а-цепочек и двух (3-цепочек, которые формируют стабильную тетрамерную структуру. Каждая из глобино- вых цепочек содержит также молекулу гема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

ЗАДАНИЯ И ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Фрагмент кодирующей цепи ДНК имеет следующую нуклеотидную последовательность: 5’-ГАТТЦТГАЦТЦАТТГЦАГ-3’

Определите ориентацию и нуклеотидную последовательность мРНК, синтезируемой на указанном фрагменте ДНК, и аминокислотную последовательность кодируемого ею полипептида.

  • 2. Можно ли однозначно определить нуклеотидную последовательность мРНК и комплементарной ей нити ДНК, если известна аминокислотная последовательность кодируемого ими полипептида? Дайте обоснование своего ответа.
  • 3. Запишите все варианты фрагментов мРНК, которые могут кодировать следующий фрагмент полипептида: Фен - Мет - Цис.
  • 4. Какие аминокислоты могут транспортировать к рибосомам тРНК с антикодонами: АУГ, ААА, ГУЦ, ГЦУ, ЦГА, ЦУЦ, УАА, УУЦ?
  • 5. Как можно объяснить то обстоятельство, что размеры нуклеотидной последовательности структурного гена (3-глобина (1380 пар нуклеотидов) значительно превышают величину, необходимую для кодирования соответствующего полипептида, состоящего из 146 аминокислотных остатков?

Сначала, установите последовательность этапов биосинтеза белка, начиная с транскрипции. Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в 2 этапа:

  1. Транскрипция.

  2. Трансляция.

Структурными единицами наследственной информации являются гены – участки молекулы ДНК, кодирующие синтез определенного белка. По химической организации материал наследственности и изменчивости про- и эукариот принципиально не отличается. Генетический материал в них представлен в молекуле ДНК, общим является также принцип записи наследственной информации и генетический код. Одни и те же аминокислоты у про — и эукариот шифруются одинаковыми кодонами.

Геном современных прокариотических клеток характеризуется относительно небольшими размерами, ДНК кишечной палочки имеет вид кольца, длиной около 1 мм. Она содержит 4 х 10 6 пар нуклеотидов, образующих около 4000 генов. В 1961 г. Ф. Жакоб и Ж. Моно открыли цистронную, или непрерывную организацию генов прокариот, которые полностью состоят из кодирующих нуклеотидных последовательностей, и они целиком реализуются в ходе синтеза белков. Наследственный материал молекулы ДНК прокариот располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты.Экспрессия- это функциональная активность генов, или выражение генов. Поэтому синтезированная с ДНК иРНК способна сразу выполнять функцию матрицы в процессе трансляции синтеза белка.

Геном эукариот содержит значительно больше наследственного материала. У человека общая длина ДНК в диплоидном наборе хромосом составляет около 174 см. Она содержит 3 х 10 9 пар нуклеотидов и включает до 100000 генов. В 1977 г. была обнаружена прерывистость в строении большинства генов эукариот, получивший название «мозаичный» ген. Для него характерны кодирующие нуклеотидные последовательности экзонные и интронные участки. Для синтеза белка используется только информация экзонов. Количество интронов варьирует в разных генах. Установлено,что ген овальбумина кур включает 7 интронов, а ген проколлагена млекопитающих – 50. Функции молчащей ДНК – интронов окончательно не выяснены. Предполагают, что они обеспечивают: 1) структурную организацию хроматина; 2) некоторые из них, очевидно, участвуют в регуляции экспрессии генов; 3) интроны можно считать запасом информации для изменчивости; 4) они могут играть защитную роль, принимая на себя действие мутагенов.

Транскрипция

Процесс переписывания информации в ядре клетки с участка молекулы ДНК на молекулу мРНК (иРНК) называется транскрипция (лат. Transcriptio – переписывание). Синтезируется первичный продукт гена- мРНК. Это первый этап белкового синтеза. На соответствующем участке ДНК фермент РНК–полимераза узнает знак начала транскрипции – промотр. Стартовой точкой считается первый нуклеотид ДНК, который включается ферментом в РНК-транскрипт. Как правило, кодирующие участки начинаются кодоном АУГ, иногда у бактерий используется ГУГ. Когда РНК-полимераза связывается с промотором, происходит локальное расплетание двойной спирали ДНК и копируется одна из цепей по принципу комплементарности. Синтезируется мРНК, скорость сборки её достигает 50 нуклеотидов в секунду. По мере движения РНК–полимеразы, растёт цепь мРНК, и когда фермент достигнет конца копирующего участка – терминатора , мРНК отходит от матрицы. Двойная спираль ДНК позади фермента восстанавливается.

Транскипция прокариот осуществляется в цитоплазме. В связи с тем, что ДНК целиком состоит из кодирующих нуклеотидных последовательностей, поэтому синтезированная мРНК сразу выполняет функцию матрицы для трансляции (см. выше).

Транскрипция мРНК у эукариот происходит в ядре. Она начинается синтезом больших по размерам молекул — предшественников (про-мРНК), называемых незрелой, или ядерной РНК.Первичный продукт гена- про-мРНК является точной копией транскрибированного участка ДНК, включает экзоны и интроны. Процесс формирования зрелых молекул РНК из предшественников называется процессингом . Созревание мРНК происходит путём сплайсинга – это вырезания ферментами рестриктаз интронов и соединение участков с транскрибируемыми последовательностями экзонов ферментами лигаз. (Рис.).Зрелая мРНК значительно короче молекул-предшественников про – мРНК, размеры интронов в них варьирует от 100 до 1000 нуклеотидов и более. На долю интронов приходится около 80% всей незрелой мРНК.

В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удалятся в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител.

По завершению процессинга зрелая мРНК проходит отбор перед выходом из ядра. Установлено, что в цитоплазму попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре.

Трансляция

Трансляция (лат. Translatio — передача, перенесение) — перевод информации, заключенной в последовательности нуклеотидов молекулы мРНК,в последовательность аминокислот полипептидной цепи (Рис. 10). Это второй этап белкового синтеза. Перенос зрелой мРНК через поры ядерной оболочки производят специальные белки, которые образуют комплекс с молекулой РНК. Кроме транспорта мРНК, эти белки защищают мРНК от повреждающего действия цитоплазматических ферментов. В процессе трансляции центральная роль принадлежит тРНК, они обеспечивают точное соответствие аминокислоты коду триплета мРНК. Процесс трансляции- декодирования происходит в рибосомах и осуществляется в направлении от 5 к 3 , Комплекс мРНК и рибосом называется полисомой.

В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию.

Инициация.

На этом этапе происходит сборка всего комплекса, участвующего в синтезе молекулы белка. Происходит объединение двух субъединиц рибосом на определённом участке мРНК, присоединение к ней первой аминоацил – тРНК и этим задаётся рамка считывания информации. В молекуле любой м-РНК есть участок, комплементарный р-РНК малой субединицы рибосомы и специфически ею управляемый. Рядом с ним находится инициирующий стартовый кодон АУГ, который кодирует аминокислоту метионин.Фаза инициации завершается образованием комплекса:рибосома, -мРНК- инициирующая аминоацил-тРНК.

Элонгация

— она включает все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. На рибосоме имеется два участка для связывания двух молекул т-РНК. В одном участке-пептидильном(П) находится первая т-РНК с аминокислотой метионин и с него начинается синтез любой молекулы белка. Во второй участок рибосомы- аминоацильный (А) поступает вторая молекула т-РНК и присоединяется к своему кодону. Между метионином и второй аминокислотой образуется пептидная связь. Вторая т-РНК перемещается вместе со своим кодоном м-РНК в пептидильный центр. Перемещение т-РНК с полипептидной цепочкой из аминоацильного центра в пептидильный сопровождается продвижением рибосомы по м-РНК на шаг, соответствующий одному кодону. Т-РНК, доставившая метионин, возвращается в цитоплазму, амноацильный центр освобождается. В него поступает новая т-РНК с аминокислотой, зашифрованной очередным кодоном. Между третьей и второй аминокислотами образуется пептидная связь и третья т-РНК вместе с кодоном м-РНК перемещается в пептидильный центр.Процесс элонгации, удлинения белковой цепи. Продолжается до тех пор, пока в рибосому не попадёт один из трёх кодонов, не кодирующих аминокислоты. Это кодон — терминатор и для него не существует соответствущей т-РНК, поэтому ни одна из т-РНК не может занять место в аминоацильном центре.

Терминация

– завершение синтеза полипептида. Она связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ, УГА), когда он будет входить в аминоацильный центр. К рибосоме присоединяется специальный фактор терминации, который способствует разъединению субъединиц рибосомы и освобождению синтезированной молекулы белка. К последней аминокислоте пептида присоединяется вода и её карбоксильный конец отделяется от т-РНК.

Сборка пептидной цепи осуществляется с большой скоростью. У бактерий при температуре 37°С она выражается в добавлении к полипептиду от 12 до 17 аминокислот в секунду. В эукариотических клетках к полипептиду добавляется две аминокислоты в одну секунду.

Синтезированная полипептидная цепь затем поступает в комплекс Гольджи, где завершается построение белковой молекулы (последовательно возникают вторая, третья, четвертая структуры). Здесь же происходит комплексование белковых молекул с жирами и углеводами.

Весь процесс биосинтеза белка представлен в виде схемы: ДНК ® про иРНК ® мРНК ® полипептидная цепь ® белок® комплексование белков и их преобразование в функционально активные молекулы.

Этапы реализации наследственной информации также протекают сходным образом: сначала она транскрибируется в нуклеотидную последовательность мРНК, а затем транслируется в аминокислотную последовательность полипептида на рибосомах с участием тРНК.

Транскрипция эукариот осуществляется под действием трех ядерных РНК-полимераз. РНК-полимераза 1 находится в ядрышках и отвечает за транскрипцию генов рРНК. РНК-полимераза 2 находится в ядерном соке и отвечает за синтез предшественника мРНК. РНК-полимераза 3 –небольшая фракция в ядерном соке, которая осуществляет синтез малых рРНК и тРНК. РНК-полимеразы специфически узнают нуклеотидную последовательность транскрипции-промотор. Эукариотическая мРНК вначале синтезируется в виде предшественницы (про- иРНК), на нее списывается информация с экзонов и интронов. Синтезированная мРНК обладает большими, чем необходимо для трансляции размерами и оказывается менее стабильной.

В процессе созревания молекулы мРНК с помощью ферментов рестриктаз вырезаются интроны, а с помощью ферментов – лигаз сшиваются экзоны. Созревание мРНК называется процессингом, сшивание экзонов называется сплайсингом. Таким образом, зрелая мРНК содержит только экзоны и она значительно короче её предшественницы – про- иРНК. Размеры интронов варьируют от 100 до 10000 нуклеотидов и более. На долю интонов приходится около 80% всей незрелой мРНК. В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удаляться в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител. По завершению процессинга зрелая мРНК проходит отбор перед выходом в цитоплазму из ядра. Установлено, что попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре. Преобразование первичных транскриптонов эукариотических генов, связанное с их экзон-интронной организацией, и в связи с переходом зрелой мРНК из ядра в цитоплазму, определяет особенности реализации генетической информации эукариот. Следовательно, мозаичный ген эукариот не является геном цистроном, так как не вся последовательность ДНК используется для синтеза белка.

Принципиально важным свойством генетической информации является ее способность к переносу (передаче) как в пределах одной клетки, так и от родительской клетки к дочерним либо между клетками разных индивидуумов в процессах клеточного деления и размножения организмов. Что касается направлений внутриклеточного переноса генетической информации, то в случае ДНК-содержащих организмов они связаны с процессами репликации молекул ДНК, т.е. с копированием информации (см. подразд. 1.2), либо с синтезом молекул РНК (транскрипцией) и образованием полипептидов (трансляцией) (рис. 1.14). Как известно, каждый из указанных процессов осуществляется на основе принципов матричности и комплементарности.

Сложившиеся представления о переносе генетической информации по схеме ДНК → РНК → белок принято называть «центральной догмой» молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как «общий перенос», известна и другая форма реализации генетической информации («специализированный перенос»), обнаруженная у РНК-содержащих вирусов. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку-хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы (ревертазы), кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно,

Рис. 1.14. Основные направления внутриклеточного переноса генетической информации

специализированный перенос генетической информации осуществляется по схеме РНК → ДНК → РНК → белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК по программе ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности кодирующей нити ДНК в ориентации 3"→ 5", переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5" → 3" на основе комплементарного соответствия дезоксирибонуклеотидов матричной нити ДНК рибонуклеотидам РНК (А-У, Г-Ц, Т-А, Ц-Г) (рис. 1.15). В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы молекул РНК, участвующих в биосинтезе белков в клетке, - матричные (информационные) РНК (мРНК, или иРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК), малые ядерные РНК (мяРНК).

Процесс транскрипции обеспечивается комплексным действием ряда ферментов, к числу которых относится РНК-полимераза, представляющая собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций. В отличие от прокариот (бактерий), в клетках которых имеется РНК-полимераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот установлено наличие ядерных РНК-полимераз трех типов (I, II, III), а также РНК-полимераз клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК, РНК-полимераза II обеспечивает синтез мРНК и мяРНК, а РНК-полимераза III осуществляет синтез тРНК и одного варианта молекул рРНК.

Транскрипция подразделяется на три основные стадии - инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса).

Рис. 1.15. Синтез молекулы РНК на матричной нити ДНК. Стрелкой показано направление, в котором идет рост цепи РНК

Инициация транскрипции зависит от предварительного специфического связывания РНК-полимеразы с узнаваемой ею короткой нуклеотидной последовательностью в участке молекулы ДНК (промоторе), расположенном перед стартовой точкой структурного гена, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции (см. также подразд. 1.6). Промоторы многих генов прокариот имеют в своем составе универсальную последовательность 5"-ТАТААТ-3" (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка 10 нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5"-ТТГАЦА-3") обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. В геномах эукариот функцию узнавания для РНК-полимеразы II могут выполнять универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-мотивы). При этом та или иная промоторная область может содержать либо одну из указанных последовательностей либо комбинацию двух или трех таких последовательностей.

Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы однонитевого 3"-5"-фрагмента ДНК.

Дальнейшее расплетание ДНК структурного гена сопровождается удлинением синтезируемого полирибонуклеотида (элонгацией нити РНК), продолжающимся вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, которая узнается РНК-полимеразой при участии других белковых факторов терминации, что приводит к окончанию синтеза транскрипта и его отсоединению от матрицы. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. При этом у прокариот возможен синтез полигенной молекулы мРНК, кодирующей синтез двух и большего числа полипептидных цепочек. Происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула мРНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).

Процессинг состоит в ферментативном разрезании первичного транскрипта (гяРНК) с последующим удалением его интронных участков и воссоединением (сплайсингом) экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В качестве примера можно рассмотреть схему процессинга мРНК, синтезируемой при транскрипции гена β-глобиновой цепочки (рис. 1.16), структура которого обсуждалась ранее (см. рис. 1.13).

В процессинге принимают участие и короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и гяРНК способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания интронов из гяРНК.

Во время процессинга происходит также модификация 5"-и 3"-концов формирующейся зрелой молекулы мРНК. Принципиальный смысл этого процесса можно рассмотреть на схемах

Рис. 1.16. Процессинг мРНК -глобинового гена человека

процессинга гена β-глобина человека (см. рис. 1.16) и полной нуклеотидной последовательности зрелой мРНК, образующейся в результате этого процесса. Как видно из рис. 1.17, на 5"-конце последовательности имеется короткий нетранслируемый (лидирующий) участок, состоящий из 17 триплетов, которые маркированы цифрами со знаком «минус». Этот участок кодируется транскрибируемой (но нетранслируемой) областью первого экзона β-гена (заштрихована на рис. 1.16). Модификация этого участка состоит в образовании 5"-концевого кэпа (от англ, cap - колпачок, шапочка), представляющего собой остаток 7-метилгуанозина, присоединенный к соседнему нуклеотиду необычным способом (с помощью три-фосфатной связи). Предполагается, что основная функция кэпа связана с узнаванием специфической последовательности молекулы рРНК, входящей в состав рибосомы, что обеспечивает точное прикрепление всего лидирующего участка молекулы мРНК к определенному участку этой рибосомы и инициацию процесса трансляции. Возможно также, что кэп предохраняет зрелую мРНК от преждевременного ферментативного разрушения во время ее транспортировки из ядра в цитоплазму клетки.

Модификация 3 "-конца мРНК β-глобина, также имеющего короткую нетранслируемую последовательность, кодируемую соответствующей областью третьего экзона β-гена (см. рис. 1.16), связана с образованием полиаденилового (поли А) «хвоста» молекулы, состоящего из 100 - 200 последовательно соединенных остатков адениловой кислоты. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на 3"-конце мРНК сигнальной последовательности ААУААА (см. рис. 1.17). Предполагается, что полиадениловый «хвост» обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5" → 3"). Следует заметить, что в клетках прокариот, не имеющих настоящего ядра с оболочкой, хромосомный генетический материал (ДНК) практически находится в цитоплазме, что определяет непрерывный характер взаимосвязи процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5"-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции их ядерной генетической информации и ее трансляции должны быть разделены во времени в связи с процессингом молекул РНК и необходимостью их последующей упаковки и

Рис. 1.17. Нуклеотидная последовательность зрелой мРНК -глобинового гена человека. Последовательность начинается с 7-метилгуанозина на 5"-конце (кэп-сайт), за которым следует короткий нетранслируемый участок РНК. Первый транслируемый кодон (АУГ) выделен шрифтом и помечен цифрой 0, поскольку кодируемая им аминокислота (метионин) в дальнейшем выщепляется из полипептида (первой аминокислотой зрелого белка будет валин, кодируемый ГУГ). Выделены также стоп-кодон УАА (кодон 147), на котором заканчивается трансляция (полипептид состоит из 146 аминокислот), и сигнальная последовательность для полиаденилирования (ААУААА) на 3"-конце транспортировки из кариоплазмы в цитоплазму с участием специальных транспортных белков.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основные стадии - инициацию, элонгацию и терминацию.

Для инициации трансляции принципиально важное значение имеет специфичность структурной организации группы идентичных рибосом (полирибосомы, или полисомы), которая может участвовать в синтезе первичной структуры определенной белковой молекулы (полипептида), кодируемой соответствующей мРНК. Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК, которые определяют ее специфичность, и из белков. В составе рибосомы имеются 2 структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т. е. по коэффициенту седиментации (величине 5). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).

Рибосомы прокариот, а также митохондрий и хлоропластов состоят из большой и малой субъединиц с величинами 505 и 305 соответственно, тогда как у эукариот эти субъединицы имеют другие размеры (605 и 405). Поскольку процесс трансляции более детально был исследован у бактерий, то чаще всего его рассматривают в связи со структурой рибосом этих организмов. Как видно из рис. 1.18, рибосома содержит 2 участка, имеющих прямое отношение к инициации трансляции, обозначенные как P-участок (аминоацильный) и Р- участок (пептидильный), специфичность которых определяется сочетанием соответствующих областей субъединиц 505 и 305. При диссоциации субъединиц рибосомы эти участки становятся «недостроенными», что приводит к изменению их функциональной специфичности.

В процессе трансляции участвуют также молекулы тРНК, функции которых состоят в транспортировке аминокислот из цитозоля (цитоплазматического раствора) к рибосомам. Молекула тРНК, имеющая вторичную структуру в форме «клеверного листа», содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном (триплетом) молекулы мРНК, кодирующей синтез полипептида на рибосоме, и акцепторный участок (на 3"-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.7). Процесс присоединения каждой из 20 аминокислот к акцепторному концу соответствующей тРНК связан с ее активацией определенным вариантом фермента аминоацил-тРНК-

Рис. 1.18. Строение бактериальной рибосомы: Р пептидильный участок, А аминоацильный участок


Рис. 1.19. Начальные этапы трансляции: а инициирующий комплекс; б элонгация

синтетазы с использованием энергии аденозинтрифосфатов (молекул АТФ). Образовавшийся при этом специфический комплекс тРНК и аминокислоты, который получил название аминоацил-тРНК, перемещается затем к рибосоме и участвует в синтезе полипептида.

Инициация трансляции обеспечивается точным соединением лидирующего 5"-конца молекулы мРНК с определенной областью малой субъединицы диссоциированной рибосомы таким образом, что в «недостроенном» Р-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы (рис. 1.19). Функциональная особенность такого Р-участка состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий - формилметионин. Поскольку синтез пояипептида всегда начинается с N-конца и нарастает в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот - с N-метионина. Однако, в дальнейшем эти аминокислоты ферментативно выщепляются во время процессинга белковой молекулы (см. рис. 1.17).

После образования инициирующего комплекса в «недостроенном» Р-участке (см. рис. 1.19) становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к «достраиванию» Р-участка и A-участка. Лишь после этого следующая аминоацил-тРНК может занимать A-участок на основе принципа

комплементарности ее антикодона соответствующему кодону мРНК, находящемуся в этом участке (см. рис. 1.19).

Процесс элонгации начинается с образования пептидной связи между инициирующей (первой в цепочке) и последующей (второй) аминокислотами. Затем происходит перемещение рибосомы на один триплет мРНК в направлении 5"→ 3", что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК), от инициирующей аминокислоты и выходом ее в цитоплазму. При этом вторая по счету аминоацил-тРНК передвигается из A-участка в Р-участок, а освободившийся А -участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы «триплетными шагами» по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

Терминация трансляции связана с вхождением одного из трех известных стоп-триплетов мРНК в Л-участок рибосомы. Поскольку такой триплет не несет информации о какой-либо аминокислоте, но узнается соответствующими белками терминации, то процесс синтеза полипептида прекращается и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5"-конец мРНК может вступать в контакт со следующей рибосомой полисомной группы, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом одной и той же полисомы, в результате чего синтезируется группа идентичных полипептидов.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы (рис. 1.20). На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной структуры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно рассмотреть модель молекулы гемоглобина человека (рис. 1.21), состоящей из


Рис. 1.20. Вторичная структура молекулы фермента рибонуклеазы

Рис. 1.21. Четвертичная структура молекулы гемоглобина человека

двух α-цепочек и двух β-цепочек, которые формируют стабильную тетрамерную структуру с помощью водородных связей. Каждая из глобиновых цепочек содержит также молекулу тема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

Базисные термины и понятия: акцепторный конец тРНК; аминоацил-тРНК; антикодон; гяРНК (про-РНК); инициация транскрипции и трансляции; инициирующая аминоацил-тРНК и аминокислота; инициирующий кодон мРНК; комплементарность; кэп; лидирующий 5"-конец мРНК; матричность; модификация концов молекулы мРНК; моногенная молекула мРНК; мРНК (иРНК); мяРНК; обратная транскриптаза (ревертаза); обратная транскрипция; общий перенос; перенос (передача) информации; полигенная молекула мРНК; полипептид; полирибосома (полисома); посттрансляционная модификация полипептида; промотор; процессинг РНК и полипептида; рибосома; РНК-полимераза; рРНК; специализированный перенос; сплайсинг; стартовая точка транскрипции; терминатор; терминация транскрипции и трансляции; транскрипт; транскрипция генетической информации; трансляция генетической информации; тРНК; элонгация транскрипции и трансляции; A-участок рибосомы; Р-участок рибосомы.

Этапы реализации генетической информации в клетке. Как лечить болезнь?
Этапы реализации генетической информации в клетке. Народные способы лечения и исцеления.
Уникальные исцеляющие видео-сеансы.

Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

13. Реализация наследственной информации в клетке

Вспомните!

Какова структура белков и нуклеиновых кислот?

Какие типы РНК вам известны?

Где образуются субъединицы рибосом?

Какую функцию рибосомы выполняют в клетке?

Обязательным условием существования всех живых организмов является способность синтезировать белковые молекулы. Классическое определение Ф. Энгельса: «Жизнь есть способ существования белковых тел…» не потеряло своего значения в свете современных научных открытий. Белки в организме выполняют тысячи разнообразных функций, делая нас такими, какие мы есть. Мы отличаемся друг от друга ростом и цветом кожи, формой носа и цветом глаз, у каждого из нас свой темперамент и свои привычки; мы все индивидуальны и в то же время очень похожи. Наше сходство и наши различия – это сходство и различия нашего белкового состава. Каждый вид живых организмов обладает своим специфическим набором белков, который и определяет уникальность этого вида. Но при этом белки, выполняющие сходные функции в разных организмах, могут быть очень похожи, а порой практически одинаковы, кому бы они ни принадлежали. Причём меньше всего различий в белках, обеспечивающих жизненно важные физиологические функции.

В митохондриях работает фермент – цитохром С, который играет важнейшую роль в обеспечении клеток энергией. В процессе эволюции появление цитохромов позволило сформировать эффективную систему энергообеспечения клетки и в итоге привело к возникновению эукариотических организмов. Поэтому не случайно строение цитохрома С одинаково во всех эукариотических клетках – у всех животных, растений и грибов.

Итак, все свойства любого организма определяются его белковым составом. Причём структура каждого белка, в свою очередь, определяется последовательностью аминокислотных остатков.

Следовательно, в итоге наследственная информация, которая передаётся из поколения в поколение, должна содержать сведения о первичной структуре белков. Информация о строении всех белков организма заключена в молекулах ДНК и называется генетической информацией .

Генетический код. Каким же образом последовательность мономеров – нуклеотидов в цепи ДНК может определять последовательность аминокислотных остатков в молекуле белка? Четырьмя типами нуклеотидов должны быть закодированы 20 типов аминокислот, из которых состоят все белковые молекулы. Если бы одной аминокислоте соответствовал один нуклеотид, то четыре типа нуклеотидов могли бы определять только четыре типа аминокислот. Это явно не подходит. Если предположить, что каждый тип аминокислот определяется двумя нуклеотидами, то, имея исходно четыре типа оснований, можно закодировать 16 разных аминокислот (4?4). Этого тоже ещё недостаточно. Наконец, если каждой аминокислоте будут соответствовать три стоящие подряд нуклеотида, т. е. триплет, то таких сочетаний может быть 64 (4?4?4), и этого более чем достаточно, чтобы зашифровать 20 типов аминокислот.

Набор сочетаний из трёх нуклеотидов, кодирующих 20 типов аминокислот, входящих в состав белков, называют генетическим кодом (рис. 42). В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определённых свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.

Первое свойство кода – триплетность . Три стоящих подряд нуклеотида – «имя» одной аминокислоты. Один триплет не может кодировать две разные аминокислоты – код однозначен . Но при этом каждая аминокислота может определяться более чем одним триплетом, т. е. генетический код избыточен . Любой нуклеотид может входить в состав только одного триплета, следовательно, код является неперекрывающимся . Некоторые триплеты являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов (УАА, УАГ, УГА – стоп-кодоны, не кодируют аминокислоты, АУГ – старт-кодон, кодирует аминокислоту метионин). У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, т. е. генетический код одинаков для всех живых существ. Универсальность кода ДНК подтверждает единство происхождения всего живого на нашей планете.

Рис. 42. Генетический код

Итак, последовательность триплетов в цепи ДНК определяет последовательность аминокислот в белковой молекуле. Ген – это участок молекулы ДНК, кодирующий первичную структуру одной полипептидной цепи .

Транскрипция (от лат. transcription – переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК.

Представьте себе библиотеку с уникальным фондом, книги из которой на дом не выдают. Для вашей работы и решения некой важной задачи необходимо получить информацию, записанную в какой-то из этих книг. Вы приходите в библиотеку, и для вас делают ксерокопию нужной главы из определённого тома. Не имея возможности забрать книгу, вы получаете копию её фрагмента и, уходя из библиотеки, уносите эту копию с собой, чтобы на основе записанных в ней сведений выполнить необходимую работу: сконструировать прибор, синтезировать какое-либо вещество, испечь пирог или сшить платье, т. е. получить результат.

Такой библиотекой является клеточное ядро, в котором хранятся уникальные тома – молекулы ДНК, ксерокопия – это иРНК, а результат – синтезированная белковая молекула.

Информационная РНК является копией одного гена. Двухцепочечная молекула ДНК раскручивается на определённом участке, водородные связи между нуклеотидами, стоящими друг напротив друга, разрываются, и на одной из цепей ДНК по принципу комплементарности синтезируется иРНК. Напротив тимина молекулы ДНК встаёт аденин молекулы РНК, напротив гуанина – цитозин, цитозина – гуанин, а напротив аденина – урацил (вспомните отличительные особенности строения РНК, § 9). В итоге формируется цепочка РНК, которая является комплементарной копией определённого фрагмента ДНК и содержит информацию о строении определённого белка. Процесс синтеза РНК на ДНК называют транскрипцией (рис. 43).

Трансляция (от лат. translation – передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации – перевод информации с «языка» РНК на «язык» белка. Процесс синтеза белка называют трансляцией (см. рис. 43). Для осуществления этого процесса информации о структуре полипептидной цепи, записанной с помощью генетического кода в молекулах иРНК, явно недостаточно. Мы не получим вещественного результата, имея на руках только «листки ксерокопии». Необходимы аминокислоты, из которых, согласно имеющемуся плану, будут собираться молекулы белка. Нужны структуры, в которых непосредственно будет происходить синтез, – рибосомы. Не обойтись также без ферментов, осуществляющих эту сборку, и молекул АТФ, которые обеспечат этот процесс энергией. Только при выполнении всех этих условий белок будет синтезирован.

Молекула иРНК соединяется с рибосомой тем концом, с которого должен начаться синтез белка. Аминокислоты, необходимые для сборки белка, доставляются к рибосоме специальными транспортными РНК (тРНК). Каждая тРНК может переносить только «свою» аминокислоту, имя которой определяется триплетом нуклеотидов – антикодоном, расположенным в центральной петле молекулы тРНК (рис. 44). Если антикодон какой-либо тРНК окажется комплементарным триплету иРНК, находящемуся в данный момент в контакте с рибосомой, произойдёт узнавание и временное связывание тРНК и иРНК (рис. 45). Одновременно на рибосоме находится две тРНК с соответствующими аминокислотами. Расположенная на рисунке слева аминокислота серин (сер) отделяется от своей тРНК и образует пептидную связь с аминокислотой аспарагин (асп).

Рис. 43. Взаимосвязь между процессами транскрипции и трансляции

Рис. 44. Строение тРНК

Рис. 45. Трансляция

Освобождённая тРНК (АГА) уходит в цитоплазму, а рибосома делает «шаг», сдвигаясь на один триплет по цепи иРНК. К этому новому триплету (ЦГУ) подойдёт другая тРНК и принесёт аминокислоту аргинин (арг), которая присоединится к растущему белку. Так, шаг за шагом, рибосома пройдёт по всей иРНК, обеспечивая считывание закодированной в ней информации. Таким образом, включение аминокислот в растущую белковую цепь происходит строго последовательно в соответствии с последовательностью расположения триплетов в цепи иРНК.

Процессы удвоения ДНК (§ 9), синтеза РНК и белков в неживой природе не встречаются. Они относятся к так называемым реакциям матричного синтеза . Матрицами, т. е. теми молекулами, которые служат основой для получения множества копий, являются ДНК и РНК. Матричный тип реакций лежит в основе способности живых организмов воспроизводить себе подобных.

Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника – подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.

Вопросы для повторения и задания

1. Вспомните полное определение понятия «жизнь».

2. Назовите основные свойства генетического кода и поясните их значение.

3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?

4. Где синтезируются все виды рибонуклеиновых кислот?

5. Расскажите, где происходит синтез белка и как он осуществляется.

6 . Рассмотрите рис. 40. Определите, в каком направлении – справа налево или слева направо – движется относительно иРНК изображённая на рисунке рибосома. Докажите свою точку зрения.

Подумайте! Выполните!

1. Почему углеводы не могут выполнять функцию хранения информации?

2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?

3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?

4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?

5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.

6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.

7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги Беседы о новой иммунологии автора Петров Рэм Викторович

Великая иммунологическая дискуссия благодаря Мечникову сфокусировала внимание на клетке. - Если я правильно понял, то уже на заре иммунологии произошло разделение иммунологических механизмов защиты на два типа - неспецифические и специфические. - Да,

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

6. ПЛАСТИЧНОСТЬ РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ И ПРОБЛЕМА «ИМПРЕССИНГА» Если перейти от содержания наследственной информации к ее реализации (даже если речь идет о самых элементарных, биохимических или морфологических особенностях), то в каждой данной ситуации, в

Из книги Путешествие в страну микробов автора Бетина Владимир

13. ПРИНЦИП НЕИСЧЕРПАЕМОЙ НАСЛЕДСТВЕННОЙ ГЕТЕРОГЕННОСТИ

Из книги Основы психофизиологии автора Александров Юрий

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Разделение труда в клетке Какова же роль отдельных клеточных образований, с которыми мы только что познакомились? Этот вопрос встал перед исследователями; вполне естественно, что его задаст и читатель, узнавший об их открытии.О защитной функции клеточных стенок мы уже

Из книги Мы бессмертны! Научные доказательства Души автора Мухин Юрий Игнатьевич

Ферменты служат клетке В живых клетках происходят многие химические реакции, воспроизвести которые в лаборатории оказалось возможным лишь при создании специфических условий. Одни из них протекают при высоких температурах, другие требуют повышенного давления. Как же

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора

7.2. Поведение как одновременная реализация систем разного «возраста» Обнаружено, что осуществление поведения обеспечивается не только посредством реализации новых систем (рис. 14.3 НС), сформированных при обучении актам, которые составляют это поведение, но и посредством

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

В чьей клетке больше хромосом – человека или утки? Для каждого организма характерно строго определенное число хромосом, содержащихся в каждой из составляющих его клеток. У плодовой мушки (дрозофилы) 8 хромосом, у сорго – 10, у садового гороха – 14, у кукурузы – 20, у жабы – 22,

Из книги автора

Какая часть наследственной информации отражает индивидуальность человека? 99,9 процента всей наследственной информации у всех людей одинаковы. Такие сугубо индивидуальные признаки, как цвет кожи, глаз и волос, черты лица, отпечатки пальцев, темперамент, способности и

Из книги автора

Из книги автора

О записи информации Вот поэтому аналогию себе нам надо искать в записях информации без участия нас самих - в чем-то таком, что запоминает информацию само, без нашей воли, образно говоря, в том, что находится у нас «на поводке».Пример. Вот, скажем, какой-то музыкальный