Мозговая кора. Функции и строение коры головного мозга


Мозговая кора входит в состав большинства существ на земле, однако именно у человека данная область достигла наибольшего развития. Специалисты утверждают, что это способствовало вековая трудовая деятельность, которая сопровождает нас на протяжении всей жизни.

В этой статье мы рассмотрим строение, а также за что отвечает кора мозга.

Корковая часть головного мозга играет главную функционирующую роль для человеческого организма в целом и состоит из нейронов, их отростков и глиальных клеток. В состав коры входят звездчатые, пирамидные и веретенообразные нервные клетки. Вследствие наличия складов, корковая область занимает достаточно большую поверхность.

В строение коры головного мозга включается послойная классификация, которая подразделяется на следующие слои:

  • Молекулярный. Имеет отличительные отличия, которое отражается в низком клеточном уровне. Низкий показатель количества этих клеток, состоящих из волокон, тесно взаимосвязаны между собой
  • Наружный зернистый. Клеточные субстанции этого слоя направляются в молекулярный слой
  • Слой пирамидальных нейронов. Является наиболее широким слоем. Достиг наибольшей развитости в прецентральной извилине. Количество пирамидных клеток увеличивается в пределах 20-30 мкм от наружной зоны данного слоя к внутреннему
  • Внутренний зернистый. Непосредственно зрительная кора головного мозга является тем участком, где внутренний зернистый слой достиг максимального своего развития
  • Внутренний пирамидный. В его состав входят пирамидные клетки, имеющие крупный размер. Эти клетки переносятся до молекулярного слоя
  • Слой мультиморфных клеток. Данный слой сформирован нервными клетками различного характера, но в большей степени веретенообразного типа. Внешняя зона характеризуется наличием более крупных клеток. Клетки внутреннего отдела характеризуются незначительным размером

Если рассматривать послойный уровень более тщательно, то можно увидеть, что кора большого мозга больших полушарий принимает на себя проекции каждого из уровней, протекающих в различных отделах ЦНС.

Зоны коры больших полушарий

Особенности клеточного строения корковой части мозга подразделяется на структурные единицы, а именно: зоны, поля, области и подобласти.

Кора мозга классифицируется на следующие проекционные зоны:

  • Первичные
  • Вторичные
  • Третичные

В первичной зоне располагаются определенные нейронные клетки, к которым постоянно поступает рецепторный импульс (слуховой, зрительный). Вторичный отдел характеризуется наличием периферических отделов-анализаторов. Третичная принимает обработанные данные от первичной и вторичной зоны, а сама отвечает за условные рефлексы.

Также кора полушарий головного мозга подразделяется на ряд отделов или зон, которые позволяют регулировать множество человеческих функций.

Выделяет следующие зоны:

  • Сенсорные - участки, в которых располагаются зоны коры головного мозга:
    • Зрительные
    • Слуховые
    • Вкусовые
    • Обонятельные
  • Моторные. Это корковые области, раздражение которых может привести к определенным двигательным реакциям. Находятся в передней центральной извилине. Ее повреждение может привести к существенным двигательным нарушениям
  • Ассоциативные. Данные корковые отделы находятся рядом с сенсорными зонами. Импульсы нервных клеток, которые направляются в сенсорную зону, формируют возбуждающий процесс ассоциативных отделов. Их поражение влекут за собой тяжелые нарушения процесса обучения и функций памяти

Функции долей коры головного мозга

Кора большого мозга и подкорка выполняют ряд человеческих функций. Непосредственно сами доли коры головного мозга содержат в себе такие необходимые центры, как:

  • Двигательный, речевой центр (центр Брока). Располагается в нижней области лобной доли. Его повреждение может полностью нарушить речевую артикуляцию, то есть больной может понимать, что ему говорят, однако ответить не может
  • Слуховой, речевой центр (центр Вернике). Находится в левой височной доле. Повреждение этой области может привести к тому, что человек будет не способен понять, что говорит другой человека, при этом способность излагать свои мысли остается. Также в этом случае серьёзно нарушается письменная речь

Функции речи выполняются сенсорными и двигательными зонами. Ее функции связаны с письменной речью, а именно чтением и письмом. Зрительная кора и головной мозг регулируют эту функцию.

Повреждение зрительного центра полушарий головного мозга ведет к полной потере навыков чтения и письма, а также к возможной потере зрения.

В височной доле расположен центр, который отвечает за процесс запоминание. Пациент с поражением данного участка не может запомнить названия определенных вещей. Однако само значение и функции предмета он понимает и может их описать.

Например, вместо слова «кружка» человек говорит: «это то, куда наливают жидкость, чтобы затем выпить».

Патологии коры мозга

Существует огромное количество заболеваний, поражающих мозг человека и в том числе его корковую структуру. Поражение коры приводит к нарушению работы ее ключевых процессов, а также снижает ее работоспособность.

К наиболее распространенным заболеваниям корковой части относятся:

  • Болезнь Пика. Развивается у людей в пожилом возрасте и характеризуется отмиранием нервных клеток. При этом внешние проявления при данном заболевании практически идентичны болезни Альцгеймера, что можно заметить на этапе диагностирования, когда мозг похож на иссушенный грецкий орех. Стоит также отметить, что заболевание неизлечимо, единственное, на что направлена терапия так это на подавление или устранение симптоматики
  • Менингит. Данное инфекционное заболевание косвенно затрагивает отделы коры головного мозга. Возникает вследствие поражения коры инфекцией пневмококка и ряда других. Характеризуется головными болями, повышенной температурой, резью в глазах, сонливостью, тошнотой
  • Гипертоническая болезнь. При данном заболевании в коре мозга начинают формироваться очаги возбуждения, а исходящие импульсы от данного очага начинают сужать сосуды, что приводит к резким скачкам артериального давления
  • Кислородное голодание коры головного мозга (гипоксия). Данное патологическое состояние чаще всего развивается в детском возрасте. Возникает вследствие недостатка кислорода или нарушения кровотока в головном мозга. Может привести к невозвратным изменениям нейронной ткани или летальному исходу

Большинство патологий мозга и коры невозможно определить исходя из проявляющейся симптоматики и внешних признаков. Для их выявления требуется прохождение специальных диагностических методов, которые позволяют исследовать практически любые, даже самые труднодоступные места и впоследствии определить состояние того или иного участка, а также проанализировать его работу.

Область коры диагностируется с помощью различных методик, о которых мы более подробно расскажем в следующей главе.

Проведение обследования

Для высокоточного обследования коры головного мозга используются такие методы, как:

  • Магнитно-резонансная и компьютерная томография
  • Энцефалография
  • Позитронно-эмиссионная томография
  • Рентгенография

Также используется ультразвуковое исследование мозга, однако этот метод является наименее эффективных в сравнении с вышеперечисленными методами. Из преимуществ ультразвукового исследования выделяют цену и быстроту обследования.

В большинстве случаев пациентам проводится диагностирование мозгового кровообращения. Для этого могут использоваться дополнительный ряд диагностик, а именно;

  • Ультразвуковая допплерография. Позволяет выявить пораженные сосуды и изменения скорости кровотока в них. Метод обладает высокой информативностью и абсолютной безопасностью для здоровья
  • Реоэнцефалография. Работа этого метода заключается в регистрации электрического сопротивления тканей, что позволяет сформировать линию пульсового кровотока. Позволяет определить состояние сосудов, их тонус и ряд других данных. Обладает меньшей информативностью, чем ультразвуковой способ
  • Рентгеновская ангиография. Это стандартное рентгенологическое исследование, которое дополнительно проводится при помощи внутривенного введения контрастного вещества. Затем проводится сам рентген. В результате распространения вещества по всем организму, на экране подсвечиваются все потоки крови в головном мозге

Данные методы позволяют предоставить точную информацию о состоянии мозга, коры и показателей кровотока. Также существуют и другие способы, которые применяются в зависимости от характера заболевания, состояния пациента и других факторов.

Мозг человека является самым сложным органом, а на его изучение затрачиваются многочисленные ресурсы. Однако даже в эпоху инновационных методик его исследования, изучить определенные его участки не представляется возможным.

Мощность обработки процессов в головном мозге настолько значительна, что даже суперкомпьютер не в состоянии даже близко приблизиться по соответствующим показателям.

Кора большого мозга и сам головной мозг постоянно исследуются, вследствие чего открытие различных новых фактов о нем становиться все больше. Наиболее распространенные открытия:

  • В 2017 году был проведен эксперимент, в котором были задействованы человек и суперкомпьютер. Выяснилось, что даже самая технически оснащенная техника способна сымитировать только 1 секунду мозговой активности. На задачу ушло целых 40 минут
  • Объем человеческой памяти в электронной единице измерения количества данных, составляет около 1000 терабайт
  • Мозг человека состоит более чем из 100 тысяч сосудистых сплетений, 85 млрд. нервных клеток. Также в мозгу имеется около 100 трлн. нейронных связей, которые обрабатывают человеческие воспоминания. Таким образом при познании чего-то нового структурная часть мозга также изменяется
  • Когда человек пробуждается, головной мозг накапливает электрическое поле мощностью 25 ВТ. Этой мощности достаточно, что зажечь лампу накаливания
  • Масса мозга составляет всего 2% от общей массы человека, тем не менее, мозг расходует около 16 % энергии в теле и более 17 % кислорода
  • Головной мозг состоит на 80% из воды и на 60% из жира. Поэтому для поддержания нормальных функций мозгу необходимо здоровое питание. Употребляйте в пищу те продукты, которые содержат омега-3 жирные кислоты (рыба, оливковое масло, орехи) и ежедневно выпивайте необходимое количество жидкости
  • Ученые выяснили, что если человек «сидит» на какой-либо диете, то мозг начинает есть сам себя. А низкие показатели кислорода в крови на протяжении нескольких минут, могут привести к нежелательным последствиям
  • Забывчивость человека является естественным процессом, а уничтожение ненужной информации в мозге позволяет ему оставаться гибким. Также забывчивость может возникать искусственно, например, при употреблении алкоголя, который затормаживает естественные процессы в мозге

Активизация умственных процессов дает возможность генерировать дополнительную мозговую ткань, которая заменяет поврежденную. Поэтому необходимо постоянно умственно развиваться, что значительно снизит риск возникновения слабоумия в уже пожилом возрасте.

глиальные клетки ; оно расположено в некоторых отделах глубинных мозговых структур, из этого вещества сформирована кора больших полушарий (а также мозжечка).

Каждое полушарие разделяется на пять долей, четыре из которых (лобная, теменная, затылочная и височная) примыкают к соответствующим костям черепного свода, а одна (островковая) находится в глубине, в ямке, которая разделяет лобную и височную доли.

Кора большого мозга имеет толщину в 1,5–4,5 мм, ее площадь увеличивается за счет присутствия борозд; она связана с другими отделами ЦНС, благодаря импульсам, которые проводят нейроны.

Полушария достигают примерно 80% от общей массы головного мозга. Они осуществляют регуляцию высших психических функций, тогда как мозговой ствол – низшие, которые связаны с деятельностью внутренних органов.

Три основные области выделяют на полушарной поверхности :

  • выпуклая верхнелатеральная, которая примыкает к внутренней поверхности черепного свода;
  • нижняя, с располагающимися передними и средними отделами на внутренней поверхности черепного основания и задними в области намета мозжечка;
  • медиальная расположена у продольной щели мозга.

Особенности устройства и деятельности

Кора большого мозга подразделяется на 4 вида:

  • древняя – занимает чуть более 0,5% всей поверхности полушарий;
  • старая – 2,2%;
  • новая – более 95%;
  • средняя – примерно 1,5%.

Филогенетически древняя кора большого мозга, представленная группами крупных нейронов, оттесняется новой к основанию полушарий, становясь узкой полоской. А старая, состоящая из трех клеточных слоев, смещается ближе к середине. Главная область старой коры – гиппокамп, являющийся центральным отделом лимбической системы . Средняя (промежуточная) кора представляет собой образование переходного типа, так как трансформация старых структур в новые осуществляется постепенно.

Кора головного мозга у человека, в отличие от таковой у млекопитающих, также ответственна за согласованную работу внутренних органов. Такое явление, при котором, возрастает роль коры в осуществлении всей функциональной деятельности организма, носит название кортикализация функций.

Одна из особенностей коры – ее электрическая активность, происходящая спонтанно. Нервные клетки, расположенные в этом отделе, обладают определенной ритмической активностью, отражающей биохимические, биофизические процессы. Активность обладает различной амплитудой и частотой (альфа-, бета-, дельта-, тета-ритмы), что зависит от влияния многочисленных факторов (медитации, фазы сна, переживания стресса, наличия судорог, новообразования).

Структура

Кора головного мозга представляет собой многослойное образование: каждый из слоев имеет свой определенный состав нейроцитов, конкретную ориентацию, расположение отростков.

Систематическое положение нейронов в коре носит название «цитоархитектоника», расположенные в определенном порядке волокна – «миелоархитектоника».

Кора больших полушарий головного мозга состоит из цитоархитектонических шесть слоев.

  1. Поверхностный молекулярный, в котором нервных клеток не очень много. Их отростки расположены в нем самом, и они не выходят за пределы.
  2. Наружный зернистый сформирован из пирамидальных и звездчатых нейроцитов. Отростки выходят из этого слоя и идут в последующие.
  3. Пирамидальный состоит из пирамидных клеток. Их аксоны направляются вниз, где оканчиваются или формируют ассоциативные волокна, а дендриты идут вверх, во второй слой.
  4. Внутренний зернистый образован звездчатыми клетками и малыми пирамидными. Дендриты идут в первый слой, боковые отростки разветвляются в пределах своего слоя. Аксоны протягиваются в верхние слои или в белое вещество.
  5. Ганглионарный образован большими пирамидными клетками. Здесь находятся самые крупные нейроциты коры. Дендриты направлены в первый слой или распределены в своем. Аксоны выходят из коры и начинают являться волокнами, связывающими различные отделы и структуры ЦНС между собой.
  6. Мультиформный – состоит из различных клеток. Дендриты идут к молекулярному слою (некоторые только до четвертого или пятого слоев). Аксоны направляются в вышележащие слои или выходят из коры в качестве ассоциативных волокон.

Кора головного мозга разделяется на области – так называемая горизонтальная организация . Всего их насчитывается 11, и они включают в себя 52 поля, каждое из которых имеет свой порядковый номер.

Вертикальная организация

Существует и вертикальное разделение – на колонки нейронов. При этом маленькие колонки объединяются в макроколонки, которые называют функциональным модулем. В основе таких систем находятся звездчатые клетки – их аксоны, а также горизонтальные связи их с боковыми аксонами пирамидальных нейроцитов. Все нервные клетки вертикальных колонок реагируют на афферентный импульс одинаково и вместе посылают эфферентный сигнал. Возбуждение в горизонтальном направлении обусловлено деятельностью поперечных волокон, которые следуют от одной колонки к другой.

Впервые обнаружил единицы, которые объединяют нейроны различных слоев по вертикали, в 1943г. Лоренте де Но – с помощью гистологии. Впоследствии это было подтверждено с помощью методов электрофизиологии на животных В. Маунткаслом.

Развитие коры во внутриутробном развитии начинается рано: уже в 8 недель у эмбриона появляется корковая пластина. Вначале дифференцируются нижние слои, а в 6 месяцев у будущего ребенка появляются все поля, которые присутствуют и у взрослого человека. Цитоархитектонические особенности коры к 7 годам полностью формируются, но тела нейроцитов увеличиваются еще до 18. Для образования коры необходимо согласованное перемещение и деление клеток-предшественниц, из которых появляются нейроны. Установлено, что на этот процесс влияет специальный ген.

Горизонтальная организация

Принято разделять зоны коры головного мозга на:

  • ассоциативные;
  • сенсорные (чувствительные);
  • моторные.

Учеными при изучении локализованных участков и их функциональных особенностей применялись разнообразные способы: раздражение химическое или физическое, частичное удаление мозговых участков, выработка условных рефлексов, регистрация биотоков мозга.

Чувствительные

Эти области занимают примерно 20% коры. Поражение таких зон ведет к нарушению чувствительности (снижение зрения, слуха, обоняния и т. п.). Площадь зоны напрямую зависит от количества нервных клеток, которые воспринимают импульс от определенных рецепторов: чем их больше, тем выше сензитивность. Выделяют зоны:

  • соматосенсорную (отвечает за кожную, проприоцептивную, вегетативную чувствительность) – она расположена в теменной доле (постцентральная извилина);
  • зрительную, двухстороннее повреждение которое приводит к полной слепоте, – находится в затылочной доле;
  • слуховую (расположена в височной доле);
  • вкусовую, находящуюся в теменной доле (локализация – постцентральная извилина);
  • обонятельную, двухстороннее нарушение которой приводит к потере обоняния (расположена в гиппокамповой извилине).

Нарушение слуховой зоны не приводит к глухоте, но появляются другие симптомы. Например, невозможность различения коротких звуков, смысла бытовых шумов (шагов, льющейся воды и т. п.) при сохранности различия звуков по высоте, длительности, тембру. Также может происходить амузия, заключающаяся в неспособности узнавать, воспроизводить мелодии, а также различать их между собой. Музыка также может сопровождаться неприятными ощущениями.

Импульсы, идущие по афферентным волокнам с левой стороны тела, воспринимаются правым полушарием, а с правой стороны – левым (повреждение левого полушария вызовет нарушение чувствительности с правой стороны и наоборот). Это связано с тем, что каждая постцентральная извилина связана с противоположной частью тела.

Двигательные

Моторные участки, раздражение которых вызывает движение мускулатуры, располагаются в передней центральной извилине лобной доли. Двигательные зоны сообщаются с сенсорными.

Двигательные пути в продолговатом мозге (и частично в спинном) образуют перекрест с переходом на противоположную сторону . Это приводит к тому, что раздражение, которое возникает в левом полушарии, поступает в правую половину туловища, и наоборот. Поэтому поражение участка коры одного из полушарий ведет к нарушению двигательной функции мышц с противоположной стороны туловища.

Моторная и сенсорная области, которые расположены в районе центральной борозды, объединяются в одно образование – сенсомоторную зону.

Неврология и нейропсихология накопили множество сведений о том, как поражение этих областей приводит не только к элементарным двигательным расстройствам (параличам, парезам, треморам), но и к нарушениям произвольных движений и действий с предметами – апраксиям. При их появлении могут нарушаться движения во время письма, происходить расстройства пространственных представлений, появляться бесконтрольные шаблонные движения.

Ассоциативные

Эти зоны ответственны за связывание поступающей сенсорной информации с той, которая была получена ранее и хранится в памяти. Кроме того, они позволяют сравнивать между собой информацию, которая идет от различных рецепторов. Ответная реакция на сигнал формируется в ассоциативной зоне и передается в зону двигательную. Таким образом, каждая ассоциативная область отвечает за процессы памяти, научения и мышления . Крупные ассоциативные зоны находятся рядом с соответствующими функционально сенсорными зонами. К примеру, какая-либо ассоциативная зрительная функция контролируется зрительной ассоциативной зоной, которая расположена рядом с сенсорным зрительным участком.

Установление закономерностей работы мозга, анализ его локальных нарушений и проверку его активности осуществляет наука нейропсихология, которая находится на стыке нейробиологии, психологии, психиатрии и информатики.

Особенности локализации по полям

Кора большого мозга пластична, что сказывается на переходе функций одного отдела, если произошло его нарушение, в другой. Это обусловлено тем, что анализаторы в коре имеют ядро, где происходит высшая деятельность, и периферию, которая отвечает за процессы анализа и синтеза в примитивном виде. Между ядрами анализаторов находятся элементы, которые принадлежат разным анализаторам. Если повреждение касается ядра, за его деятельность начинают отвечать периферические составляющие.

Таким образом, локализация функций, которыми обладает кора головного мозга, – понятие относительное, так как определенных границ не существует. Тем не менее, цитоархитектоника предполагает наличие 52 полей, которые сообщаются друг с другом проводящими путями:

  • ассоциативными (этот тип нервных волокон отвечает за деятельность коры в области одного полушария);
  • комиссуральными (связывают симметричные области обоих полушарий);
  • проекционными (способствуют сообщению коры, подкорковых структур с другими органами).

Таблица 1

Соответствующие поля

Двигательная

Чувствительная

Зрительная

Обонятельная

Вкусовая

Речедвигательная, которая включает центры:

Вернике, позволяющий воспринимать устную речь

Брока – отвечает за движение языковых мышц; поражение грозит полной потерей речи

Восприятия речи на письме

Итак, строение коры головного мозга предполагает рассмотрение ее в горизонтальной и вертикальной ориентации. В зависимости от этого, выделяют вертикальные колонки нейронов и зоны, расположенные в горизонтальной плоскости. Основные функции, которые выполняет кора, сводятся к осуществлению поведения, регуляции мышления, сознания. Кроме того, она обеспечивает взаимодействие организма с внешней средой и принимает участие в контроле работы внутренних органов.

Одним из важнейших органов, обеспечивающих полноценное функционирование человеческого организма, является головной мозг, связанный со спинным отделом и сетью нейронов в различных частях тела. Благодаря такой связи обеспечивается синхронизация умственной активности с моторными рефлексами и областью отвечающей за анализ поступающих сигналов. Кора головного мозга представляет собой слоистое в горизонтальном направлении образование. В его составе находятся 6 различных структур, каждая из них имеет специфичную плотность расположения, количество и размеры нейронов. Нейроны представляют собой нервные окончания выполняющие функцию связи между частями нервной системы при прохождении импульса или в качестве реакции на действие раздражителя. Помимо слоистой в горизонтальном направлении структуры, кора головного мозга пронизана множеством ответвлений нейронов, расположенных по большей части вертикально.

Вертикальная направленность ответвлений нейронов формирует структуру пирамидальной формы или образования в виде звездочки. Множество ответвлений короткого прямого или ветвящегося типов пронизывают, как слои коры в вертикальном направлении, обеспечивая связь различных отделов органа между собой, так и в горизонтальной плоскости. По направлению ориентации нервных клеток принято выделять центробежные и центростремительные направления связи. В целом, физиологическая функция коры помимо обеспечения процесса мышления и поведения состоит в защите полушарий головного мозга. Кроме этого, по мнению ученых в результате эволюции имело место развитие и усложнение структуры коры. При этом наблюдалось усложнение строения органа по мере налаживания новых связей между нейронами, дендритами и аксонами. Характерно то, что по мере развития интеллекта человека, возникновение новых нейронных связей происходило вглубь структуры коры от внешней поверхности к участкам расположенным ниже.

Функции коры

Кора головного мозга имеет среднюю толщину 3 мм и достаточно большую площадь за счет наличия связующих каналов с центральной нервной системой. Восприятие, получение информации, ее обработка, принятие решения и его осуществление происходит благодаря множеству импульсов, проходящих через нейроны по типу электрической цепи. В зависимости от множества факторов в коре происходит генерация электрических сигналов мощностью до 23 Вт. Степень их активности определяется состоянием человека и описывается показателями амплитуды и частоты. Известно, что большее количество связей находится в областях, обеспечивающих более сложные процессы. При этом всем кора головного мозга не является завершенной структурой и находится в развитии в течение всей жизни человека по мере развития его интеллекта. Получение и обработка поступающей в мозг информации обеспечивает ряд физиологических, поведенческих, психических реакций благодаря функциям коры, среди которых:

  • Обеспечение связи органов и систем тела человека с внешним миром и между собой, правильное протекание обменных процессов.
  • Правильность восприятия поступающей информации, ее осознание через процесс мышления.
  • Поддержка взаимодействия различных тканей и структур, составляющих органы человеческого тела.
  • Формирование и работа сознания, интеллектуальная и творческая деятельность человека.
  • Контроль речевой активности и процессов, связанных с психической деятельностью.

Следует отметить недостаточную изученность места и роли передних отделов коры на обеспечение функционирования человеческого организма. Об этих участках известно об их низкой чувствительности к внешним воздействиям. Например, действие на них электрических импульсов не вызвало проявления выраженной реакции. По мнению некоторых специалистов, к функциям этих участков коры относится самосознание личности, наличие и характер ее специфичных особенностей. У людей с поврежденными передними участками коры наблюдаются процессы асоциализации, утрата интересов в области трудовой деятельности, собственного внешнего вида и мнения в глазах других людей. Другими возможными эффектами могут стать:

  • потеря способности концентрации;
  • частичная или полная утрата творческих способностей;
  • глубинные психические расстройства личности.

Строение слоев коры головного мозга

Выполняемые органом функции, такие как координация полушарий, умственная и трудовая деятельность во многом обусловлена строением его структуры. Специалисты выделяют 6 различных типов слоев, взаимодействие между которыми обеспечивает работу системы в целом, среди них:

  • молекулярный покров образует множество хаотично переплетенных дендритных образований с низким количеством веретенообразных клеток, отвечающих за ассоциативную функцию;
  • внешний покров представлен множеством нейронов, имеющих различную форму и высокую концентрацию, за ними располагаются внешние границы структур пирамидальной формы;
  • наружный покров пирамидального типа состоит из нейронов мелкого и крупного размеров при более глубоком расположении последних. Форма этих клеток имеет коническую форму, от его вершины ответвляется дендрит, имеющий наибольшую длину и толщину, который путем разделения на более мелкие образования связывает нейроны с серым веществом. По мере приближения к коре головного мозга ветвления характеризуются меньшей толщиной и образуют веерообразную структуру;
  • внутренний покров зернистого типа состоит из нервных клеток, имеющих небольшие габариты, расположенные на некоторой дистанции, между которыми проходят сгруппированные структуры волокнистого типа;
  • внутренний покров пирамидальной формы состоит из нейронов имеющих средние и большие размеры, причем верхние окончания дендритов достигают уровня молекулярного покрова;
  • покров, состоящий из нейронных клеток, имеющих форму веретена, характеризуется тем, что его часть, расположенная в наиболее низкой точке достигает уровня белого вещества.

Различные слои, входящие в состав коры отличаются между собой формой, расположением и назначением составляющих их структур. Взаимосвязь нейронов звездчатого, пирамидального, ветвистого и веретенообразного типов между различными покровами образуют более 5 десятков, так называемых полей. Несмотря на то, что четкие границы полей отсутствуют, их совместное действие позволяет регулировать множество процессов связанных с получением нервных импульсов, обработкой информации и выработкой ответных реакций на раздражитель.

Области коры головного мозга

По выполняемым функциям в рассматриваемой структуре можно выделить три области:

  1. Зона, связанная с обработкой импульсов, получаемых через систему рецепторов от органов зрения, обоняния, осязания человека. По большому счету большинство рефлексов связанных с моторикой обеспечивают клетки пирамидальной структуры. Обеспечивающие посредством дендритных структур и аксонов связь с мышечными волокнами и спинномозговым каналом. Участок, отвечающий за прием мышечной информации, имеет налаженные контакты между различными слоями коры, что важно на этапе корректной трактовки поступающих импульсов. Если кора головного мозга поражается на этом участке, это может привести к расстройству согласованной работы сенсорных функций и действий, связанных с моторикой. Визуально расстройства двигательного отдела могут проявляться в воспроизведении непроизвольных движений, подергиваний, судорог, в более сложной форме приводить к обездвиживанию.
  2. Область сенсорного восприятия отвечает за обработку поступивших сигналов. По структуре она представляет собой взаимосвязанную систему анализаторов для установки обратной связи на действие стимулятора. Специалисты выделяют ряд областей, отвечающих за обеспечение чувствительности к сигналам. Среди них, затылочная обеспечивает зрительное восприятие, височная-связана со слуховыми рецепторами, зона гипокампа с обонятельными рефлексами. Район, отвечающий за анализ информации вкусовых стимуляторов, расположен в области темени. Там же локализуются центры, отвечающие за получение и обработку тактильных сигналов. Сенсорная способность находится в прямой зависимости от количества нейронных связей в этом участке, в целом эти зоны занимают до пятой части общего объема коры. Повреждение этой зоны влечет за собой искажение восприятия, что не позволяет выработать ответный сигнал адекватный действующему на него раздражителю. Например, нарушение работы слуховой зоны не обязательно приводит к глухоте, но может вызвать ряд эффектов искажающих корректное восприятие информации. Это может выражаться в неспособности улавливать длину или частотность звуковых сигналов их продолжительность и тембр, нарушении фиксации воздействий с небольшим временем действия.
  3. Ассоциативная зона осуществляет контакт между сигналами, получаемыми нейронами в сенсорной области и моторикой, представляющей собой ответную реакцию. Этот участок формирует осмысленные поведенческие рефлексы, обеспечивает их практическую реализацию и занимает большую часть коры. По району локализации можно выделить передние участки, расположенные в лобных частях и задние, которые занимают пространство между зоной висков, темени и затылка. Для человека характерно большее развитие задних участков районов ассоциативного восприятия. Ассоциативные центры играют еще одну важную роль, обеспечивают реализацию и восприятие речевой деятельности. Повреждение переднеассоциативной области приводит к нарушению возможности выполнения аналитических функций, прогнозирования на основании имеющихся фактов или предшествующего опыта. Нарушение работы зоны задней ассоциации затрудняет ориентацию человека в пространстве. Также затрудняет работу абстрактного объемного мышления, конструирования и правильной трактовки сложных зрительных моделей.

Последствия повреждений коры мозга

До конца, не изучено является ли забывчивость одним из нарушений, связанных с повреждением коры головного мозга? Или эти изменения связаны с нормальным функционированием системы по принципу разрушения неиспользуемых связей. Учеными доказано, что за счет взаимосвязи нейронных структур между собой при повреждении одной из названных областей может наблюдаться частичное и даже полное воспроизведение ее функций другими структурами. В случае частичной утраты способности к восприятию, переработке информации или воспроизведению сигналов, система может некоторое время оставаться работоспособной, обладая ограниченными функциями. Это происходит за счет восстановления связей между не подвергшимися негативному воздействию участками нейронов по принципу распределительной системы. Однако, возможен и обратный эффект при котором повреждение одной из зон коры может привести к расстройству нескольких функций. В любом случае, нарушение нормальной работы этого важного органа является серьезным отклонением, при возникновении которого необходимо немедленно прибегнуть к помощи специалистов во избежание дальнейшего развития расстройства.

Среди наиболее опасных нарушений работы этой структуры можно выделить атрофию, связанную с процессами старения и отмирания части нейронов. Наиболее используемыми методами диагностики являются компьютерная и магнитно-резонансные виды томографии, энцефалография, исследования при помощи ультразвука, проведение рентгена и ангиографии. Следует отметить, что современные методы диагностики позволяют выявить патологические процессы в работе мозга на достаточно раннем этапе, при своевременном обращении к специалисту в зависимости от вида нарушения существует вероятность восстановления нарушенных функций.

Чтение укрепляет нейронные связи:

doctor

сайт

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.

Кора мозга – пласт серого вещества на поверхности больших полушарий, толщиной 2-5 мм, образующий много­численные борозды, извилины значительно увеличивающие ее площадь. Кора образована телами нейронов и глиальных клеток, расположенных послойно («экранный» тип организа­ции). Под ней лежит белое вещество, представленное нерв­ными волокнами.

Кора представляет собой наиболее молодой филогене­тически и наиболее сложный по морфофункциональной ор­ганизации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит ин­теграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятель­ность» (способность к обобщениям, открытиям). В коре со­держится более 10 млрд. нейронов и 100 млрд. глиальных клеток.

Нейроны коры по количеству отростков только муль­типолярные, а по их месту в рефлекторных дугах и выпол­няемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейро­нов. По форме различают две их основных группы: пирамид­ные и непирамидные. Пирамидные нейроны являются ос­новным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) денд­рит, который Т-образно делится в молекулярном слое. От боковых поверхностей тела нейрона отходят боковые денд­риты. На дендритах и теле нейрона имеются многочисленные синапсы других нейронов. От основания клетки отходит ак­сон, который либо идёт в другие участки коры, либо к дру­гим отделам головного и спинного мозга. Среди нейронов коры мозга различают ассоциативные – связывающие уча­стки коры внутри одного полушария, комиссуральные – их аксоны идут в другое полушарие, и проекционные – их ак­соны идут в нижележащие отделы мозга.

Среди непирамидных нейронов наиболее часто встреча­ются звёздчатые и веретеновидные клетки. Звёздчатые ней­роны - это мелкие клетки с короткими сильно ветвящимися дендритами и аксонами, образующими внутрикорковые связи. Одни из них оказывают тормозное, а другие - возбуж­дающее влияние на пирамидные нейроны. Веретеновидные нейроны имеют длинный аксон, который может идти в вер­тикальном, или горизонтальном направлении. Кора по­строена по экранному типу, то есть нейроны, сходные по структуре и функции расположены слоями (рис. 9-7). Таких слоёв в коре шесть:

1. Молекулярный слой – самый наружный. В нём на­ходится сплетение нервных волокон, расположенных парал­лельно поверхности коры. Основную массу этих волокон со­ставляют ветвления апикальных дендритов пирамидных ней­ронов нижележащих слоёв коры. Сюда же приходят аффе­рентные волокна от зрительных бугров, регулирующих воз­будимость корковых нейронов. Нейроны в молекулярном слое в основном мелкие, веретеновидные.

2. Наружный зернистый слой. Состоит из большого числа звёздчатых клеток. Их дендриты идут в молекулярный слой и образуют синапсы с таламо-кортикальными аффе­рентными нервными волокнами. Боковые дендриты связыва­ются с соседними нейронами этого же слоя. Аксоны обра­зуют ассоциативные волокна, которые идут через белое ве­щество в соседние участки коры и там образуют синапсы.

3. Наружный слой пирамидных нейронов (пирамид­ный слой). Он образован пирамидными нейронами средней вели­чины. Так же, как у ней­ронов второго слоя, их денд­риты идут в молекулярный слой, а аксоны – в белое ве­щество.

4. Внутренний зернистый слой. Он содержит много звёздчатых нейронов. Это ассоциативные, афферентные ней­роны. Они образуют многочисленные связи с другими ней­ронами коры. Здесь расположен ещё один слой горизонталь­ных волокон.

5. Внутренний слой пирамидных нейронов (ганглио­нарный слой). Он образован крупными пирамидными нейро­нами. Последние особенно велики в моторной коре (прецен­тральной извилине), где имеют размеры до 140 мкм и назы­ваются клетками Беца. Их апикальные дендриты поднима­ются в молекулярный слой, боковые дендриты образуют связи с соседними клетками Беца, а аксоны – проекционные эфферентные волокна, идущие в продолговатый и спинной мозг.

6. Слой веретеновидных нейронов (слой полиморфных клеток) состоит в основном из веретеновидных нейронов. Их дендриты идут в молекулярный слой, а аксоны – к зритель­ным буграм.

Шестислойный тип строения коры характерен для всей коры, однако в разных её участках выраженность слоёв, а также форма и расположение нейронов, нервных волокон значительно различаются. По этим признакам К. Бродман выделил в коре 50 цитоархитектонических полей . Эти поля также различаются по функции и обмену веществ.

Специфическую организацию нейронов называют цито­архитектоникой. Так, в сенсорных зонах коры пирамидный и ганглиозный слои выражены слабо, а зернистые слои - хо­рошо. Такой тип коры называется гранулярным. В мотор­ных зонах, напротив, зернистые слои развиты плохо, а пира­мидные хорошо. Это агранулярный тип коры.

Кроме того, существует понятие миелоархитектоника . Это определённая организация нервных волокон. Так, в коре мозга различают вертикальные и три горизонтальных пучка миелиновых нервных волокон. Среди нервных волокон коры мозга различают ассоциативные – связывающие участки коры одного полушария, комиссуральные – соединяющие кору разных полушарий и проекционные волокна – связы­вающие кору с ядрами ствола мозга.

Рис. 9-7. Кора больших полуша-рий головного моз-га чело­века.

А, Б. Расположение кле­ток (цитоархитектоника).

В. Расположе­ние миелино­вых волокон (миелоархитектоника).