Математические методы в исследованиях. Построение матрицы большого размера

В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.

Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.

«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье

Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.

Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.

Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.

Каковы же предпосылки появления математического анализа?

К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.

Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.

НИКОЛАЙ НИКОЛАЕВИЧ ЛУЗИН
(1883-1950)

Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).

Лузин родился в Томске, учился в томской гимназии. Формализм гимназического курса математики оттолкнул от себя талантливого юношу, и лишь способный репетитор смог раскрыть перед ним красоту и величие математической науки.

В 1901 г. Лузин поступил на математическое отделение физико-математического факультета Московского университета. С первых лет обучения в круг его интересов попали вопросы, связанные с бесконечностью. В конце XIX в. немецкий ученый Г. Кантор создал общую теорию бесконечных множеств, получившую многочисленные применения в исследовании разрывных функций. Лузин начал изучать эту теорию, но его занятия были прерваны в 1905 г. Студенту, принимавшему участие в революционной деятельности, пришлось на время уехать во Францию. Там он слушал лекции виднейших французских математиков того времени. По возвращении в Россию Лузин окончил университет и был оставлен для подготовки к профессорскому званию. Вскоре он вновь уехал в Париж, а затем в Геттинген, где сблизился со многими учеными и написал первые научные работы. Основной проблемой, интересовавшей ученого, был вопрос о том, могут ли существовать множества, содержащие больше элементов, чем множество натуральных чисел, но меньше, чем множество точек отрезка (проблема континуума).

Для любого бесконечного множества, которое можно было получить из отрезков с помощью операций объединения и пересечения счетных совокупностей множеств, эта гипотеза выполнялась, и, чтобы решить проблему, нужно было выяснить, какие еще есть способы конструирования множеств. Одновременно Лузин изучал вопрос, можно ли представить любую периодическую функцию, даже имеющую бесконечно много точек разрыва, в виде суммы тригонометрического ряда, т.е. суммы бесконечного множества гармонических колебаний. По этим вопросам Лузин получил ряд значительных результатов и в 1915 г. защитил диссертацию «Интеграл и тригонометрический ряд», за которую ему сразу присудили ученую степень доктора чистой математики, минуя существовавшую в то время промежуточную степень магистра.

В 1917 г. Лузин стал профессором Московского университета. Талантливый преподаватель, он привлекал к себе наиболее способных студентов и молодых математиков. Своего расцвета школа Лузина достигла в первые послереволюционные годы. Ученики Лузина образовали творческий коллектив, который шутливо называли «лузитанией». Многие из них получили первоклассные научные результаты еще на студенческой скамье. Например, П. С. Александров и М. Я. Суслин (1894-1919) открыли новый метод конструирования множеств, что послужило началом развития нового направления - дескриптивной теории множеств. Исследования в этой области, проводившиеся Лузиным и его учениками, показали, что обычных методов теории множеств недостаточно для решения многих возникавших в ней проблем. Научные предвидения Лузина полностью подтвердились в 60-е гг. XX в. Многие ученики Н. Н. Лузина стали впоследствии академиками и членами-корреспондентами АН СССР. Среди них П. С. Александров. А. Н. Колмогоров. М. А. Лаврентьев, Л. А. Люстерник, Д. Е. Меньшов, П. С. Новиков. Л. Г. Шнирельман и другие.

Современные советские и зарубежные математики в своих работах развивают идеи Н. Н. Лузина.

Стечение этих обстоятельств и привело к тому, что в конце XVII в. двум ученым – И. Ньютону и Г. Лейбницу – независимо друг от друга удалось создать для решения названных задач математический аппарат, подытоживший и обобщивший отдельные результаты предшественников, среди которых и ученый древности Архимед и современники Ньютона и Лейбница – Б. Кавальери, Б. Паскаль, Д. Грегори, И. Барроу. Этот аппарат и составил основу математического анализа – нового раздела математики, изучающего различные развивающиеся процессы, т.е. взаимосвязи переменных величин, которые в математике называют функциональными зависимостями или, иначе, функциями. Кстати, сам термин «функция» потребовался и естественно возник именно в XVII в., а к настоящему времени он приобрел не только общематематическое, но и общенаучное значение.

Начальные сведения об основных понятиях и математическом аппарате анализа даны в статьях «Дифференциальное исчисление» и «Интегральное исчисление».

В заключение хотелось бы остановиться только на одном общем для всей математики и характерном для анализа принципе математического абстрагирования и в этой связи объяснить, в каком виде математический анализ изучает переменные величины и в чем секрет такой универсальности его методов для изучения всевозможных конкретных развивающихся процессов и их взаимосвязей.

Рассмотрим несколько поясняющих примеров и аналогий.

Мы порой уже не отдаем себе отчета в том, что, например, математическое соотношение , написанное не для яблок, стульев или слонов, а в отвлеченном от конкретных объектов абстрактном виде, - выдающееся научное завоевание. Это математический закон, который, как показывает опыт, применим к различным конкретным объектам. Значит, изучая в математике общие свойства отвлеченных, абстрактных чисел, мы тем самым изучаем количественные соотношения реального мира.

Например, из школьного курса математики известно, что , поэтому в конкретной ситуации вы могли бы сказать: «Если мне для перевозки 12 т грунта не выделят два шеститонных самосвала, то можно запросить три четырехтонки и работа будет выполнена, а если дадут только одну четырехтонку, то ей придется сделать три рейса». Так привычные теперь для нас отвлеченные числа и числовые закономерности связаны с их конкретными проявлениями и приложениями.

Примерно так же связаны законы изменения конкретных переменных величин и развивающихся процессов природы с той абстрактной, отвлеченной формой-функцией, в которой они появляются и изучаются в математическом анализе.

Например, абстрактное соотношение может быть отражением зависимости кассового сбора у кинотеатра от количества проданных билетов, если 20 – это 20 копеек – цена одного билета. Но если мы едем по шоссе на велосипеде, проезжая 20 км в час, то это же соотношение можно истолковать как взаимосвязь времени (часов) нашей велосипедной прогулки и покрытого за это время расстояния (километров)., вы всегда можете утверждать, что, например, изменение в несколько раз приводит к пропорциональному (т.е. во столько же раз) изменению величины , а если , то верно и обратное заключение. Значит, в частности, для увеличения кассового сбора кинотеатра в два раза вам придется привлечь вдвое больше зрителей, а для того, чтобы на велосипеде с той же скоростью проехать вдвое большее расстояние, вам придется ехать вдвое дольше.

Математика изучает и простейшую зависимость , и другие, значительно более сложные зависимости в отвлеченном от частной интерпретации, общем, абстрактном виде. Выявленные в таком исследовании свойства функции или методы изучения этих свойств будут носить характер общих математических приемов, заключений, законов и выводов, применимых к каждому конкретному явлению, в котором встречается изученная в абстрактном виде функция, независимо от того, к какой области знания это явление относится.

Итак, математический анализ как раздел математики оформился в конце XVII в. Предметом изучения в математическом анализе (как он представляется с современных позиций) являются функции, или, иначе, зависимости между переменными величинами.

С возникновением математического анализа математике стало доступно изучение и отражение развивающихся процессов реального мира; в математику вошли переменные величины и движение.

Математическое исследование благодаря своей универсальности применяется в областях, весьма далеких от математики. Это объясняется тем, что любое положение, правило или закон, записанные на математическом языке, ста- новятся инструментом предсказания (прогнозирования), являющегося важнейшей задачей каждого научного исследования.

Основой традиционной (классической) математики является система аксиом, из которых методом дедукции получают результаты, представляемые в виде лемм, теорем и т.п. Получаемые на их основе аналитические решения в пределе являются точными. В рамках этих методов исследуются вопросы существования решений, их единственности, а также устойчивости и сходимости к абсолютно точным решениям при неограниченном возрастании их числа.

Разработка таких методов способствует развитию собственно математики (появлению новых ее разделов и направлений). Однако для решения многих прикладных задач они оказываются малоэффективными, так как для их использования необходимо вводить массу допущений, приводящих к тому, что математическая модель исследуемого процесса оказывается существенно отличающейся от реального физического процесса.

В связи с этим в математике возникло ответвление, называемое прикладной математикой. Ее основное отличие от традиционной состоит в том, что здесь находится не точное, а приближенное решение с точностью, достаточной для инженерных приложений, но без учета тех допущений, которые принимаются в рамках классической математики. Оценка точности полученных решений выполняется путем сравнения с точными решениями каких-либо тестовых задач либо с результатами экспериментальных исследований.

К методам прикладной математики относятся вариационные (Ритца, Треффтца, Канторовича и др.), ортогональные методы взвешенных невязок (Бубнова-Галеркина, Канторовича), коллокаций, моментов, наименьших квадратов и др.; вариационно-разностные методы (конечных элементов, граничных элементов; спектральный метод и др.)- Все они относятся к группе так называемых прямых методов - это такие приближенные аналитические методы решения задач математической физики, которые сводят решение дифференциальных и интегральных уравнений к решению систем алгебраических линейных уравнений. Коротко остановимся на хронологии развития этих методов и их физической сути.

В 1662 г. французский математик П. Ферма сформулировал закон преломления света на границе двух сред следующим образом: из всех возможных путей движения света от пункта А к пункту В реализуется тот, на котором время движения достигает минимума. Это была одна из первых формулировок вариационного принципа.

В 1696 г. И. Бернулли сформулировал задачу нахождения длины пути (траектории), по которому материальная точка, двигаясь от точки А под действием только силы тяжести, за наименьшее время достигает точки В. Нахождение такой кривой, называемой брахистохроной (кривой наискорейшего спуска), сводится к определению минимума функционала

при граничных условиях у (0) = 0; у{а) = у а, являющихся координатами точек начала и конца движения.

Здесь Т - время наискорейшего спуска; g - ускорение силы тяжести.

Введением функционала (а) было положено начало появлению вариационного исчисления. Подобные функционалы в общем виде записываются следующим образом:

при граничных условиях у(а) = А = const, y(b) = В = const.

Обычно в задачах математической физики находятся экстремумы некоторых функций у = у(х). Значение вариационного исчисления заключается в том, что здесь определяются экстремумы более сложных, чем функции, величин - экстремумы функционалов J =J от функций у(х). В связи с чем открылись возможности исследования новых физических объектов и развития новых математических направлений.

В 1774 г. Л. Эйлер показал, что если функция у(х) доставляет минимум линейному интегралу J = J [у (х), то она должна удовлетворять некоторым дифференциальным уравнениям, названным впоследствии уравнениями Эйлера. Открытие этого факта явилось важным достижением математического моделирования (построения математических моделей). Стало ясно, что одна и та же математическая модель может быть представлена в двух эквивалентных видах: в виде функционала или в виде дифференциального уравнения Эйлера (системы дифференциальных уравнений). В связи с этим замена дифференциального уравнения функционалом получила название обратной задачи вариационного исчисления. Таким образом, решение задачи на экстремум функционала можно рассматривать так же, как и решение соответствующего этому функционалу дифференциального уравнения Эйлера. Следовательно, математическая постановка одной и той же физической задачи может быть представлена либо в виде функционала с соответствующими граничными условиями (экстремум этого функционала доставляет решение физической задачи), либо в виде соответствующего этому функционалу дифференциального уравнения Эйлера с теми же граничными условиями (интегрирование этого уравнения доставляет решение поставленной задачи).

Широкому распространению вариационных методов в прикладных науках способствовало появление в 1908 г. публикации В. Ритца, связанной с методом минимизации функционалов, названным впоследствии методом Ритца. Этот метод считается классическим вариационным методом. Основная его идея заключается в том, что искомая функция у = у(х) у доставляющая функционалу (А) с граничными условиями у (а) = А, у(Ъ ) = В минимальное значение, разыскивается в виде ряда

где Cj (i = 0, гг) - неизвестные коэффициенты; (р/(д) (г = 0, п) - координатные функции (алгебраический или тригонометрический полипом).

Координатные функции находятся в таком виде, чтобы они точно удовлетворяли граничным условиям задачи.

Подставляя (с) в (А), после определения производных от функционалаJ по неизвестным С, (г = 0, гг) относительно последних получается система алгебраических линейных уравнений. После определения коэффициентов С, решение задачи в замкнутом виде находится из (с).

При использовании большого числа членов ряда (с) (п - 5 ? °о) в принципе можно получить решение требуемой точности. Однако, как показыва- ют расчеты конкретных задач, матрица коэффициентов С, (г = 0, п) представляет собой заполненную квадратную матрицу с большим разбросом коэффициентов по абсолютной величине. Такие матрицы близки к вырожденным и, как правило, являются плохо обусловленными. Это связано с тем, что они не удовлетворяют ни одному из условий, при которых матрицы могут быть хорошо обусловленными. Рассмотрим некоторые из этих условий.

  • 1. Положительная определенность матрицы (члены, находящиеся на главной диагонали, должны быть положительными и максимальными).
  • 2. Ленточный вид матрицы относительно главной диагонали при минимальной ширине ленты (коэффициенты матрицы, находящиеся вне ленты, равны нулю).
  • 3. Симметричность матрицы относительно главной диагонали.

В связи с этим при увеличении приближений в методе Ритца число обусловленности матрицы, определяемое отношением ее максимального собственного числа к минимальному, устремляется к бесконечно большой величине. А точность получаемого при этом решения ввиду быстрого накопления ошибок округления при решении больших систем алгебраических линейных уравнений может не улучшаться, а ухудшаться.

Наряду с методом Ритца развивался родственный с ним метод Галерки- на. В 1913 г. И. Г. Бубнов установил, что алгебраические линейные уравнения относительно неизвестных С, (/ = 0, п ) из (с) можно получать, не используя функционал вида (А). Математическая постановка задачи в данном случае включает дифференциальное уравнение с соответствующими граничными условиями. Решение, как и в методе Ритца, принимается в виде (с). Благодаря особой конструкции координатных функций ф,(х) решение (с) точно удовлетворяет граничным условиям задачи. Для определения неизвестных коэффициентов С, (г = 0, п) составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям ф 7 Сг) (/ = i = 0, п). Определяя получающиеся при этом интегралы, относительно неизвестных коэффициентов С, = 0, гг) получаем систему алгебраических линейных уравнений, которая полностью совпадает с системой аналогичных уравнений метода Ритца. Таким образом, при решении одних и тех же задач с использованием одинаковых систем координатных функций методы Ритца и Бубнова - Галеркина приводят к одинаковым результатам.

Несмотря на идентичность получаемых результатов, важным преимуществом метода Бубнова-Галеркина по сравнению с методом Ритца является то, что он не требует построения вариационного аналога (функционала) дифференциального уравнения. Отметим, что подобный аналог не всегда может быть построен. В связи с этим методом Бубнова-Галеркина могут быть решены задачи, для которых классические вариационные методы неприменимы.

Еще одним методом, относящимся к группе вариационных, является метод Канторовича . Его отличительным признаком является то, что в качестве неизвестных коэффициентов в линейных комбинациях вида (с) принимаются не константы, а функции, зависящие от одной из независимых переменных задачи (например, времени). Здесь, как и в методе Бубнова-Галеркина, составляется невязка дифференциального уравнения и требуется ортогональность невязки ко всем координатным функциям (ру(дг) (j = i = 0, п). После определения интегралов относительно неизвестных функций fj(x) будем иметь систему обыкновенных дифференциальных уравнений первого порядка. Методы решения таких систем хорошо разработаны (имеются стандартные программы для ЭВМ).

Одним из направлений при решении краевых задач является совместное использование точных (Фурье, интегральных преобразований и др.) и приближенных (вариационных, взвешенных невязок, коллокаций и др.) аналитических методов. Такой комплексный подход позволяет наилучшим образом использовать положительные стороны этих двух важнейших аппаратов прикладной математики, так как появляется возможность без проведения тонких и громоздких математических расчетов в простой форме получать выражения, эквивалентные главной части точного решения, состоящего из бесконечного функционального ряда. Для практических расчетов, как правило, используется именно эта час- тичная сумма нескольких слагаемых . При использовании таких методов для получения более точных результатов на начальном участке параболической координаты необходимо выполнять большое число приближений. Однако при большом п координатные функции с соседними индексами приводят к алгебраическим уравнениям, связанным почти линейной зависимостью. Матрица коэффициентов в этом случае, являясь заполненной квадратной матрицей, близка к вырожденной и оказывается, как правило, плохо обусловленной. И при п - 3 ? °° приближенное решение может не сходиться даже к слабо точному решению. Решение систем алгебраических линейных уравнений с плохо обусловленными матрицами представляет существенные технические трудности вследствие быстрого накопления ошибок округления. Поэтому такие системы уравнений необходимо решать с большой точностью промежуточных вычислений .

Особое место среди приближенных аналитических методов, позволяющих получать аналитические решения на начальном участке временной (параболической) координаты занимают методы, в которых используется понятие фронта температурного возмущения. Согласно этим методам, весь процесс нагрева или охлаждения тел формально разделяется на две стадии. Первая из них характеризуется постепенным распространением фронта температурного возмущения от поверхности тела к его центру, а вторая - изменением температуры но всему объему тела вплоть до наступления стационарного состояния. Такое разделение теплового процесса по времени на две стадии позволяет осуществлять поэтапное решение задач нестационарной теплопроводности и для каждой из стадий в отдельности, как правило, уже в первом приближении находить удовлетворительные по точности, достаточно простые и удобные в инженерных приложениях расчетные формулы. Данные методы обладают и существенным недостатком, заключающимся в необходимости априорного выбора координатной зависимости искомой температурной функции. Обычно принимаются квадратичная или кубическая параболы. Эта неоднозначность решения порождает проблему точности, так как, принимая заранее тот или иной профиль температурного поля, всякий раз будем получать различные конечные результаты.

Среди методов, в которых используется идея конечной скорости перемещения фронта температурного возмущения, наибольшее распространение получил интегральный метод теплового баланса . С его помощью уравнение в частных производных удается свести к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого довольно часто можно получить в замкнутом аналитическом виде. Интегральный метод, например, можно использовать для приближенного решения задач, когда теплофизические свойства не являются постоянными, а определяются сложной функциональной зависимостью, и задач, в которых совместно с теплопроводностью приходится также учитывать и конвекцию. Интегральному методу также присущ отмеченный выше недостаток - априорный выбор температурного профиля, что порождает проблему однозначности решения и приводит к низкой его точности.

Многочисленные примеры применения интегрального метода к решению задач теплопроводности приведены в работе Т. Гудмена . В этой работе наряду с иллюстрацией больших возможностей показана и его ограниченность. Так, несмотря на то что многие задачи успешно решаются интегральным методом, существует целый класс задач, для которых этот метод практически не применим. Это, например, задачи с импульсным изменением входных функций. Причина обусловлена тем, что температурный профиль в виде квадратичной или кубической параболы не соответствует истинному профилю температур для таких задач. Поэтому если истинное распределение температуры в исследуемом теле принимает вид немонотонной функции, то получить удовлетворительное решение, согласующееся с физическим смыслом задачи, ни при каких условиях не удается.

Очевидный путь повышения точности интегрального метода - использование полиномиальных температурных функций более высокого порядка. В этом случае основные граничные условия и условия плавности на фронте температурного возмущения не являются достаточными для определения коэффициентов таких полиномов. В связи с этим возникает необходимость поиска недостающих граничных условий, которые совместно с заданными позволили бы определять коэффициенты оптимального температурного профиля более высокого порядка, учитывающего все физические особенности исследуемой задачи. Такие дополнительные граничные условия могут быть получены из основных граничных условий и исходного дифференциального уравнения их дифференцированием в граничных точках но пространственной координате и но времени .

При исследовании различных задач теплообмена предполагают, что теп- лофизические свойства не зависят от температуры, а в качестве граничных принимают линейные условия. Однако если температура тела изменяется в широких пределах, то ввиду зависимости теплофизических свойств от температуры уравнение теплопроводности становится нелинейным. Его решение значительно усложняется, и известные точные аналитические методы оказываются неэффективными. Интегральный метод теплового баланса позволяет преодолеть некоторые трудности, связанные с нелинейностью задачи. Например, с его помощью уравнение в частных производных с нелинейными граничными условиями приводится к обыкновенному дифференциальному уравнению с заданными начальными условиями, решение которого часто может быть получено в замкнутой аналитической форме.

Известно, что точные аналитические решения в настоящее время получены лишь для задач в упрощенной математической постановке, когда не учитываются многие важные характеристики процессов (нелинейность, переменность свойств и граничных условий и пр.). Все это приводит к существенному отклонению математических моделей от реальных физических процессов, протекающих в конкретных энергетических установках. К тому же точные решения выражаются сложными бесконечными функциональными рядами, которые в окрестностях граничных точек и при малых значениях временной координаты являются медленно сходящимися. Такие решения малопригодны для инженерных приложений, и особенно в случаях, когда решение температурной задачи является промежуточным этапом решения каких-либо других задач (задач термоуиругости, обратных задач, задач управления и др.). В связи с этим большой интерес представляют перечисленные выше методы прикладной математики, позволяющие получать решения, хотя и приближенные, но в аналитической форме, с точностью, во многих случаях достаточной для инженерных приложений. Эти методы позволяют значительно расширить круг задач, для которых могут быть получены аналитические решения по сравнению с классическими методами.

Метод проектов, обладающий огромными возможностями по формированию уневерсальных учебных действий, находит все более широкое распространение в системе школьного образования.Но "уместить" метод проектов в класснно-урочную систему достаточно трудно. Я включаю мини исследования в обычный урок. Такая форма работы открывает большие возможности для формирования познавательной деятельности и обеспечивает учет индивидуальных особенностей учащихся, готовит почву для развития навыков над большими проектами.

Скачать:


Предварительный просмотр:

«Если ученик в школе не научился сам ничего творить, то и в жизни он будет только подражать, копировать, так как мало таких, которые бы, научившись копировать, умели сделать самостоятельное приложение этих сведений». Л.Н.Толстой.

Характерной чертой современного образования является резкое увеличение объема информации, которую необходимо усвоить учащимся. A степень развития обучающегося измеряется и оценивается его способностью самостоятельно приобретать новые знания и использовать их в учебной и практической деятельности. Современный педагогический процесс требует использования инновационных технологий в обучении.

ФГОС нового поколения требует использования в образовательном процессе технологий деятельностного типа, методы проектно-исследовательской деятельности определены как одно из условий реализации основной образовательной программы.

Особая роль отводится такой деятельности на уроках математики и это не случайно. Математика является ключом к познанию мира, базой научно-технического прогресса и важной компонентой развития личности. Она призвана воспитать в человеке способность понять смысл поставленной перед ним задачи, умение логично рассуждать, усвоить навыки алгоритмического мышления.

Уместить метод проектов в классно-урочную систему достаточно трудно. Я пытаюсь разумно совмещать традиционную и личностно-ориентированную систему путем включения элементов исследования в обычный урок. Приведу ряд примеров.

Так при изучении темы «Окружность» мы проводим с учащимися следующее исследование.

Математическое исследование «Окружность».

  1. Подумайте, как построить окружность, какие инструменты для этого необходимы. Обозначение окружности.
  2. Для того чтобы дать определение окружности посмотрим, какими свойствами обладает эта геометрическая фигура. Соединим центр окружности с точкой принадлежащей окружности. Измерим длину этого отрезка. Повторим эксперимент три раза. Сделаем вывод.
  3. Отрезок, соединяющий центр окружности с любой ее точкой, называется радиусом окружности. Это определение радиуса. Обозначение радиуса. Пользуясь этим определением, постройте окружность с радиусом равным 2см5мм.
  4. Постройте окружность произвольного радиуса. Постройте радиус, измерьте его. Запишите результаты измерений. Постройте еще три различных радиуса. Сколько радиусов можно провести в окружности.
  5. Попытаемся, зная свойство точек окружности, дать ее определение.
  6. Постройте окружность произвольного радиуса. Соедините две точки окружности так, чтобы этот отрезок проходил через центр окружности. Этот отрезок называется диаметром. Дадим определение диаметра. Обозначение диаметра. Постройте еще три диаметра. Сколько диаметров имеет окружность.
  7. Постройте окружность произвольного радиуса. Измерьте диаметр и радиус. Сравните их. Повторите эксперимент еще три раза с различными окружностями. Сделайте вывод.
  8. Соедините две любые точки окружности. Полученный отрезок называется хордой. Дадим определение хорды. Постройте еще три хорды. Сколько хорд имеет окружность.
  9. Является ли радиус хордой. Докажите.
  10. Является ли диаметр хордой. Докажите.

Работы исследовательского характера могут носить пропедевтический характер. Исследовав окружность можно рассмотреть ряд интересных свойств, которые учащиеся могут сформулировать на уровне гипотезы, а потом уже доказать эту гипотезу. Например, следующее исследование:

«Математическое исследование»

  1. Построй окружность радиуса 3 см и проведи ее диаметр. Соедини концы диаметра с произвольной точкой окружности и измерь угол образованный хордами. Проведи те же построения еще для двух окружностей. Что ты замечаешь.
  2. Повтори эксперимент для окружности произвольного радиуса и сформулируй гипотезу. Можно ли считать ее доказанной с помощью проведенных построений и измерений.

При изучении темы «Взаимное расположение прямых на плоскости» проводится математическое исследование в группах.

Задания для групп:

  1. группа.

1.В одной системе координат построить графики функции

У = 2х, у = 2х+7, у = 2х+3, у = 2х-4, у = 2х-6.

2.Ответьте на вопросы, заполнив таблицу:

ВВЕДЕНИЕ. ДИСЦИПЛИНА ИССЛЕДОВАНИЕ ОПЕРАЦИЙ И ЧЕМ ОНА ЗАНИМАЕТСЯ

Формирование исследования операций как самостоятельной ветви прикладной математики относится к периоду 40-х и 50-х годов. Последу­ющие полтора десятилетия были отмечены широким применением полу­ченных фундаментальных теоретических результатов к разнообразным практическим задачам и связанным с этим переосмыслением потенци­альных возможностей теории. В результате исследование операций при­обрело черты классической научной дисциплины, без которой немыс­лимо базовое экономическое образование.

Обращаясь к задачам и проблемам, составляющим предмет исследо­вания операций, нельзя не вспомнить о вкладе, внесенном в их решение представителями отечественной научной школы, среди которых в пер­вую очередь должен быть назван Л. В. Канторович, ставший в 1975 г. лауреатом Нобелевской премии за свои работы по оптимальному ис­пользованию ресурсов в экономике.

Начало развития исследования операций как науки традицион­но связывают с сороковыми годами двадцатого столетия. Среди первых исследований в данном направлении может быть назва­на работа Л. В. Канторовича "Математические методы органи­зации и планирования производства", вышедшая в 1939 г. В за­рубежной литературе отправной точкой обычно считается вышедшая в 1947 г. работа Дж. Данцига, посвященная реше­нию линейных экстремальных задач.

Следует отметить, что не существует жесткого, устоявше­гося и общепринятого определения предмета исследования опе­раций. Часто при ответе на данный вопрос говорится, что "исследование операций представляет собой комплекс научных методов для решения задач эффективного управления организационными системами".

Второе определение: Исследование операций – это научная подготовка принимаемого решения – это совокупность методов, предлагаемых для подготовки и нахождения самых эффективных или самых экономичных решений.

Природа систем, фигурирующих в приведенном определении под именем "организационных", может быть самой различной, а их общие математические модели находят применение не толь­ко при решении производственных и экономических задач, но и в биологии, социологических исследованиях и других практи­ческих сферах. Кстати, само название дисциплины связано с применением математических методов для управления военны­ми операциями.

Несмотря на многообразие задач организационного управ­ления, при их решении можно выделить некоторую общую последовательность этапов, через которые проходит любое операционное исследование. Как правило, это:

1. Постановка задачи.

2. Построение содержательной (вербальной) модели рас­сматриваемого объекта (процесса). На данном этапе происходит формализация цели управления объектом, выделение возмож­ных управляющих воздействий, влияющих на достижение сфор­мулированной цели, а также описание системы ограничений на управляющие воздействия.

3. Построение математической модели, т. е. перевод сконст­руированной вербальной модели в ту форму, в которой для ее изучения может быть использован математический аппарат.

4. Решение задач, сформулированных на базе построенной математической модели.

5. Проверка полученных результатов на их адекватность природе изучаемой системы, включая исследование влияния так называемых внемодельных факторов, и возможная коррек­тировка первоначальной модели.

6. Реализация полученного решения на практике.

Центральное место в данном курсе отведено вопросам, отно­сящимся к четвертому пункту приведенной выше схемы. Это делается не потому, что он является самым важным, сложным или интересным, а потому, что остальные пункты существенно зависят от конкретной природы изучаемой системы, в силу чего для действий, которые должны производиться в их рамках, не могут быть сформулированы универсальные и содержательные рекомендации.

В самых разнообразных областях человеческой деятельности встречаются сходные между собой задачи: организация производства, эксплуатация транспорта, боевые действия, расстановка кадров, телефонная связь и т.д. Возникающие в этих областях задачи сходны между собой по постановке, обладают рядом общих признаков и решаются сходными методами.

Пример :

Организуется какое-то целенаправленное мероприятие (система действий), которое можно организовать тем или иным способом. Необходимо выбрать определенное решение из ряда возможных вариантов. Каждый вариант имеет преимущества и недостатки – сразу не ясно, какой из них предпочтительнее. С целью прояснить обстановку и сравнить между собой по ряду признаков различные варианты, организуется серия математических расчетов. Результаты расчетов показывают, на каком варианте остановится.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с дру­гой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся по­пытки выделить общие принципы создания математических мо­делей приводили либо к декларированию рекомендаций самого общего характера, трудноприложимых для решения конкрет­ных проблем, либо, наоборот, к появлению рецептов, примени­мых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

1) План снабжения предприятия.

Имеется ряд предприятий, использующих различные виды сырья; имеется ряд сырьевых баз. Базы связаны с предприятиями различными путями сообщения (железные дороги, автотранспорт, водный, воздушный транспорт). Каждый транспорт имеет свои тарифы. Требуется разработать такой план снабжения предприятий сырьем, чтобы потребности в сырье были удовлетворены при минимальных расходах на перевозки.

2) Постройка участка магистрали.

Сооружается участок железнодорожной магистрали. В нашем распоряжении определенное количество средств: людей, техники и т.п. Требуется назначить очередность работ, распределить людей и технику по участкам пути таким образом, чтобы завершить строительство в минимальные сроки.

Выпускается определенный вид изделий. Для обеспечения высокого качества продукции требуется организовать систему выборочного контроля: определить размер контрольной партии, набор тестов, правила отбраковки и т.д. Требуется обеспечить заданный уровень качества продукции при минимальных расходах на контроль.

4) Военные действия.

Целью в данном случае является уничтожение вражеского объекта.

Подобные задачи встречаются в практике часто. Они имеют общие черты. В каждой задаче определена цель – цели эти похожи; заданы некоторые условия – в рамках этих условий и нужно принять решение, чтобы данное мероприятие было наиболее выгодным. В соответствии с этими общими чертами применяются и общие методы.

1. ОБЩИЕ ПОНЯТИЯ

1.1. Цель и основные понятия в исследованиях операций

Операция – это всякая система действий (мероприятие), объединенных единым замыслом и направленных к достижению какой-то цели. Это управляемое мероприятие, то есть от нас зависит, каким способом выбрать некоторые параметры, характеризующие его организацию.

Каждый определенный выбор зависящих от нас параметров называется решением.

Целью исследования операций является предварительное количественное обоснование оптимальных решений.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут быть различные числа, векторы, функции, физически признаки и т.д.

Пример : перевозка однородного груза.

Существуют пункты отправления: А 1 , А 2 , А 3 ,…, А m .

Имеются пункты назначения: В 1 , В 2 , В 3 ,…, В n .

Элементами решения здесь будут числа x ij , показывающие, какое количество грузов будет отправлено из i-того пункта отправления в j -ый пункт назначения.

Совокупность этих чисел: x 11 , x 12 , x 13 ,…, x 1 m ,…, x n 1 , x n 2 ,…, x nm образует решение.

Чтобы сравнить между собой различные варианты, необходимо иметь какой-то количественный критерий – показатель эффективности (W ). Данный показатель называется целевой функцией.

Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Выбирая решение, стремимся, чтобы данный показатель стремился к максимуму или к минимуму. Если W – доход, то W max; а если W – расход, то W min.

Если выбор зависит от случайных факторов (погода, отказ техники, колебания спроса и предложения), то в качестве показателя эффективности выбирается среднее значение – математическое ожидание – .

В качестве показателя эффективности иногда выбирают вероятность достижения цели. Здесь цель операции сопровождается случайными факторами и работает по схеме ДА-НЕТ.

Для иллюстрации принципов выбора показателя эффективности вернемся к рассмотренным ранее примерам:

1) План снабжения предприятия.

Показатель эффективности виден в цели. R – число – стоимость перевозок, . При этом все ограничения должны быть выполнены.

2) Постройка участка магистрали.

В задаче большую роль играют случайные факторы. В качестве показателя эффективности выбирают среднее ожидаемое время окончания стройки .

3) Выборочный контроль продукции.

Естественный показатель эффективности, подсказанный формулировкой задачи – это средние ожидаемые расходы на контроль за единицу времени, при условии, что система контролирует обеспечение заданного уровня качества.

Сопровождается физическим или математическим моделированием. Физическое моделирование... макетов и их трудоемкое исследование . Математическое моделирование осуществляют с использованием... на моделирование необходимо проделать следующие операции : 1. вход в меню...

  • Исследование интегрирующего и дифференцирующего усилителей на базе ОУ

    Лабораторная работа >> Коммуникации и связь

    Работы является экспериментальное исследование свойств и характеристик... это одна из основных математических операций и ее электрическая реализация... ДБ Осциллограммы выходных напряжений при исследованиях в импульсном режиме: Интегрирующий усилитель...

  • Математические методы в экономическом анализе

    Контрольная работа >> Экономико-математическое моделирование

    Некоторые методы математического программирования и методы исследования операций , к оптимизационным приближенным - часть методов математического программирования, исследования операций , экономической...

  • Математические игры как средство развития логического мышления

    Дипломная работа >> Педагогика

    Развитие логического мышления. Предмет исследования : математические игры с помощью которых... действий с использованием логических операций . Умственные действия образуют... практических компонентов работы. Сложные операции абстрактного мышления переплетаются с...

  • И геометрией . Основной отличительный признак анализа в сравнении с другими направлениями - наличие функций переменных величин как предмета исследования. При этом, если элементарные разделы анализа в учебных программах и материалах часто объединяют с элементарной алгеброй (например, существуют многочисленные учебники и курсы с наименованием «Алгебра и начала анализа»), то современный анализ в значительной степени использует методы современных геометрических разделов, прежде всего, дифференциальной геометрии и топологии .

    История

    Отдельные ответвления от «анализа бесконечно малых», такие как теория обыкновенных дифференциальных уравнений (Эйлер , Иоганн Бернулли , Д’Аламбер), вариационное исчисление (Эйлер, Лагранж), теория аналитических функций (Лагранж, Коши , впоследствии - Риман), начали обособляться ещё в XVIII - первой половине XIX века. Однако началом формирования анализа как самостоятельного современного раздела считаются труды середины XIX века по формализации ключевых понятий классического анализа - вещественного числа , функции , предела , интеграла , прежде всего, в трудах Коши и Больцано , и приобретшие законченную форму к 1870-м - 1880-м годам в работах Вейерштрасса , Дедекинда и Кантора . В этой связи сформировались теория функций вещественной переменной и, в развитии методов работы с аналитическими функциями, - теория функций комплексной переменной . Созданная Кантором в конце XIX века наивная теория множеств дала толчок к появлению понятий метрического и топологического пространств, что в значительной мере изменило весь инструментарий анализа, повысив уровень абстракции изучаемых объектов и переместив фокус с вещественных чисел к нечисловым понятиям.

    В начале XX века в основном силами французской математической школы (Жордан , Борель , Лебег , Бэр) была создана теория меры , благодаря которой обобщено понятие интеграла, а также построена теория функций действительной переменной . Также в начале XX века начал формироваться функциональный анализ как самостоятельный подраздел современного анализа, изучающий топологические векторные пространства и их отображения . Термин «функциональный анализ» ввёл Адамар , обозначая ветвь вариационного исчисления, разрабатываемую на рубеже XIX и XX веков группой итальянских и французских математиков (в их числе - Вольтерра , Арцела). В 1900 году Фредгольм публикует статью об интегральных уравнения, как давшую толчок для развития теории интегральных уравнений , развития общей теории интегрирования (Лебег), так и формирования функционального анализа . В 1906 году в работе Гильберта очерчена спектральная теория , в том же году опубликована работа Фреше , в которой впервые в анализ введены абстрактные метрические пространства . В 1910-е - 1920-е годы уточнены понятия отделимости и впервые применены общетопологические методы к анализу (Хаусдорф), освоены функциональные пространства и начато формирование общей теории нормированных пространств (Гильберт, Рис , Банах , Хан). В период 1929-1932 годов сформирована аксиоматическая теория гильбертовых пространств (Джон фон Нейман , Маршалл Стоун , Рис). В 1936 году Соболевым сформулировано понятие обобщённой функции (позднее в 1940-х годах независимо от него к подобному понятию пришёл Лоран Шварц), получившее широкое распространение во многих разделах анализа и нашедшее широкое применение в приложениях (например, обобщённой является δ {\displaystyle \delta } -функция Дирака). В 1930-е - 1950-е годы в функциональном анализе получены значительные результаты за счёт применения общеалгебраических инструментов (векторные решётки , операторные алгебры , банаховы алгебры).

    К середине XX века получили самостоятельное развитие такие направления как теория динамических систем и эргодическая теория (Джордж Биркгоф , Колмогоров , фон Нейман), существенно обобщены результаты гармонического анализа за счёт применения общеалгебраических средств - топологических групп и представлений (Вейль , Петер , Понтрягин). Начиная с 1940-х - 1950-х годов методы функционального анализа нашли применение в прикладных сферах, в частности, в работах Канторовича 1930-х - 1940-х годов инструменты функционального анализа использованы в вычислительной математике и экономике (линейное программирование). В 1950-е годы в трудах Понтрягина и учеников в развитие методов вариационного исчисления создана теория оптимального управления .

    Начиная со второй половины XX века с развитием дифференциальной топологии к анализу примкнуло новое направление - анализ на многообразиях , получившее название «глобальный анализ» , фактически начавшее формироваться ранее, в 1920-е годы в рамках теории Морса как обобщение вариационного исчисления (называемое Морсом «вариационное исчисление в целом», англ. variation calculus in large ). К этому направлению относят созданные в развитие теории бифуркаций динамических систем (Андронов) такие направления, как теорию особенностей (Уитни , ) и теорию катастроф (Том , и Мазер , ), получившие в 1970-е годы развитие в работах Зимана и Арнольда .

    Классический математический анализ

    Классический математический анализ - раздел, фактически полностью соответствующий историческому «анализу бесконечно малых », состоит из двух основных компонентов: дифференциального и интегрального исчислений. Основные понятия - предел функции , дифференциал , производная , интеграл , главные результаты - формула Ньютона - Лейбница , связывающая определённый интеграл и первообразную и ряд Тейлора - разложение в ряд бесконечно дифференцируемой функции в окрестности точки.

    Под термином «математический анализ» обычно понимают именно этот классический раздел, при этом он используется в основном в учебных программах и материалах. При этом изучение основ анализа входит в большинство среднеобразовательных программ, а более или менее полное изучение предмета включено в программы первых лет высшего образования для широкого круга специальностей, в том числе многих гуманитарных. В англо-американской образовательной традиции для обозначения классического математического анализа используется термин «исчисление» (англ. calculus ).

    Теория функций вещественной переменной (иногда именуется кратко - теория функций ) возникла вследствие формализации понятий вещественного числа и функции : если в классических разделах анализа рассматривались только функции, возникающие в конкретных задачах, естественным образом, то в теории функций сами функции становятся предметом изучения, исследуется их поведение, соотношения их свойств. Один из результатов, иллюстрирующих специфику теории функций вещественной переменной - факт, что непрерывная функция может не иметь производной ни в одной точке (притом согласно более ранним представлениям классического математического анализа дифференцируемость всех непрерывных функций не подвергалась сомнению).

    Основные направления теории функций вещественной переменной :

    Теория функций комплексной переменной

    Предмет изучения теории функций комплексной переменной - числовые функции, определённые на комплексной плоскости C 1 {\displaystyle \mathbb {C} ^{1}} или комплексном евклидовом пространстве C n {\displaystyle \mathbb {C} ^{n}} , при этом наиболее тщательно изучены аналитические функции , играющие важную связующую роль практически для всех ветвей математического анализа. В частности, понятие аналитической функции обобщено для произвольных банаховых пространств , тем самым многие результаты теории функций комплексной переменной нашли обобщение в функциональном анализе.

    Функциональный анализ

    Функциональный анализ как раздел характеризуется наличием в качестве предмета изучения топологических векторных пространств и их отображений с наложенными на них различными алгебраическими и топологическими условиями . Центральную роль в функциональном анализе играют функциональные пространства, классический пример - пространства всех измеримых функций , чья p {\displaystyle p} -я степень интегрируема; при этом уже L 2 {\displaystyle L^{2}} - бесконечномерное пространство (гильбертово пространство), и пространства бесконечных размерностей присущи функциональному анализу настолько, что иногда весь раздел определяется как часть математики, изучающая бесконечномерные пространства и их отображения . Важнейшей формой пространств в классических разделах функционального анализа являются банаховы пространства - нормированные векторные пространства, полные по метрике, порождённой нормой: значительная доля интересных на практике пространств являются таковыми, среди них - все гильбертовы пространства, пространства L p {\displaystyle L^{p}} , пространства Харди , пространства Соболева . Важную роль играют в функциональном анализе играют алгебраические структуры, являющиеся банаховыми пространствами - банаховы решётки и банаховы алгебры (в том числе - C ∗ {\displaystyle C^{*}} -алгебры , алгебры фон Неймана).

    В абстрактном гармоническом анализе классические методы обобщены для абстрактных структур с использованием таких понятий, как мера Хаара и представления групп . Важнейший результат коммутативного гармонического анализа - теорема Понтрягина о двойственности , благодаря которой относительно простыми общеалгебраическими средствами описываются практически все классические результаты гармонического анализа. Дальнейшее развитие теории - некоммутативный гармонический анализ, имеющий важные приложения в квантовой механике .

    Дифференциальные и интегральные уравнения

    В теории интегральных уравнений , кроме классических методов решения, выделяются такие направления, как теория Фредгольма , оказавшая заметное влияние на формирование функционального анализа как самостоятельного раздела, в частности, способствовавшая формированию понятия гильбертова пространства .

    Теория динамических систем и эргодическая теория

    Из основных направлений изучения дифференциальных уравнений в качестве самостоятельных разделов выделились теория динамических систем , изучающая эволюцию во времени механических систем, и эргодическая теория , нацеленная на обоснование статистической физики . Несмотря на прикладной характер задач, к этим разделам относится широкий пласт понятий и методов общематемического значения, в частности, таковы понятия устойчивости и эргодичности .

    Глобальный анализ

    Глобальный анализ - раздел анализа, изучающий функции и дифференциальные уравнения на многообразиях и векторных расслоениях ; иногда это направление обозначается как «анализ на многообразиях».

    Одно из первых направлений глобального анализа - теория Морса и её применение к задачам о геодезических на римановых многообразиях ; направление получило название «вариационное исчисление в целом». Основные результаты - лемма Морса , описывающая поведение гладких функций на гладких многообразиях в невырожденных особых точках, и такой гомотопический инвариант, как категория Люстерника - Шнирельмана . Многие из конструкций и утверждений обобщены на случай бесконечномерных многообразий (гильбертовых многообразий * , банаховых многообразий ). Результаты, полученные в рамках глобального анализа особых точек нашли широкое и для решения чисто топологических задач, такова, например, теорема периодичности Ботта , во многом послужившая основанием для самостоятельного раздела математики - K {\displaystyle K} -теории , а также теорема об h {\displaystyle h} -кобордизме , следствием которой является выполнение гипотезы Пуанкаре для размерности, превосходящей 4.

    Ещё один крупный блок направлений глобального анализа, получивший широкое применение в физике и экономике - теория особенностей , теория бифуркаций и теория катастроф ; основное направление исследований данного блока - классификация поведений дифференциальных уравнений или функций в окрестностях критических точек и выявление характерных особенностей соответствующих классов.

    Нестандартный анализ

    Нестандартный анализ - формализация ключевых понятий анализа средствами математической логики , основная идея - формальная актуализация бесконечно больших и бесконечно малых величин, и логическая формализация манипуляций с ними. При этом средства нестандартного анализа оказываются весьма удобными: ими получены результаты, ранее не найденные классическими средствами из-за недостатка наглядности