Локальная и интегральная теоремы лапласа. Молекулярная физика определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах

Известно, что поверхность жидкости около стенок сосуда искривляется. Свободная поверхность жидкости, искривлённая около стенок сосуда, называется мениском (рис. 145).

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает добавочное давление (плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки ).

Рис. 146.

Рассмотрим поверхность жидкости, опирающуюся на некоторый плоский контур (рис.146, а ). Если поверхность жидкости не плоская, то стремление ее к сокращению и приведет к возникновению давления , дополнительного к тому, которое испытывает жидкость с плоской поверхностью. В случае выпуклой поверхности это дополнительное давление положительно (рис. 146, б ), в случае вогнутой поверхности – отрицательно (рис. 146, в ). В последнем случае поверхностный слой, стремясь сократиться, растягивает жидкость.

Величина добавочного давления, очевидно, должна возрастать с увеличением коэффициента поверхностного натяжения и кривизны поверхности .

Рис. 147.
Вычислим добавочное давление для сферической поверхности жидкости. Для этого рассечем мысленно сферическую каплю жидкости диаметральной плоскостью на два полушария (рис. 147). Из-за поверхностного натяжения оба полушария притягиваются друг к другу с силой, равной:

.

Эта сила прижимает друг к другу оба полушария по поверхности и, следовательно, обусловливает дополнительное давление:

Кривизна сферической поверхности всюду одинакова и определяется радиусом сферы . Очевидно, что чем меньше , тем больше кривизна сферической поверхности.

Избыточное давление внутри мыльного пузыря в два раза больше, так как пленка имеет две поверхности:

Добавочное давление обусловливает изменение уровня жидкости в узких трубках (капиллярах), вследствие чего называется иногда капиллярным давлением .

Кривизну произвольной поверхности принято характеризовать так называемой средней кривизной , которая может оказаться различной для разных точек поверхности.

Величина дает кривизну сферы. В геометрии доказывается, что полусумма обратных радиусов кривизны для любой пары взаимно перпендикулярных нормальных сечений имеет одно и то же значение:

. (1)

Эта величина и есть средняя кривизна поверхности в данной точке. В этой формуле радиусы – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен (рис.148).

Рис. 148.
Таким образом, неплоская поверхность может иметь среднюю кривизну, равную нулю. Для этого нужно, чтобы радиусы кривизны были одинаковы по величине и противоположны по знаку.

Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому и . Для случая поверхности кругового цилиндра радиуса имеем: , и .

Можно доказать, что для поверхности любой формы справедливо соотношение:

Подставив в формулу (2) выражение (1), получим формулу добавочного давления под произвольной поверхностью, называемую формулой Лапласа (рис. 148):

. (3)

Радиусы и в формуле (3) – алгебраические величины. Если центр кривизны нормального сечения находится под данной поверхностью, соответствующий радиус кривизны положителен; если центр кривизны лежит над поверхностью, радиус кривизны отрицателен.

Пример. Если в жидкости имеется пузырек газа, то поверхность пузырька, стремясь сократиться, будет оказывать на газ дополнительное давление . Найдем радиус пузырька в воде, при котором добавочное давление равно1 aтм . .Коэффициент поверхностного натяжения воды при равен . Следовательно, для получается следующее значение: .

Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления.

Жидкостями называются вещества, находящиеся в конденсированном состоянии, которое является промежуточным между твердым кристаллическим состоянием и газообразным состоянием.

Область существования жидкостей ограничена со стороны высоких температур переходом ее в газообразное состояние, со стороны низких температур – переходом в твердое состояние.

В жидкостях расстояние между молекулами значительно меньше, чем в газах (плотность жидкостей в ~ 6000 раз больше плотности насыщенного пара вдали от критической температуры) (рис.1).

Рис.1. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10 7 раз

Следовательно, силы межмолекулярного взаимодействия в жидкостях, в отличие от газов, являются основным фактором, который определяет свойства жидкостей. Поэтому жидкости, как и твердые тела, сохраняют свой объем и имеют свободную поверхность. Подобно твердым телам жидкости характеризуются очень малой сжимаемостью и сопротивляются растяжению.

Однако силы связей между молекулами жидкости не настолько велики, чтобы препятствовать скольжению слоев жидкости относительно друг друга. Поэтому жидкости, как и газы, обладают текучестью. В поле силы тяжести жидкости принимают форму сосуда, в который они налиты.

Свойства веществ определяются движением и взаимодействием частиц, из которых они состоят.

В газах в столкновениях участвуют в основном две молекулы. Следовательно, теория газов сводится к решению задачи двух тел, которая может быть решена точно. В твердых телах молекулы совершают колебательное движение в узлах кристаллической решетки в периодическом поле, созданном другими молекулами. Такая задача поведения частиц в периодическом поле так же решается точно.

В жидкостях каждую молекулу окружают несколько других. Задача подобного типа (задача многих тел) в общем, виде, независимо от природы молекул, характера их расположения до сих пор точно не решена.

Опыты по дифракции рентгеновских лучей, нейтронов, электронов помогли определить строение жидкостей. В отличие от кристаллов, в которых наблюдается дальний порядок (регулярность размещения частиц в больших объемах), в жидкостях на расстояниях порядка 3 – 4 молекулярных диаметров порядок в размещении молекул нарушается. Следовательно, в жидкостях наблюдается так называемый ближний порядок в размещении молекул (рис.2):

Рис.2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

В жидкостях молекулы совершают малые колебания в пределах ограниченных межмолекулярными расстояниями. Однако время от времени в результате флуктуаций молекула может получить от соседних молекул энергию, которой хватит, чтобы скачком переместиться в новое положение равновесия. В новом положении равновесия молекула будет находиться некоторое время, пока снова, в результате флуктуаций не получит энергию необходимую для скачка. Скачок молекулы происходит на расстояние сравнимое с размерами молекулы. Колебания, которые сменяются скачками, представляют собой тепловое движение молекул жидкости.

Среднее время, которое молекула находится в состоянии равновесия, называется временем релаксации . При повышении температуры увеличивается энергия молекул, следовательно, увеличивается вероятность флуктуаций, время релаксации при этом уменьшается:

(1)

где τ – время релаксации, B – коэффициент, имеющий смысл периода колебаний молекулы, W энергия активации молекулы, т.е. энергия необходимая для совершения скачка молекулы .

Внутреннее трение в жидкостях, как и в газах, возникает при движении слоев жидкости из-за переноса импульса в направлении нормали к направлению движения слоев жидкости. Перенос импульса от слоя к слою происходит и при скачках молекул. Однако, в основном, импульс переносится из-за взаимодействия (притяжения) молекул соседних слоев.

В соответствии с механизмом теплового движения молекул жидкости, зависимость коэффициента вязкости от температуры имеет вид:

(2)

где A – коэффициент, зависящий от дальности скачка молекулы, частоты ее колебаний и температуры, W энергия активации .

Уравнение (2) – формула Френкеля-Андраде . Температурная зависимость коэффициента вязкости в основном определяется экспоненциальным множителем.

Величина обратная вязкости называется текучестью . При понижении температуры вязкость некоторых жидкостей увеличивается настолько, что они практически перестают течь, образуя аморфные тела (стекло, пластмассы, смолы и т.д.).

Каждая молекула жидкости взаимодействует с соседними молекулами, которые находятся в зоне действия ее молекулярных сил. Результаты этого взаимодействия неодинаковые для молекул внутри жидкости и на поверхности жидкости. Молекула, находящаяся внутри жидкости взаимодействует с соседними молекулами окружающими ее и, равнодействующая сила, которая на нее действует, равна нулю (рис.3).

Рис.3. Силы, действующие на молекулы жидкости

Молекулы поверхностного слоя находятся при других условиях. Плотность пара над жидкостью значительно меньше плотности жидкости. Поэтому на каждую молекулу поверхностного слоя действует равнодействующая сила, направленная по нормали внутрь жидкости (рис.3). Поверхностный слой оказывает давление на остальную жидкость подобно упругой пленке. Молекулы, лежащие в этом слое также притягиваются друг к другу (рис.4).

Рис.4. Взаимодействие молекул поверхностного слоя

Это взаимодействие создает силы направленные по касательной к поверхности жидкости и стремящиеся сократить поверхность жидкости.

Если на поверхности жидкости провести произвольную линию, то по нормали к линии и по касательной к поверхности будут действовать силы поверхностного натяжения. Величина этих сил пропорциональна числу молекул, находящихся вдоль этой линии, следовательно, пропорциональна длине линии:

(3)

где σ – коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения :

(4)

Коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность жидкости .

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия примесей. Вещества, которые уменьшают поверхностное натяжение, называются поверхностно - активными (спирт, мыло, стиральный порошок и т.д.).

Чтобы увеличить площадь поверхности жидкости, необходимо выполнить работу против сил поверхностного натяжения. Определим величину этой работы. Пусть имеется рамка с жидкой пленкой (например, мыльной) и подвижной перекладиной (рис.5).

Рис.5. Подвижная сторона проволочной рамки находится в равновесии под действием внешней силы F вн и результирующей сил поверхностного натяжения F н

Растянем пленку силой F вн на dx . Очевидно:

где F н = σL –сила поверхностного натяжения. Тогда:

где dS = Ldx – приращение площади поверхности пленки. Из последнего уравнения:

(5)

Согласно (5) коэффициент поверхностного натяжения численно равен работе необходимой для увеличения площади поверхности на единицу при постоянной температуре. Из (5) видно, что σ может измеряться в Дж/м 2 .

Если жидкость граничит с другой жидкостью или с твердым телом, то из-за того, что плотности соприкасающихся веществ сравнимые, нельзя не обращать внимания на взаимодействие молекул жидкости с молекулами граничащих с ней веществ.

Если при контакте жидкости и твердого тела взаимодействие между их молекулами более сильное, чем взаимодействие между молекулами самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растекается по поверхности твердого тела. В этом случае жидкость смачивает твердое тело . Если взаимодействие между молекулами жидкости сильнее, чем взаимодействие между молекулами жидкости и твердого тела, то жидкость сокращает поверхность соприкосновения. В этом случае жидкость не смачивает твердое тело . Например: вода смачивает стекло, но не смачивает парафин, ртуть смачивает поверхности металлов, но не смачивает стекло.

Рис.6. Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Рассмотрим каплю жидкости на поверхности твердого тела (рис.7):

Рис.7. Схемы к расчету равновесия капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей: 1 - газ, 2 - жидкость, 3 - твердое тело

Форма капли определяется взаимодействием трех сред: газа – 1, жидкости – 2 и твердого тела – 3. У всех этих сред есть общая граница – окружность, ограничивающая каплю. На элемент длины dl этого контура, будут действовать силы поверхностного натяжения: F 12 = σ 12 dl – между газом и жидкостью, F 13 = σ 13 dl - между газом и твердым телом, F 23 = σ 23 dl – между жидкостью и твердым телом. Если dl =1м, то F 12 = σ 12 , F 13 = σ 13 , F 23 = σ 23 . Рассмотрим случай когда:

Это значит, что <θ = π (рис.7,а). Окружность, которая ограничивает место соприкосновения жидкости с твердым телом, будет стягиваться в точку и капля принимает эллипсоидальную или сферическую форму. Это случай полного несмачивания. Полное несмачивание наблюдается также и в случае: σ 23 > σ 12 + σ 13 .

Другой граничный случай будет наблюдаться если:

Это значит, что <θ = 0 (рис.7,б), наблюдается полное смачивание. Полное смачивание будет наблюдаться и в случае когда: σ 13 > σ 12 + σ 23 . В этом случае равновесия не будет, ни при каких значениях угла θ , и жидкость будет растекаться по поверхности твердого тела вплоть до мономолекулярного слоя.

Если капля находится в равновесии, то равнодействующая всех сил, действующих на элемент длины контура равна нулю. Условие равновесия в этом случае:

Угол между касательными к поверхности твердого тела и к поверхности жидкости, который отсчитывается внутри жидкости , называется краевым углом .

Его значение определяется из (6):

(7)

Если σ 13 > σ 23 , то cosθ > 0, угол θ острый – имеет место частичное смачивание, если σ 13 < σ 23 , то cosθ < 0 – угол θ тупой – имеет место частичное несмачивание. Таким образом, краевой угол является величиной, характеризующей степень смачивания или несмачивания жидкости

Кривизна поверхности жидкости приводит к возникновению добавочного давления, действующего на жидкость под этой поверхностью. Определим величину добавочного давления под искривленной поверхностью жидкости. Выделим на произвольной поверхности жидкости элемент площадью ∆S (рис.8):

Рис.8. К расчету величины добавочного давления

O O – нормаль к поверхности в точке O . Определим силы поверхностного натяжения действующие на элементы контура AB и CD . Силы поверхностного натяжения F и F ′, которые действуют на AB и CD , перпендикулярны AB и CD и направлены по касательной к поверхности ∆S . Определим величину силы F :

Разложим силу F на две составляющих f 1 и f ′. Сила f 1 параллельна O O и направлена внутрь жидкости. Эта сила увеличивает давление на внутренние области жидкости (вторая составляющая растягивает поверхность и на величину давления не влияет).

Проведем плоскость перпендикулярную ∆S через точки M , O и N . Тогда R 1 – радиус кривизны поверхности в направлении этой плоскости. Проведем плоскость перпендикулярную ∆S и первой плоскости. Тогда R 2 – радиус кривизны поверхности в направлении этой плоскости. В общем случае R 1 ≠ R 2 . Определим составляющую f 1 . Из рисунка видно:

Учтем, что:

(8)

Силу F ′ разложим на такие же две составляющих и аналогично определим составляющую f 2 (на рисунке не показана):

(9)

Рассуждая аналогично, определим составляющие сил действующих на элементы AC и BD , учитывая, что вместо R 1 будет R 2:

(10)

Найдем сумму всех четырех сил, действующих на контур ABDC и оказывающих добавочное давление на внутренние области жидкости:

Определим величину добавочного давления:

Следовательно:

(11)

Уравнение (11) называется формулой Лапласа . Добавочное давление, которое оказывает искривленная поверхность жидкости на внутренние области жидкости, называется лапласовским давлением .

Лапласовское давление очевидно направлено к центру кривизны поверхности. Поэтому в случае выпуклой поверхности оно направлено внутрь жидкости и добавляется к нормальному давлению жидкости. В случае вогнутой поверхности жидкость будет находиться под меньшим давлением, чем жидкость под плоской поверхностью, т.к. лапласовское давление направлено за пределы жидкости.

Если поверхность сферическая, то: R 1 = R 2 = R :

Если поверхность цилиндрическая, то: R 1 = R , R 2 = ∞:

Если поверхность плоская то: R 1 = ∞, R 2 = ∞:

Если поверхностей две, например, мыльный пузырь, то лапласовское давление удваивается.

С явлениями смачивания и несмачивания связаны так называемые капиллярные явления . Если в жидкость опустить капилляр (трубка малого диаметра), то поверхность жидкости в капилляре принимает вогнутую форму, близкую к сферической в случае смачивания и выпуклую в случае несмачивания. Такие поверхности называются менисками .

Капиллярами называются такие трубки, в которых радиус мениска примерно равен радиусу трубки.

Рис. 9. Капилляр в смачивающей (а) и не смачивающей (б) жидкостях

Рис.10. Подъем жидкости в капилляре в случае смачивания

В случае вогнутого мениска добавочное давление направленно к центру кривизны вне жидкости. Поэтому давление под мениском меньше давления под плоской поверхностью жидкости в сосуде на величину лапласовского давления:

R – радиус мениска, r – радиус капиллярной трубки.

Следовательно, лапласовское давление вызовет подъем жидкости в капилляре на такую высоту h (рис.9), пока гидростатическое давление столба жидкости не уравновесит лапласовское давление:

Из последнего уравнения:

(12)

Уравнение (12) называется формулой Жюрена . Если жидкость несмачивает стенки капилляра, мениск выпуклый, cosθ < 0, то жидкость в этом случае опускается ниже уровня жидкости в сосуде на такую же глубину h согласно формуле (12) (рис.9).

Рассмотрим выпуклую поверхность (рис. 5.18), кривизна ко­торой в точке О для каждого из двух взаимно перпендикуляр­ных нормальных сечений различна. Пусть я-внешняя нормаль

к поверхности в точке О; MN и Р г Р 2 -главные сечения. Вы­делим мысленно элемент поверхности AS U и рассчитаем силы поверхностного натяжения, действующие на отрезки АВ и CD, АС и BD, полагая, что АВ = CD и AC ~ BD. На каждую еди­ницу длины контура ABDC действует сила поверхностного на­тяжения а окружающей жидкости, стремящаяся растянуть элемент поверхности AS n во все стороны. Все силы, действую­щие на сторону АВ, заменим одной равнодействующей силой A.F, приложенной к середине отрезка АВ = А/ в перпендикуные параллельно п, только в них вместо R x будет радиус кри­визны £? 2 перпендикулярного сечения Р г Р. г. Радиус R 2 изобра­жен на рис. 5.18 отрезком P-fi". Отсюда равнодействующая AF-* всех нормальных сил, действующих на четыре стороны

элемента поверхности А5 П, AF~ = ДК. + AF, + af s f AF. = V af, да (rAS n | - -|- -V

Сила AF^ прижимает элемент поверхности А5 П к слоям, распо­ложенным ниже его. Отсюда среднее давление р ср, обусловлен­ное искривлением поверхности,

Чтобы получить давление р а в точке, устремим AS, к нулю. Переходя к пределу отношения AF^ к площади as n , на кото­рую действует эта сила, получим AF^ dF.

AS n -*o AS n dS n \ R, R 2

Но по определению

p. = о 14-+ 4-\ (5 - 8)

p„ = a I ■

где R lt R 2 - главные радиусы кривизны в данной точке по­верхности.

В дифференциальной геометрии выражение е = -~ ^--\-

J--) называют средней кривизной поверхности в точке Р.

Она имеет одно и то же значение для всех пар нормальных се­чений, перпендикулярных друг к другу.

Выражение (5.8), устанавливающее зависимость перепада гидростатического давления р а на поверхности раздела двух фаз (жидкость - жидкость, жидкость -■ газ или пар) от меж­фазного поверхностного натяжения а и средне!! кривизны по­верхности 8 в рассматриваемой точке называется формулой Лапласа в честь французского физика Лапласа.

Величина р а прибавляется к капиллярному давлению р ь соответствующему плоской поверхности. Если поверхность вог­нута, тогда в формуле (5.8) ставится знак минус. В общем случае произвольной поверхности радиусы кривизны R x и R 2 мо­гут отличаться друг от друга как по величине, так и по зна­ку. Так, например, у поверхности, изображенной на рис. 5.19, радиусы кривизны R x и R 2 в двух взаимно перпендикулярных нормальных сечениях различны по величине и знаку. Этот слу­чай может привести к положительным или отрицательным зна­чениям р а в зависимости от абсолютной величины R x и R 2 . Принято считать, что если центр кривизны нормального сече­ния находится под поверхностью, то соответствующий ей ра­диус кривизны является положительным, если над поверх­ностью - отрицательным. Поверхности, средняя кривизна которых



во всех точках равна нулю е == ~(~--1" - 0 , называ­ют минимальными поверхностями. Если в одной точке такой поверхности /? 1 >0, то автоматически /? 2 <С0.

Для сферы любое нормальное сечение представляет собой окружность радиуса R, поэтому в формуле (5.8) /? х = R 2 = R и добавочное капиллярное давление

Р. = ~. (5-9)

Для мыльного пузыря вследствие существования у него внеш­ней и внутренней поверхностей

Р*=-~- (5-Ю)

Если для кругового цилиндра одним из нормальных сечений считать сечение, идущее вдоль образующей, то R x = со. Второе, перпендикулярное к нему сечение дает окружность радиуса

R (R 2 = R). Поэтому в соответствии с формулой (5.8) добавочное капиллярное давление под цилиндрической поверхностью

Р. = -}|- (5-И)

Из выражений (5.9) - (5.11) видно, что при изменении фор­мы поверхности меняется лишь коэффициент перед отношением a/R. Если поверхность жидкости плоская, то R x ~ R 2 = со и, следовательно, р з = 0. В этом случае суммарное давление

Р = Pi ± р а = Pi ± 0 = p t .

Добавочное капиллярное давление, определяемое формулой Лапласа, всегда направлено к центру кривизны. Поэтому для выпуклой поверхности оно направлено внутрь жидкости, для вогнутой -наружу. В первом случае оно прибавляется к ка­пиллярному давлению p h во втором--вычитается из него. Ма­тематически это учитывается тем, что для выпуклой поверхности радиус кривизны считается положительным, для вогнутой - от­рицательным.



Качественную зависимость добавочного капиллярного давле­ния от кривизны поверхности можно наблюдать на следующем опыте (рис. 5.20). Концы А я В стеклянного тройника опускают в раствор мыльной воды. В результате оба конца тройника затя­гиваются мыльной пленкой. Вынув тройник из раствора, через отросток С выдувают два мыльных пузыря. Как правило, вслед­ствие различных причин пузыри имеют разные размеры. Если закрыть отверстие С, то пузырь большего размера будет постепен­но раздуваться, а меньшего-сокращаться. Это убеждает нас в том, что капиллярное давление, вызванное кривизной поверх­ности, растет с уменьшением радиуса кривизны.

Чтобы составить представление о величине добавочного ка: пиллярного давления, вычислим его для капли диаметра 1 мкм (примерно из таких капель часто состоят облака):

2а 2.72,75-Ю- 3 „ мгт

р --= -==-= 0,1455 МПа.

5.8. Смачивание

Поверхностным натяжением обладает не только свободная поверхность жидкости, но и граница раздела двух жидкостей, жидкости и твердого тела, а также свободная поверхность твердого тела. Во всех случаях поверхностная энергия опреде­ляется как разность между энергией молекул у поверхности раздела и энергией в объеме соответствующей фазы. При этом величина поверхностной энергии на границе раздела зависит от свойств обеих фаз. Так, например, на границе вода - воздух а = 72,75-10 ~ 3 Н/м (при 20 °С и нормальном атмосферном дав­лении), на границе вода-эфир а= 12-10 3 Н/м, а на границе вода - ртуть а = 427-10~ 3 Н/м.

Молекулы (атомы, ионы), находящиеся на поверхности твер­дого тела, испытывают притяжение с одной стороны. Поэтому твердые тела так же, как и жидкости, обладают поверхностным натяжением.

Опыт показывает, что капля жидкости, находящейся на по­верхности твердой подложки, приобретает ту или иную форму в зависимости от природы твердого тела, жидкости и среды, в ко­торой они находятся. Чтобы уменьшить потенциальную энергию в поле силы тяжести, жидкость всегда стремится принять такую форму, при которой центр ее массы занимает наинизшее положе­ние. Эта тенденция и приводит к растеканию жидкости по по­верхности твердого тела. С другой стороны, силы поверхностного натяжения стремятся придать жидкости форму, соответствующую минимуму поверхностной энергии. Конкуренция между этими силами и приводит к созданию той или иной формы.

Самопроизвольное увеличение площади фазовой границы твер­дое тело - жидкость или жидкость А - жидкость В под влияни­ем молекулярных сил сцепления называется растеканием.

Выясним причины, приводящие к растеканию капли по поверх­ности. На молекулу С (рис. 5.21, а), находящуюся в месте соприкосновения капли жидкости с твердой подложкой, с одной

стороны действуют силы притяжения молекул жидкости, равно­действующая которых Fj_ направлена по биссектрисе краевого угла с другой - молекулы твердого тела, равнодействующая которых F 2 перпендикулярна к его поверхности. Равнодействую­щая R этих двух сил наклонена влево от вертикали, как пока­зано на рисунке. В этом случае стремление жидкости расположить свою поверхность перпендикулярно к R приведет к ее растеканию (смачиванию).

Процесс растекания жидкости прекращается, когда угол Ф (его называют краевым) между касательной к поверхности жид­кости в точке С и поверхностью твердого тела достигает неко­торого предельного значения гт к, характерного для каждой пары жидкость -твердое тело. Если краевой угол острый

(0 ^ ■& ^ -), то жидкость смачивает поверхность твердого

тела и тем лучше, чем он меньше. При $ к = 0 имеет место полное Смачивание, при котором жидкость растекается по по­верхности до образования мономолекулярной пленки. Смачива­ние обычно наблюдается на границе соприкосновения трех фаз, одна из которых является твердым телом (фаза 3), а две дру­гие - несмешивающимися жидкостями или жидкостью и газом (фазы / и 2) (см. рис. 5.21, с).

Если сила F x больше, чем F. 2 , т. е. со стороны жидкости силы притяжения на выделенную молекулу больше, чем со стороны твердого тела, то краевой угол $ будет большим и картина вы­глядит так, как показано на рис. 5.21, б. В этом случае угол Ф тупой (я/2 < § ^ я) и жидкость частично (при неравенстве) или полностью (при равенстве) не смачивает твердую подложку. По отношению к стеклу такой несмачивающей жидкостью яв­ляется, например, ртуть, гдесозд = - 1. Однако та же самая ртуть хорошо смачивает другую твердую подложку, например цинк.

Количественно эти соображения могут быть выражены на

основе следующих представлений. Обозначим через o"i_ 2 , °1-з, 0-2-3 соответственно поверхностное натяжение на границе жидкость - газ, твердое вещество - газ и жидкость -■ твердая поверхность. Направления действия этих сил в сечении будем изображать стрелками (рис. 5.22). На каплю жидкости, нахо­дящуюся на твердой подложке, действуют следующие силы поверхностного натяжения: на границе /-3 -ffi-з, стремя­щаяся растянуть каплю, и на границе 2 - 3 -Ог-з. стремящая­ся стянуть ее к центру. Поверхностное натяжение 04-2 на гра­нице 1-2 направлено по касательной к поверхности капли в точке С. Если краевой угол Ф острый, то проекция силы cri_ 2 на плоскость твердой подложки (ov 2 cos Ф) совпадет по напра­влению с о 2 .-з (рис. 5.22 ; а). В этом случае действия обеих сил

будут складываться. Если же угол ft тупой, как показано на рис. 5.21, б, то cos ft отрицательный и проекция cri._ 2 cosft сов­падет по направлению с O1-.3. При равновесии капли на твер­дой подложке должно соблюдаться следующее равенство:

= 02-3 + СГ1-2 соэФ. (5.12)

Это уравнение было получено в 1805 г. Юнгом и названо его име­нем. Отношение

В = ---^- = cos ft

называют критерием смачивания.

Таким образом, краевой угол ft зависит лишь от поверх­ностных натяжений на границах соответствующих сред, опреде­ляемых их природой, и не зависит от формы сосуда и величи­ны силы тяжести. Когда равенство (5.12) не соблюдено, могут иметь место следующие случаи. Если 01-3 больше правой части уравнения (5.12), то капля будет растекаться, а угол ft-■ уменьшаться. Может случиться так, что cos ft увеличится настолько, что правая часть равенства (5,12) станет равной о"ь_ 3 , тогда наступит равновесие капли в растянутом состоянии. Если же ov_ 3 настолько велико, что даже при cos ft = 1 левая часть равенства (5.12) больше правой (01 _з > 0 2 -з + o"i_ 2)> то капля будет растягиваться в жидкую пленку. Если же правая часть равенства (5.12) больше, чем o"i 3 , то капля стягивается к центру, угол ft увеличивается, a cos ft соответственно умень­шается до тех пор, пока не наступит равновесие. Когда cos ft станет отрицательным, капля примет форму, показанную на рис. 5.22, б. Если окажется, что 0 2 - 3 настолько велико, что даже при cos ft = -1 (ft = я) правая часть равенства (5.12) бу­дет больше o"i (01 <02 з-01-2)1 то в отсутствие силы тя­жести капля стянется в шар. Этот случай можно наблюдать на маленьких каплях ртути на поверхности стекла.

Критерий смачивания можно выразить через работу адгезии и когезии. Адгезией А а называется возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение. Частный случай ад­гезии, когда соприкасающиеся тела одинаковы, называют ко-гезией (обозначается А с). Адгезия характеризуется удельной ра­ботой, затрачиваемой на разделение тел. Эта работа рассчиты­вается на единицу площади соприкосновения поверхностей и зависит от того, как производится их разделение: сдвигом вдоль поверхности раздела или отрывом в направлении, перпендику­лярном к поверхности. Для двух различных тел (фаз) А и В ее можно выразить уравнением

А а = ста + а в -Од-в,

где а а , а в, а А -в - коэффициенты поверхностного натяжения фаз Л и В на границе с воздухом и между ними.

В случае когезии для каждой из фаз Л и В имеем:

АШ = 2аа , А <*> = 2а в.

Для рассматриваемой нами капли

Л С| =2а]_ 2 ; А а = ffi^ 3 -f ai_ 2 - сЬ-з-

Отсюда критерий смачивания можно выразить равенством

В - с

Таким образом, по мере увеличения разности 2А а -Л с смачива­ние улучшается.

Заметим, что коэффициенты cti-з и Оо„ 3 обычно отождест­вляются с поверхностным натяжением твердого тела на грани­цах с газом и жидкостью, тогда как в состоянии термодинами­ческого равновесия поверхность твердого тела обычно покры­та равновесным адсорбционным слоем вещества, образующего каплю. Поэтому при точном решении задачи для равновесных краевых углов величины cri_ 3 и (Тг-з. вообще говоря, следова­ло бы относить не к самому твердому телу, а к покрывающему его адсорбционному слою, термодинамические свойства кото­рого определяются силовым полем твердой подложки.

Явления смачивания особенно ярко проявляются в невесомости. Иссле­дование жидкости в состоянии космической невесомости впервые провел советский летчик-космонавт П. Р. Попович на корабле «Восток-4». В кабине корабля находилась сферическая стеклянная колба, наполовину заполненная водой. Поскольку вода полностью смачивает чистое стекло (О = 0), то в условиях невесомости она растеклась по всей поверхности и замкнула воз­дух внутри колбы. Таким образом, граница раздела между стеклом и воз­духом исчезла, что оказалось энергетически выгодным. Однако краевой угол i} между поверхностью жидкости и стенками колбы и в состоянии не­весомости оставался таким же, каким он был на Земле.

Явления смачивания и несмачивапия широко используются в техни­ке и быту. Например, чтобы сделать ткань водоотталкивающей, ее обра­батывают гидрофобизирующим (ухудшающим смачивание водой) веще­ством (мылонафт, олеиновая кислота и др.). Эти вещества образуют вокруг волокон тонкую пленку, увеличивающую поверхностное натяжение па границе вода - ткань, по лишь незначительно меняющую его на гра­нице ткань - воздух. При этом краевой угол О при контакте с водой воз­растает. В этом случае, если поры малы, вода в них не проникает, а за­держивается выпуклой поверхностной пленкой и собирается в капли, которые легко скатываются с материала.

Песмачивающая жидкость не вытекает через очень малые отверстия. Например, если нити, из которых сплетено решето, покрыть парафином, то в нем можно носить воду, если, конечно, слой жидкости невелик. Бла­годаря этому свойству водоплавающие насекомые, быстро бегающие по воде, не смачивают лапок. Хорошее смачивание необходимо при краше­нии, склеивании, пайке, при диспергировании твердых тел в жидкой сре­де и т. д.

Резиновый шар, мыльный пузырь могут оставаться в равновесии лишь при условии, чтобы давление воздуха внутри них было на определенную величину больше давления наружного воздуха. Вычислим превышение внутреннего давления над наружным.

Пусть мыльный пузырь имеет радиус и пусть избыток давления внутри него над наружным давлением равняется Чтобы увеличить объем пузыря на исчезающе малую величину нужно затратить работу которая идет на увеличение свободной энергии поверхности пузыря и равна где а - поверхностное натяжение мыльной пленки, величина одной из поверхностей пузыря (разностью радиусов внутренней и наружной поверхностей для простоты пренебрегаем). Итак, имеем уравнение

с другой стороны,

Подставляя выражения для в вышеприведенное уравнение, получаем:

По закону противодействия такую же величину имеет давление, производимое пузырем на воздух, находящийся внутри него.

Если вместо пузыря, имеющего две поверхностные пленки, будем рассматривать каплю, у которой только одна поверхность, то придем к выводу, что поверхностная пленка производит на внутренность капли давление, равное

где радиус капли.

Вообще вследствие кривизны поверхностного слоя жидкости создается избыточное давление: положительное под выпуклой поверхностью и отрицательное под вогнутой поверхностью. Таким образом, при наличии кривизны поверхностный слой жидкости становится источником силы, направленной от выпуклой стороны слоя к вогнутой стороне.

Рис. 226. К пояснению формулы Лапласа.

Лаплас дал формулу для избыточного давления пригодную для случая, когда поверхность жидкости имеет любую форму, допускаемую физической природой жидкого состояния. Эта формула Лапласа имеет следующий вид:

где имеют следующее значение. В какой-нибудь точке поверхности жидкости (рис. 226) нужно вообразить нормаль и через эту нормаль провести две взаимно перпендикулярные плоскости, которые пересекут поверхность жидкости по кривым и Радиусы кривизны этих кривых в точке и обозначаются через

Легко видеть, что из формулы Лапласа для плоской поверхности жидкости получается а для шаровой поверхности как это мы вывели раньше.

Если бы поверхность была «седлообразной», то кривые и лежали бы по разные стороны от касательной плоскости в

точке тогда радиусы имели бы разные знаки. В геометрии доказывается, что у так называемых минимальных поверхностей т. е. имеющих при данном контуре наименьшую возможную площадь, сумма всюду равняется нулю. Как раз этим свойством обладают мыльные пленки, затягивающие какой-нибудь проволочный контур.

Пена есть собрание пузырей, имеющих общие стенки. Кривизна такой стенки (определяемая выражением + пропорциональна разности давлений по обе стороны стенки.

Если конец чистой стеклянной палочки погрузить в чистую воду и вынуть палочку, то увидим на конце ее висящую каплю воды. Очевидно, что молекулы воды сильнее притягиваются к молекулам стекла, чем друг к другу.

Подобно этому медной палочкой можно поднять каплю ртути. В таких случаях говорят, что твердое тело смачивается жидкостью.

Иное будет, если опустим чистую стеклянную палочку в чистую ртуть или если стеклянную палочку, покрытую жиром, опустим в воду: здесь палочка, вынутая из жидкости, не уносит ни капли этой последней. В этих случаях говорят, что жидкость не смачивает твердого тела.

Рис. 227. Стрелками показаны направления сил, с которыми поверхностный слой действует на находящийся под ним столбик жидкости.

Если погрузить в воду узкую чистую стеклянную трубку, то вода в трубке поднимется на известную высоту вопреки силе тяжести (рис. 227, а). Узкие трубки называются капиллярными, или капиллярами, а отсюда и самое явление носит название капиллярности. Жидкости, смачивающие стенки капиллярной трубки, претерпевают капиллярное поднятие. Жидкости, не смачивающие стенок капилляра (например, ртуть в стеклянной трубке), претерпевают, как показано на рис. 227, б, опускание. Капиллярные поднятия и опускания бывают тем больше, чем уже капилляры.

Капиллярные поднятия и опускания вызываются избыточным давлением, которое возникает вследствие искривления поверхности жидкости. В самом деле, в трубке, которая смачивается жидкостью, жидкость образует вогнутый мениск. По сказанному

в предыдущем параграфе поверхность такого мениска будет развивать силу, направленную снизу вверх, и эта сила будет поддерживать в трубке столбик жидкости вопреки действию тяжести. Наоборот, в трубке, которая не смачивается жидкостью, получится выпуклый мениск; он даст силу, направленную вниз и, следовательно, понижающую уровень жидкости,

Выведем зависимость между поверхностным натяжением а жидкости, ее плотностью радиусом трубки и высотой столбика, поднявшегося в трубке. Пусть жидкость «вполне смачивает» стенки трубки (как вода стеклянную трубку), так что в месте встречи с трубкой поверхность жидкости является касательной к поверхности трубки. Это касание имеет место по контуру, длина которого есть Благодаря поверхностному натяжению контур будет развивать силу и эта сила, приложенная к столбику, будет уравновешивать силу его тяжести, равную где ускорение тяжести.

Таким образом,

т. е. высота капиллярного поднятия пропорциональна поверхностному натяжению и обратно пропорциональна радиусу трубки и плотности жидкости.

Ту же формулу (11) для капиллярного поднятия можно получить как следствие формулы Лапласа (10) или (в рассматриваемом случае симметричной поверхности) формулы (9). Можно рассуждать так: в жидкости под вогнутой поверхностью давление понижено на величину поэтому при равновесии, когда давление на уровне свободной поверхности жидкости, налитой в сосуд, равно давлению жидкости в капилляре на том же уровне, столб жидкости в капилляре должен иметь такую высоту, чтобы его давление уравновешивало дефицит давления, создаваемого вогнутостью поверхности мениска. Стало быть, откуда и получается формула (11).

Рассуждая аналогично, убеждаемся, что когда жидкость «совершенно не смачивает» стенок капилляра, при равновесии она будет находиться в капилляре на уровне, пониженном на высоту, которая определяется той же формулой (11).

Измерение капиллярного поднятия является одним из простых способов определения величины а.

На рис. 228 изображено капиллярное поднятие жидкости между двумя пластинками, составляющими двугранный угол. Нетрудно сообразить, что поднявшаяся жидкость будет сверху ограничена

гиперболой; асимптотами этой гиперболы будут служить ребра двугранного угла и линия, лежащая на уровне жидкости в сосуде.

Рассмотрим условия равновесия жидкости, соприкасающейся с твердой стенкой (рис. 229). Обозначим избыточную свободную энергию каждого квадратного сантиметра поверхности твердого тела 3, граничащего с вакуумом или газом 2, через Когда слой какой-либо жидкости смачивая поверхность твердого тела, растекается по ней, поверхность раздела твердое тело - газ заменяется поверхностью раздела твердое тело - жидкость, причем свободная энергия этой новой поверхности будет уже иная, Очевидно, что убыль свободной энергии каждого квадратного сантиметра поверхности твердого тела равна работе сил, под действием которых 1 см периметра жидкой пленки перемещается на расстояние в 1 см по направлению, перпендикулярному к периметру пленки. Стало быть, разность можно рассматривать как силу, приложенную к 1 см периметра жидкой пленки, действующую касательно к поверхности твердого тела и побуждающую жидкость продвигаться по поверхности твердого тела. Однако растекание жидкости по поверхности твердого тела сопровождается увеличением поверхности между жидкостью 1 и вакуумом или газом 2, чему пр епятствует повер хностное натяжение жидкости В общем случае при неполном смачивании жидкостью твердого тела сила (как это показано на рис. 229, а) направлена под некоторым углом к поверхности твердого тела; этот угол называют краевым углом. Мы видим, таким образом, что жидкость, граничащая с твердым телом, будет находиться в равновесии тогда, когда

Отсюда находим, что краевой угол, под которым при равновесии свободная поверхность жидкости встречает поверхность

Рис. 228. Капиллярное поднятие жидкости между пластинками, составляющими двугранный угол.

Рис. 229. Жидкость смачивает твердую стенку (а); не смачивает твердую стенку

твердого тела, определяется формулой

По смыслу вывода формулы (12) ясно, что эта формула остается справедливой и для случая, когда жидкость не смачивает твердого тела (рис. 229, б); тогда краевой угол будет тупым; отсутствие смачивания означает, что (т. е. свободная энергия твердого тела на его поверхности раздела с вакуумом или газом меньше, чем на поверхности раздела того же тела с жидкостью; иначе говоря, в этом случае при продвижении жидкости по поверхности твердого тела работа не будет производиться, но, напротив, работу нужно будет затратить, чтобы осуществить такое продвижение жидкости).

При полном смачивании краевой угол а при полном отсутствии смачивания Краевой угол зависит от природы соприкасающихся веществ и от температуры. Если наклонять стенку сосуда, краевой угол от этого не меняется.

Формула (12) объясняет форму капли, лежащей на горизонтальной плоскости. На твердой подставке, которая смачивается жидкостью, капля принимает форму, изображенную на рис. 230; если же подставка не смачивается, то получается форма капли, изображенная на рис. 231, где краевой угол - тупой.

Рис. 230. Капля смачивающей жидкости.

Рис. 231. Капля несмачивающей жидкости.

Совершенно чистое стекло вполне смачивается водой, этиловым спиртом, метиловым спиртом, хлороформом, бензолом. Для ртути на чистом стекле краевой угол составляет 52° (для свежеобразованной капли 41°), для скипидара 17°, для эфира 16°.

Когда жидкость вполне смачивает подставку, то капли не возникает, а жидкость растекается по всей поверхности. Это происходит, например, с каплей воды на абсолютно чистой стеклянной пластинке. Но обыкновенно стеклянная пластинка бывает несколько загрязнена, что препятствует растеканию капли и создает измеримый краевой угол.

Рис. 232. Масляная капля на воде

Соображения, на основе которых была получена формула можно применить также и к случаю, когда вместо твердого тела мы имеем вторую жидкость, например, когда масляная капля плавает на поверхности воды (рис. 232). Но в этом случае направления сил Уже не противоположны; при соприкосновении жидкости с твердым телом нормальная составляющая поверхностного

натяжения уравновешивается сопротивлением твердой стенки, а при соприкосновении жидкостей это не имеет места; поэтому в данном случае условие равновесия должно быть записано иначе, а именно как равенство полной силы и геометрической суммы (взятой с обратным знаком) сил

Если, например, на воде плавает оливковое масло, то дин/см, дин/см и дан/см. Таким образом, здесь поверхностное натяжение на границе воздуха и воды больше суммы обоих поверхностных натяжений, которые имеет масло по отношению как к воздуху, так и к воде; мы будем поэтому иметь неограниченное растекание капли. Толщина масляного слоя дойдет до размеров одной молекулы (примерно см), а затем слой станет распадаться. Но если вода загрязнена, то ее поверхностное натяжение делается меньше, и тогда на поверхности может оставаться большая масляная капля, после того как по воде распространился очень тонкий слой масла.

Жидкость, проникающая вследствие действия молекулярных сил в тонкий зазор между двумя поверхностями твердых тел, оказывает на эти поверхности расклинивающее действие. Расклинивающее действие тонких слоев жидкости было экспериментально доказано искусными опытами проф. Б. В. Дерягина, который разработал также теорию этого явления и объяснил на основе расклинивающего действия жидкости эффект Ребиндера (§ 46).

Соприкасающаяся с другой средой, находится в особых условиях по сравнению с остальной массой жидкости. Силы, действующие на каждую молекулу поверхностного слоя жидкости, граничащей с паром, направлены в сторону объёма жидкости, то есть внутрь жидкости. Вследствие этого для перемещения молекулы из глубины жидкости на поверхность требуется совершить работу. Если при постоянной температуре увеличить площадь поверхности на бесконечно малую величину dS , то необходимая для этого работа будет равна . Работа по увеличению площади поверхности совершается против сил поверхностного натяжения, которые стремятся сократить, уменьшить поверхность. Поэтому работа самих сил поверхностного натяжения по увеличению площади поверхности жидкости будет равна:

Здесь коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения и определяется величиной работы сил поверхностного натяжения по изменению площади поверхности на единицу. В СИ коэффициент поверхностного натяжения измеряется в Дж/м 2 .

Молекулы поверхностного слоя жидкости обладают избыточной по сравнению с глубинными молекулами, потенциальной энергией, которая прямо пропорциональна площади поверхности жидкости:

Приращение потенциальной энергии поверхностного слоя связано только с приращением площади поверхности: . Силы поверхностного натяжения - консервативные силы , поэтому выполняется равенство: . Силы поверхностного натяжения стремятся уменьшить потенциальную энергию поверхности жидкости. Обычно та энергия, которая может быть преобразована в работу, называется свободной энергией U S . Поэтому можно записать. Используя понятие свободной энергии, можно записать формулу (6.36) так: . Используя последнее равенство можно определить коэффициент поверхностного натяжения как физическую величину, численно равную свободной энергии единицы площади поверхности жидкости.

Действие сил поверхностного натяжения можно наблюдать с помощью простого эксперимента над тонкой плёнкой жидкости (например, мыльного раствора), которая обволакивает проволочный прямоугольный каркас, у которого одна сторона может перемешаться (рис.6.11). Предположим, что на подвижную сторону, длиной l, действует внешняя сила F B , перемещающая подвижную сторону рамки равномерно на очень малое расстояние dh. Элементарная работа этой силы будет равна , так как сила и перемещение сонаправлены. Поскольку плёнка имеет две поверхности и, то вдоль каждой из них направлены силы поверхностного натяжения F, векторная сумма которых равна внешней силе. Модуль внешней силы равен удвоенному модулю одной из сил поверхностного натяжения: . Минимальная работа, совершаемая внешней силой, равна по величине сумме работ сил поверхностного натяжения: . Величина работы силы поверхностного натяжения будет определяться так:


, где . Отсюда . То есть коэффициент поверхностногонатяжения может быть определён как величина, равная силе поверхностного натяжения, действующей по касательной к поверхности жидкости, приходящейся на единицу длины линии раздела. Силы поверхностного натяжения стремятся сократить площадь поверхности жидкости. Это заметно для малых объёмов жидкости, когда она принимает форму капель-шариков. Как известно, именно сферическая поверхность имеет минимальную площадь при данном объёме. Жидкость, взятая в большом количестве, под действием силы тяжести растекается по поверхности, на которой она находится. Как известно, сила тяжести зависит от массы тела, поэтому её величина по мере уменьшения массы тоже уменьшается и при определённой массе становится сравнимой или даже много меньше величины силы поверхностного натяжения. В этом случае силой тяжести можно пренебречь. Если жидкость находится в состоянии невесомости, то даже при большом объёме её поверхность стремится к сферической. Подтверждение тому - знаменитый опыт Плато. Если подобрать две жидкости с одинаковой плотностью, то действие силы тяжести на одну из них (взятую в меньшем количестве) будет скомпенсировано архимедовой силой и она примет форму шара. При этом условии она будет плавать внутри другой жидкости.

Рассмотрим, что происходит с каплей жидкости 1, граничащей с одной стороны с паром 3, с другой стороны с жидкостью 2 (рис.6.12). Выберем очень малый элемент границы раздела всех трёх веществ dl. Тогда силы поверхностного натяжения на границах раздела сред будут направлены по касательным к контуру границ раздела и равны:

Действием силы тяжести пренебрежём. Капля жидкости 1 находится в равновесии, если выполняются условия:

(6.38)

Подставив (6.37) в (6.38), сократив на dl обе части равенств (6.38), возведя в квадрат обе части равенств (6.38) и сложив их, получим:

где - угол между касательными к линиям раздела сред, называется краевым углом.

Анализ уравнения (6.39) показывает, что при получим и жидкость 1 полностью смачивает поверхность жидкости 2, растекаясь по ней тонким слоем (явление полного смачивания ).

Аналогичное явление можно наблюдать и при растекании тонким слоем жидкости 1 по поверхности твёрдого тела 2. Иногда жидкость наоборот не растекается по поверхности твёрдого тела. Если , то и жидкость 1 полностью не смачивает твёрдое тело 2 (явление полного несмачивания ). В этом случае есть только одна точка касания жидкости 1 и твёрдого тела 2. Полное смачивание или несмачивание являются предельными случаями. Реально можно наблюдать частичное смачивание , когда краевой угол острый () и частичное несмачивание , когда краевой угол тупой ().

На рисунке 6.13 а приведены случаи частичного смачивания, а на рис.6.13 б приведены примеры частичного несмачивания. Рассмотренные случаи показывают, что наличие сил поверхностного натяжения граничащих жидкостей или жидкости на поверхности твёрдого тела приводит к искривлению поверхностей жидкостей.

Рассмотрим силы, действующие на кривую поверхность. Кривизна поверхности жидкости приводит к появлению сил, действующих на жидкость под этой поверхностью. Если поверхность сферическая, то к любому элементу длины окружности (см. рис.6.14) приложены силы поверхностного натяжения, направленные по касательной к поверхности и стремящиеся её сократить. Результирующая этих сил направлена к центру сферы.

Отнесённая к единице площади поверхности эта результирующая сила оказывает дополнительное давление, которое испытывает жидкость под искривлённой поверхностью. Это дополнительное давление называется давлением Лапласа . Оно всегда направлено к центру кривизны поверхности. На рисунке 6.15 приведены примеры вогнутой и выпуклой сферических поверхностей и показаны давления Лапласа, соответственно.

Определим величину давления Лапласа для сферической, цилиндрической и любой поверхности.

Сферическая поверхность . Капля жидкости . При уменьшении радиуса сферы (рис.6.16) поверхностная энергия уменьшается, а работа производится силами, действующими в капле. Следовательно, объём жидкости под сферической поверхностью всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления шар уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой:

Уменьшение поверхностной энергии произошло на величину, определяемую формулой: (6.41)

Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что и , получим давление Лапласа: (6.42)

Объём жидкости под цилиндрической поверхностью также как и под сферической всегда несколько сжат, то есть испытывает давление Лапласа, направленное к центру кривизны радиально. Если под действием этого давления цилиндр уменьшит свой объём на dV , то величина работы сжатия будет определяться формулой (6.40), только величина давления Лапласа и приращение объёма будут другими. Уменьшение поверхностной энергии произошло на величину, определяемую формулой(6.41). Уменьшение поверхностной энергии произошло за счёт работы сжатия, следовательно, dA=dU S . Приравнивая правые части равенств (6.40) и (6.41), а также учитывая, что для цилиндрической поверхности и , получим давление Лапласа:

Используя формулу (6.45), можно перейти к формулам (6.42) и (6.44). Так для сферической поверхности, следовательно, формула (6.45) упростится до формулы (6.42); для цилиндрической поверхности r 1 = r , а , тогда формула (6.45) упростится до формулы (6.44). Чтобы отличить выпуклую поверхность от вогнутой, принято считать давление Лапласа положительным для выпуклой поверхности, а соответственно и радиус кривизны выпуклой поверхности будет тоже положительным. Для вогнутой поверхности радиус кривизны и давление Лапласа считают отрицательными.