Колонизация Луны: основные причины для высадки на земной спутник. Проблемы освоения луны

Продемонстрировали практическую осуществимость полёта на Луну (будучи при этом очень дорогостоящими проектами), они в то же время охладили энтузиазм создания лунной колонии. Это было вызвано тем, что анализ образцов пыли, доставленных космонавтами, показал очень низкое содержание в ней лёгких элементов [ ] , необходимых для поддержания жизнеобеспечения.

Несмотря на это, с развитием средств космонавтики и удешевлением космических полётов, Луна представляется первичным объектом для основания базы. Для учёных лунная база является уникальным местом для проведения научных исследований в области планетологии , астрономии , космологии , космической биологии и других дисциплин. Изучение лунной коры может дать ответы на важнейшие вопросы об образовании и дальнейшей эволюции Солнечной системы , системы Земля - Луна, появлении жизни. Отсутствие атмосферы и более низкая гравитация позволяют строить на лунной поверхности обсерватории , оснащённые оптическими и радиотелескопами , способными получить намного более детальные и чёткие изображения удалённых областей Вселенной, чем это возможно на Земле, а обслуживать и модернизировать такие телескопы гораздо проще, чем орбитальные обсерватории.

Луна обладает и разнообразными полезными ископаемыми, в том числе и ценными для промышленности металлами - железом , алюминием , титаном ; кроме этого, в поверхностном слое лунного грунта, реголите , накоплен редкий на Земле изотоп гелий-3 , который может использоваться в качестве топлива для перспективных термоядерных реакторов . В настоящее время идут разработки методик промышленного получения металлов, кислорода и гелия-3 из реголита; найдены залежи водяного льда.

Глубокий вакуум и наличие дешёвой солнечной энергии открывают новые горизонты для электроники , металлургии , металлообработки и материаловедения . Фактически условия для обработки металлов и создания микроэлектронных устройств на Земле менее благоприятны из-за большого количества свободного кислорода в атмосфере, ухудшающего качество литья и сварки, делающего невозможным получение сверхчистых сплавов и подложек микросхем в больших объёмах. Также представляет интерес выведение на Луну вредных и опасных производств.

Луна, благодаря своим впечатляющим ландшафтам и экзотичности, также выглядит как весьма вероятный объект для космического туризма , который может привлечь значительное количество средств на её освоение, способствовать популяризации космических путешествий, обеспечивать приток людей для освоения лунной поверхности. Космический туризм будет требовать определённых инфраструктурных решений . Развитие инфраструктуры, в свою очередь, будет способствовать более масштабному проникновению человечества на Луну.

Существуют планы использования лунных баз в военных целях для контроля околоземного космического пространства и обеспечения господства в космосе .

Гелий-3 в планах освоения Луны

Создание станции - не только вопрос науки и государственного престижа, но и коммерческой выгоды. Гелий-3 - это редкий изотоп, стоимостью приблизительно 1200 долларов США за литр газа , необходимый в ядерной энергетике для запуска термоядерной реакции . На Луне его количество оценивается в тысячи тонн (по минимальным оценкам - 500 тысяч тонн ). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, а в газообразном виде примерно в 1000 раз меньше, следовательно, 1 килограмм стоит более 20 миллионов долларов, а весь гелий - более 10 квадриллионов долларов (около 500 нынешних ВВП США).

При использовании гелия-3 не возникает долгоживущих радиоактивных отходов , и поэтому проблема их захоронения, так остро стоящая при эксплуатации реакторов на делении тяжёлых ядер, отпадает сама собой.

Однако существует и серьёзная критика этих планов. Дело в том, что для зажигания термоядерной реакции дейтерий+гелий-3 необходимо нагреть изотопы до температуры в миллиард градусов и решить задачу удержания нагретой до такой температуры плазмы. Современный технологический уровень позволяет удержать плазму, нагретую лишь до нескольких сотен миллионов градусов в реакции дейтерий +тритий , при этом почти вся энергия, полученная в ходе термоядерной реакции, затрачивается на удержание плазмы (см. ITER). Поэтому реакторы на гелии-3 многими ведущими учёными, например, академиком Роальдом Сагдеевым , выступившим с критикой планов Севастьянова, считаются делом отдалённого будущего. Более реальными с их точки зрения является разработка на Луне кислорода , металлургия , создание и запуск космических аппаратов, в том числе ИСЗ , межпланетных станций и пилотируемых кораблей.

Вода

Лунные электростанции

Ключевые технологии имеют, по оценке НАСА, уровень технологической готовности 7/10. Рассматривается возможность производства большого объёма электроэнергии, равного 1 Вт. При этом стоимость лунного комплекса оценивается примерно в 200 трлн долл. США. В то же время стоимость производства сравнимого объёма электроэнергии наземными солнечными станциями - 8000 трлн долл. США, наземными термоядерными реакторами - 3300 трлн долл. США, наземными угольными станциями - 1500 трлн долл. США .

Практические шаги

Лунные базы в первой «Лунной гонке»

Внешние изображения
Проекты лунных баз
Эскиз процесса возведения лунной базы по проекту, разработанному инженерами компании Дженерал электрик

В США прорабатывались аванпроекты лунных военных баз Лунэкс (Lunex Project) и Горизонт (Project Horizon) , а также имелись технические предложения по лунной базе Вернера фон Брауна .

В первой половине 1970-х гг. под рук. академика В. П. Бармина московскими и ленинградскими учёными разрабатывался проект долговременной лунной базы, в котором, в частности, изучались возможности обваловки обитаемых сооружений направленным взрывом для защиты от космического излучения (изобретения А. И. Мелуа с использованием технологий Альфреда Нобеля). Более детально, включая макеты экспедиционных транспортных средств и обитаемых модулей , был разработан проект лунной базы СССР «Звезда» , который должен был быть реализован в 1970-х-1980-х гг. как развитие советской лунной программы , свёрнутой после проигрыша СССР в «лунной гонке» с США.

Lunar Oasis

В октябре 1989 года на 40-м конгрессе Международной авиационной федерации сотрудники НАСА Майкл Дьюк (Michael Duke), глава подразделения исследований Солнечной системы Космического центра имени Линдона Джонсона в Хьюстоне, и Джон Ньехофф (John Niehoff) из Science Applications International Corporation (SAIC) представили проект лунной станции Lunar Oasis. До сих пор этот проект считается весьма проработанным и интересным по ряду основных решений, одновременно оригинальных и реалистичных. Десятилетний проект Lunar Oasis предполагал три стадии, суммарно предусматривавшие 30 полётов, половина из которых пилотируемые (по 14 т груза); беспилотные старты оценивались по 20 т груза каждый.

Авторы называют стоимость проекта равным четырём программам «Аполлон», а это примерно $550 млрд в ценах 2011 года. Учитывая, что время реализации программы предполагалось весьма значительным (10 лет), ежегодные расходы на неё составили бы около $50 млрд. Для сравнения можно указать на то, что в 2011 году затраты на содержание американских войск в Афганистане достигли $6,7 млрд в месяц, или $80 млрд в год.

Лунные базы в «Лунной гонке» XXI века

К 2050 году планируется построить обитаемую базу и полигон по добыче полезных ископаемых .

Европейский проект

Проблемы

Длительное присутствие человека на Луне будет требовать решения ряда проблем. Так, атмосфера Земли и магнитное поле задерживает бо́льшую часть солнечной радиации. В атмосфере также сгорает множество микрометеоритов . На Луне без решения радиационной и метеоритной проблем невозможно создание условий для нормальной колонизации. Во время солнечных вспышек создаётся поток протонов и других частиц , способных представлять угрозу для космонавтов. Однако эти частицы обладают не слишком большой проникающей способностью, и защита от них является решаемой проблемой. Кроме того, данные частицы обладают низкой скоростью, а значит, есть время для того чтобы спрятаться в антирадиационные укрытия. Гораздо большую проблему представляет жёсткое рентгеновское излучение . Расчёты показали , что астронавт после 100 часов на поверхности Луны с вероятностью 10 % получит опасную для здоровья дозу (0,1 Грея ). В случае же солнечной вспышки опасную дозу можно получить в течение нескольких минут.

Отдельную проблему представляет лунная пыль . Лунная пыль состоит из острых частиц (поскольку нет сглаживающего влияния эрозии), а также обладает электростатическим зарядом. В результате лунная пыль проникает везде и, обладая абразивным действием, уменьшает срок работы механизмов (а попадая в лёгкие, - становится смертельной угрозой здоровью человека и может вызвать рак лёгких ).

Коммерциализация также не очевидна. Необходимость в больших количествах гелия-3 пока отсутствует. Наука ещё не смогла достичь контроля над термоядерной реакцией. Самым многообещающим проектом в этом отношении на данный момент (конец 2018 года) является масштабный международный экспериментальный реактор ИТЭР , строительство которого предполагается закончить к 2025 году. После этого последует порядка 20 лет экспериментов. Промышленное использование термоядерного синтеза ожидается не ранее 2050 года по самым оптимистическим прогнозам. В связи с этим, до этого времени добыча гелия-3 не будет представлять промышленного интереса. Космический туризм также нельзя назвать движущей силой освоения Луны, поскольку требуемые на данном этапе вложения не смогут окупиться в разумное время за счёт туризма, что показывает опыт космического туризма на МКС, доходы от которого не покрывают и малой доли затрат на содержание станции. [ ]

Такое положение вещей приводит к тому, что высказываются предложения (см. Роберт Зубрин «A Case for Mars») освоение космоса сразу начинать с Марса .

Фильмография

См. также

Примечания

  1. Артур Кларк . Бросок на Луну
  2. Лысенко М.П., Каттерфельд Г.Н., Мелуа А.И. О зональности грунтов на Луне // Изв. Всес.Геогр. Об-ва. - 1981. - Т. 113 . - С. 438-441 .
  3. Академик Б. Е. Черток «Космонавтика в XXI веке» (неопр.) (недоступная ссылка) . Проверено 22 февраля 2009. Архивировано 25 февраля 2009 года.
  4. Лунные полюса могут стать обсерваториями - ученый (неопр.) . РИА Новости (1 февраля 2012). Проверено 2 февраля 2012. Архивировано 31 мая 2012 года.
  5. К 2015 году Россия создаст станцию на Луне , Kommersant.ru, 25.01.2006.
  6. Christina Reed (Discovery World). The Fallout of a Helium-3 Crisis (неопр.) (19 февраля 2011). Архивировано 9 февраля 2012 года.
  7. 3D News. Колонизация Солнечной системы отменяется (неопр.) (4 марта 2007). Проверено 26 мая 2007.
  8. Принесенные солнечным ветром (неопр.) . Эксперт (19 ноября 2007). Архивировано 9 февраля 2012 года.
  9. Популярная механика. Лунная сенсация. (неопр.) . PopMech (25 сентября 2009).

Колонизация космоса - это концепция расселения человечества, гуманизации пространства и постоянных человеческих поселений за пределами Земли. В настоящее время колонизация космоса является единственной консолидирующей идеей в мире, хотя существуют другие приоритеты и программы с двухтысячелетней историей, как, например, спортивные Олимпиады.

Обычно, колонизация космоса рассматривается как долгосрочная цель любых национальных космических программ.

Первая колония может появиться на Луне, позже на Марсе, далее во всем пространстве Солнечной системы, позже в Поясе Койпера и в Облаке Оорта. Последние находятся за орбитой Урана и имеют триллионы комет и астероидов. На них могут быть все необходимые для поддержания жизни ингредиенты (водяной лёд, органические соединения и материалы для строительство космических станций) и большое количество гелия-3, который считается перспективным топливом для управляемых термоядерных реакций. Существует предположение, что расселяясь по таким облакам комет, человечество сможет достигнуть других звёздных систем без помощи субсветовых космических кораблей.

Ниже приводится таблица предполагаемых сроков колонизации космоса на 100 лет.

Табл. Планы колонизации космоса на 100 лет

Год Страна, проект О собенности
2011 Китай. Старт аппарата Инхо 1 к Марсу.

Россия. Старт "Фобос-Грунт" к Марсу.

Китай начинает строительство четвертого космодрома и ведет разработку тяжелого ракетоносителя при сотрудничестве с Украиной.

Россия самостоятельно продолжает строительство второго космодрома "Восточный" и разработку ракетоносителя "Русь-М".

2011-2012 США . Старт зонда Юнона к Юпитеру Частная компания США разрабатывает "Falcon Heavy" (грузоподъемность ~53 тонны) при сотрудничестве с Украиной и Россией.
2013-2014 Китай. Запуск модуля Chang"e 3, который должен доставить первый в истории китайский луноход.

Индия - Россия. Миссия "Чандраян-2", индийская ракета-носитель типа GSLV доставит к Луне орбитальный модуль, а на лунную поверхность опустится российская посадочная ступень разработки НПО имени Лавочкина с небольшим индийским луноходом.

Предполагаемое место посадки Chang"e 3 - Залив Радуги.
2014-2015 Конкурс Google Lunar X-Prize. Полет частных космических модулей к Луне и доставка луноходов. Ранее предполагался срок проведения конкурса декабрь 2012 года. Ныне перенесен на конец 2015. В конкурсе участвует 27 групп из разных стран. Вес лунных модулей от 5 до 100 кг. Стоимость проектов колеблется от 10 до 100 млн. долларов. Запуск лунных модулей осуществляют национальные космические агентства, например, ракетоноситель "Днепр" или "Зенит" Украина-Россия.
2015-2016 США. Запуск космического аппарата в режиме "аватар" с посадкой для обнаружения пылевой атмосферы на Луне и отработки радиационной безопасности. Аватар - робот, напоминающий человека, которым будут управлять с Земли, используя высокотехнологичные костюмы дистанционного присутствия. Один и тот же костюм могут "надевать" несколько специалистов из разных областей науки поочередно. К примеру, в ходе изучения особенностей лунной поверхности, управлять «аватаром» может геолог. Затем, при необходимости, в костюм телеприсутствия может облачиться физик.
2016-2018 Китай. Беспилотный аппарат Change" 4 должен будет полететь на Луну, собрать грунт и доставить его на Землю.
2016-2019,

промежуток минимума солнечной активности и радиационной опасности

Россия, США. Отработка двупусковой и четыре пусковой схемы полета человека к Луне в обход радиационных поясов через геомагнитные полюса Земли. Двупусковая схема. Ракетоноситель «Союз» выводит корабль типа «Союз». Затем на околоземную орбиту с помощью РН «Протон» выводится разгонный блок «ДМ». На нем устанавливается бытовой отсек от «Союза» (с пассивным стыковочным узлом), который служит экипажу в качестве дополнительного гермоотсека. После стыковки корабля к РБ производится выдача разгонного импульса – и «Союз» выполняет облет Луны.

Четырех пусковая схема. Сначала на околоземную опорную орбиту выводятся два РБ «ДМ» и они стыкуются между собой. Затем с помощью РН «Союз» на околоземную орбиту запускается РБ «Фрегат», и еще одним пуском РН «Союз» выводится корабль «Союз». Производится сборка лунного комплекса в составе двух РБ «ДМ», РБ «Фрегат» и корабля «Союз». С помощью первого блока «ДМ» выполняется разгон к Луне. Второй «ДМ» обеспечивает торможение и переход корабля на околокруговую опорную орбиту у Луны. «Фрегат» необходим для старта с окололунной опорной орбиты к Земле. Стоимость проекта 200-700 млн. долларов.

На 2017 на смену старым ракетоносителям придут новые: Россия - "Ангара" (грузоподъемность ~35 тонн) и "Русь М" (грузоподъемность 53 тонны); США - "Falcon Heavy" (грузоподъемность ~53 тонны).


2018-2019 Россия, США, Китай, ЕС, Индия, Бразилия, Украина . Закладка станций дозаправки и ретрансляции в Точках Лагранжа Земля-Луна. В Точках Лагранжа (ТЛ) не действуют никакие другие силы, кроме гравитационных сил со стороны Земли и Луны. Космическая станция может оставаться неподвижной относительно этих тел сколь угодно долго.

Точки Лагранжа Земля-Луна является идеальным местом для строительства пилотируемых орбитальных космических станций, которые, располагаясь 1) на полпути между Землёй и Луной позволила бы легко добраться до Луны с минимальными затратами топлива, 2) стать ключевым узлом грузового потока между Землей и нашим спутником, 3) выполнять роль спасательной базы в случае аварий на трассе Земля-Луна и Луна-Земля, 4) удобно для размещения ретрансляционной станции, благодаря чему понадобятся передатчики в десять раз менее мощные, 5) в точке Лагранжа с обратной стороны Луны производится ретрансляция сигнала с невидимой стороны как к Земле, так и к орбитальным станциям, лунным базам.

2020-2022 Решение вопроса радиационной безопасности. Облет человека вокруг Луны, посадка и возвращение на Землю Важное значение приобретет психофизическая подготовка колонизатора космоса или

2. Отрицательные психофизические явления и феномены в Космосе

  • 2.1. Барьерные и стартовые психические феномены
  • 2.2. Психофизическая переадаптация в Космосе
  • 2.4. Любовь, супружество, протекание беременности и рождение детей вне Земли.
2020-2025 Высадка человека на Луне и основание первой лунной базы; закладка первых оранжерей Преимущества освоения Луны:
  1. Ближайшее космическое тело (384 тыс. км), при современном уровне космонавты за трое суток достигают Луны, что важно для сообщений, а так же в случае аварийных ситуаций.
  2. Удобство для радиосвязи с Землей - радиосигнал на Луну и обратно проходит за три секунды. Это обеспечивает нормальный разговор с Землей и возможность дистанционного управления роботами.
  3. Луна имеет силу тяжести, что имеет жизненно важное значение для развития плода и здоровья человека . Исследования в этой области важны для полета к другими планетам и колонизации Солнечной системы, включая спутники.
  4. Наличие материалов для строительства баз, космодромов и получение топлива.
  5. Для запуска космических кораблей к другим планетам не требуется вторая космическая скорость, что делает запуски менее дорогими .
  6. Космические обсерватории и станции дальнего слежения .
  7. Поселенцы на Луне наблюдают на своём небе Землю, которая в 3,7 раз больше и 60 раз ярче, чем Луна. Это вдохновляет поселенцев, а так же напоминает людям (молодым, ученым, космонавтам, лидерам) на Земле о колонизации.
  8. Фермы площадью 0,5 га способны прокормить 100 человек . Возможность выращивания быстрорастущих культур с 354-часовыми сутками .
  9. Развитие безопасного космического туризма.
  10. Лунная колония дает нам главную часть экспериментов, навыки и знания как мы должны и можем колонизировать другие планеты Солнечной системы.
2025-2030 Россия, США, Китай, ЕС, Украина, Индия, Бразилия . Постоянно действующее лунное поселение; оранжереи жизнеобеспечения; разработка редкоземельных материалов, металлов платиновой группы, прочее для доставки на Землю Экономический эффект и выгода.
Концентрация металлов платиновой группы (рутений, родий, палладий, осмий, иридий, платина) в 50-1000 раз выше, чем на Земле. Соответственно, себестоимость добычи драгоценных металлов на Луне в сотни и тысячи раз ниже, чем на Земле. Средняя стоимость 1 кг металлов платиновой группы составляет $ 200 тыс. / кг. Стоимость доставки грузов $ 10-40 тыс. / кг .
В итоге доставка с Луны 500 кг металлов платиновой группы приносит экономическую прибыль около 0,5 млрд. долларов.

Кроме этого, предполагается производство дорогостоящих товаров, как полупроводники, сверхпроводники и фармацевтические препараты.

В ближайшей перспективе дополнительными материалами для доставки на Землю являются наиболее дорогостоящие материалы гелий-3 ($ 1.5 млн. / кг) и калифорний (6,5 млн. / г) .
В долгосрочной перспективе гелий-3 станет экологически чистым топливом в термоядерных реакторах синтеза на Земле, кроме этого появляется возможность для создания "безнейронных" компактных термоядерных ракетных двигателей (ТЯРД-ГЕ) . Калифорний можно использовать для создания миниатюрных атомных электрических батарей и использоваться как топливо для поджога реакции в ТЯРД-ГЕ (соли калифорния имеют критическую массу 5 грамм - миниатюрный атомный взрыв с силой 10 тонн тротила) .

2030-2035 Доставка с Луны редкоземельных материалов, металлов платиновой группы. Разработка "безнейронных" компактных термоядерных фитилей для доставки на Землю и ракетных двигателей (ТЯРД-ГЕ).
Реализация безубыточной колонии на Луне. Закладка Лунной республики, как новой сверхдержавы.
2035-2045 Разработка проекта колонизации человеком Марса. Использование космического корабля с ТЯРД-ГЕ (полет к Марсу займет 10-30 суток).
Запуск спутника ретранслятора для поддержки радиосвязи Марс - Земля.

На Марсе существуют большие запасы воды, а также присутствует углерод. Марс подвергался тем же геологическим и гидрологическим процессам что и Земля, и может содержать запасы минеральных руд. Существующего оборудования достаточно, чтобы получать необходимые для жизни ресурсы (воду, кислород, и т. п.) из марсианского грунта и атмосферы.

Трудности: атмосфера Марса достаточно тонкая (всего 800 Па, или около 0,8 % земного давления на уровне моря), а климат холоднее. Сила тяжести на Марсе составляет около трети земной.

Решение проблем: 1) Второй космической скорости - 5 км/сек - довольно высока, хоть и в два раза меньше земной, что повышает затраты на межпланетное перемещение грузов и затрудняет достижение уровня безубыточности колонии за счёт экспорта материалов. 2) Психологический фактор, когда длительность перелета на Марс и дальнейшая жизнь людей в замкнутом неосвоенном пространстве могут стать серьезными препятствиями на пути освоения планеты.

2045-2070 Реализация проекта колонизации человеком Марса. Поселения. Транспортные маршруты Марс-Луна.
Алмазная лихорадка на несколько столетий. Добыча крупных драгоценных минералов за всю историю в Солнечной системе и получение бриллиантов по 1000 и более карат, стоимость которых спустя века возрастет и составит миллиарды и даже несколько демятков миллиардов долларов.

Обсуждение возможности терраформирования Марса с целью сделать всю или часть поверхности пригодной для жизни.

2070-2080 Колонизация Венеры. Использование космического корабля с ТЯРД-ГЕ (полет займет 7-15 суток). Транспортные маршруты Венера-Луна. Плавающие города. Венера имеет определенные сходства с Землей, планета ближе чем Марс, на высоте около 50 километров давление и температура имеет обычный земной интервал (1 бар и 0-50 градусов по Цельсию) . Поэтому предполагается создание аэростатов для обитания человека.
Предполагается добыча азота-15 для ТЯРД-ГЕ. Вывоз на Землю рения, платиновых металлов, серебра, золота и урана имеет хорошие перспективы.

Для колонизации важно решить проблему низкого содержания воды (0,02%) и кислорода (0,1%) в атмосфере Венеры, так же необходима защита от серной кислоты и углекислоты в высоких концентрациях.

2080-2090 Колонизация Меркурия. Использование космического корабля с ТЯРД-ГЕ (полет займет 7-15 суток). Транспортные маршруты Меркурий-Луна. Меркурий может быть колонизирован с использованием той же технологии и оборудования, которые используются при колонизации Луны. Такие колонии будут находиться в полярных регионах в связи с крайне высокой температурой в других местах на планете. Недавнее открытие ионизированной воды поразило ученых. Это открытие улучшает перспективы для будущей колонии.
Предполагается добыча, главным образом, гелия-3, лития-6, лития-7, бор-11 и калифорния, так же ценных металлов.

Для колонизации важно решить проблему высоких температур и защиту от солнечных вспышек во время транспортного сообщения с Землей.

2090-2110 Колонизация Юпитера и спутников. Полет на корабле с модернизированным ТЯРД-ГЕ займет 150-250 суток.
Каллисто может стать первым из колонизированных спутников Юпитера. Это возможно благодаря тому, что Каллисто находится вне зоны действия мощного радиационного пояса Юпитера. Этот спутник станет центром дальнейшей колонизации окрестностей Юпитера, в частности, Европы, Ганимед, Ио и создания плавающих городов в атмосфере Юпитера.

Из-за взаимосвязи Юпитер и солнечная активность, можно предполагать, что исследования будут направлены на процессы управления солнечной активностью для безопасности транспортных сообщений между колониями Солнечной системы.

На Юпитере будет осуществляться добыча дейтерия и гелия-3 в особенно больших объемах, что приведет к падению цены на термоядерное топливо и быстрое освоение Солнечной системы вплоть до Пояса Койпера.

Колонизация космоса: мнение скептиков и сторонников
Противники развития постоянных колоний в космическом пространстве часто ссылаются на очень высокие первоначальные инвестиции и на отсутствие отдачи от этих инвестиций.

На самом деле, мы сильно преувеличиваем затраты на космос по разным причинам.
Первая причина. Первоначальные инвестиции за 10 лет имеют высокую отдачу . Возьмем частный капитал и акции фондового рынка. Частная компания SpaceX , основанная PayPal соучредителем Элон Маск, в 2002 году. Было вложено 120 млн. долларов. В 2006 году компания получила контракт НСПНК или 100 млн. долларов за каждый пуск ракетоносителя Falcon-1 и Falcon-9 или более $ 1 млрд до 2012 года. В 2008 г. выиграла конкурс НАСА в размере $ 278 млн на развитие ракетоносителя Falcon-9. 2008 года SpaceX выиграла CRS контракт на 12 миссий доставки астронавтов и грузов на МКС в размере $ 1,6 млрд. В 2010 года SpaceX получила крупнейший коммерческий контракт космических запусков ($ 492 млн.) для запуска спутников Iridium.
За восемь лет акции компании SpaceX выросли примерно в тридцать раз. Каждый владелец акций данной компании увеличил свой капитал в 30 раз! Очевидно, с запуском "Falcon Heavy" в 2015-2017 г. (грузоподъемность ~ 53 тонны) , с удешевлением стоимости вывода грузов на орбиту в несколько раз и возможностью доставки грузов на Луну, капитал SpaceX многократно увеличится. Таким образом, первоначальные инвестиции за 10 лет имеют отдачу в десятки раз больше.



Вторая причина. Решение принадлежит некомпетентным людям и финансирование тупиковых космических программ, что приводит к огромным потерям. МАКС - двухступенчатый комплекс, состоящий из самолёта-носителя (Ан-225 «Мрия» - предполагалась разработка нового самолета-носителя Ан-325), на котором устанавливается орбитальный самолёт. Разработка велась с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского в НПО «Молния». Предполагалось, что поскольку МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз), стоимость выведения груза на низкую околоземную орбиту составит порядка $ 1 тыс /кг. В настоящее время на проект уже истрачено около 14 трлн долларов .
Проект оказался тупиковым (на смену ему пришел другой проект "Байкал" на базе многоразового ускорителя первой ступени ракеты-носителя Ангара).
Для сравнения, годовой бюджет НАСА составляет $ 18,7 млрд., Роскосмоса - $ 2,9 млрд.



Третья причина. Огромные затраты на ведение военных действий, в то время как финансы можно тратить на мирное освоение космоса. Примеры:
  • По состоянию на сентябрь 2008 года, Конгресс США направил 825 млрд долларов на войну с Ираком, тогда средний годовой бюджет НАСА равен всего лишь 16 млрд долларов. Другими словами, при уровне финансирования НАСА, денег, затраченных на войну с Ираком, хватило бы примерно на 51 год работы на освоение космоса.
  • За одну только неделю военного конфликта на Кавказе в августе 2008 года в Южной Осетии золотовалютные запасы России «усохли» на 16,4 млрд. долларов. Еще большие потери понес фондовый рынок России. Перед событиями в Южной Осетии капитализация российского фондового рынка была близка к 1,1 трлн. долл., а через неделю оказалась ниже 1 трлн. долл. В целом - это потеря 50-100 млрд. долларов, что составляет 30-70 летний бюджет Роскосмоса.
  • Военный бюджет США на 2012 финансовый год составит 670,6 миллиарда долларов, из которых 117,6 миллиарда будут потрачены на проведение военных операций за рубежом в Афганистане и Ираке. Это шесть годовых бюджетов НАСА!
  • Март-апрель 2011 года. Военный действия НАТО (США, Великобритания, Франция, Канада, Бельгия, Италия) в Ливии. Ежедневные затраты только для США составляют $ 4 млн. За несколько дней в апреле было выпущено 192 крылатые ракеты «Томагавк» (стоимостью каждой от 1 до 1,5 миллионов долларов, производитель General Dynamics, председатель совета директоров и главный управляющий - Николя Чабрайя ). Затраченных средств достаточно, чтобы отработать двупусковую и четыре пусковую схему полета человека к Луне в обход радиационных поясов через геомагнитные полюса Земли на основе действующих ракетоносителей "Союз" и "Протон" (см. выше).

Использованная литература и запросы:
  1. "Outer-space sex carries complications".
  2. "Known effects of long-term space flights on the human body".
  3. "The life of Konstantin Eduardovitch Tsiolkovsky".
  4. "Build astronomical observatories on the Moon?"
  5. Salisbury, F.B. (1991). "Lunar farming: achieving maximum yield for the exploration of space"/ HortScience: a publication of the American Society for Horticultural Science 26 (7): 827–33.
  6. Massimino D, Andre M (1999). "Growth of wheat under one tenth of the atmospheric pressure". Adv Space Res 24 (3): 293–6.
  7. Terskov, I.A.; Lisovskiĭ, G.M.; Ushakova, S.A.; Parshina, O.V.; Moiseenko, L.P. (May 1978). "Possibility of using higher plants in a life-support system on the moon". Kosmicheskaia biologiia i aviakosmicheskaia meditsina 12 (3): 63–6.
  8. "Lunar Agriculture"
  9. "Farming in Space". quest.nasa.gov.
  10. Полезная нагрузка космического аппарата / Ракеты-носители "Протон", "Союз", "Днепр", "Атлас".
  11. Книга рекордов Гиннесса для химических веществ
  12. Космонавтика XXI века: термоядерные двигатели / New Scientist Space (23.01.2003): Nuclear fusion could power NASA spacecraft.
  13. Калифорний / en.wikipedia.org/wiki/Californium .
  14. Landis, Geoffrey A. (Feb. 2-6 2003). "Colonization of Venus". Conference on Human Space Exploration, Space Technology & Applications International Forum, Albuquerque NM.
  15. компания SpaceX / ru.wikipedia.org/wiki/SpaceX
  16. Falcon Heavy / en.wikipedia.org/wiki/Falcon_Heavy
  17. МАКС / ru.wikipedia.org/wiki/Многоцелевая_ авиационно-космическая_ система
  18. General Dynamics Corporation / en.wikipedia.org/wiki/General_Dynamics

От строительства электростанций и добычи лунных ресурсов до космического туризма и проблемы перенаселения.

В закладки

Полвека назад казалось, что недалек тот день, когда на Луну будут летать как на дачу. Сегодня на Луну не полетишь, даже если очень захотеть: нет подходящих ракет. Технологии шагнули вперед, а пилотируемая космонавтика - нет.

Российский астроном Владимир Сурдин как-то заметил: между покорением Южного полюса и основанием на нем первой базы прошло 45 лет, а в Марианскую впадину человек вернулся лишь спустя 52 года после первого погружения.

Последняя американская экспедиция на Луну в рамках программы «Аполлон» состоялась в 1972 году, то есть 45 лет назад. Если верить представленной аналогии, согласно которой между открытием труднодоступной точки и возможностью её полноценного изучения проходит примерно 50 лет, то ждать новых полетов на Луну стоит уже в ближайшее время.

Причем на этот раз человечество должно закрепиться на Луне более основательно, ведь у лунной колонии может быть и прагматичная цель, и коммерческая составляющая. Правительства смотрят на Луну как на источник ресурсов, бизнесмены - как на курорт для миллиардеров, ученые - как на космическую лабораторию, а романтики - как на первую остановку на пути расселения человечества в космосе.

Кто участвует в новой лунной гонке

Макет межпланетной станции «Луна-24»

В августе 1976 года советский аппарат «Луна-24» сел на лунную поверхность в районе моря Кризисов. Он пробурил двухметровую скважину, извлек образец лунного грунта и доставил его на Землю. Этот полет оказался последней миссией на Луну в 20 веке - следующая посадка на поверхность спутника Земли состоялась лишь через 37 лет, в 2013 году.

Осуществил её китайский аппарат «Чанъэ-3», доставив туда небольшой луноход. Миссия была частью обширной китайской лунной программы, следующий крупный этап которой запланирован на конец 2017 и начало 2018 годов. На этот раз китайцы планируют привезти на Землю собственные образцы грунта с обратной стороны Луны, где еще не садился ни один аппарат.

Китайский посадочный модуль «Чанъэ-3»

На начало 2018 года также запланирован запуск индийской лунной станции «Чандраян-2» - в её задачу входит посадка на Луну и запуск лунохода. Ни Индия, ни Китай пока не заявляли о конкретных планах пилотируемого полета на Луну в обозримой перспективе. Зато это сделала Япония, официально поставив перед собой задачу в партнёрстве с NASA отправить человека на Луну уже к 2030 году.

В самом американском агентстве от планов по скорейшему возвращению на Луну отказались ещё в 2011 году. Наиболее приоритетный проект для США - пилотируемый полет на Марс. Луна при этом может стать своеобразным перевалочным пунктом - на орбите вокруг неё можно разместить станцию, откуда будет стартовать межпланетный корабль.

На фоне такой мировой активности Россия также вернулась к задаче покорения земного спутника. К 2017 году российская лунная программа уже успела получить от государства солидное финансирование, затем частично его лишиться из-за кризиса и переориентироваться на более поздние сроки. Основные планы российской программы касаются отправки на Луну автоматических станций и доставки на Землю образцов лунного грунта в период с 2019 по 2024 годы.

Хорошо забытое старое

Для полета на Луну необходимы три основных компонента:

  • ​Тяжелая ракета, способная отправить груз к Луне.
  • Космический корабль для межпланетных путешествий.
  • Спускаемый лунный модуль.

В СССР так и не решили задачу отправки человека на Луну из-за неудачных испытаний тяжелой ракеты Н-1. Лунный модуль и космический корабль при этом успешно прошли испытания. Корабль назвали «Союз», и он до сих пор используется для доставки людей на МКС.

Космический корабль «Союз»

Распространённый вопрос: «Почему нельзя заново сделать то, на чем уже летали на Луну?». Ответ: можно, но это лишено смысла. Представьте, что вам нужно сделать автомобиль. Вряд ли вы пойдете искать чертежи модели пятидесятилетней давности - её создание обойдется дороже, а результат будет сомнительным. По этой же причине в 2017 году нет смысла воссоздавать ракету и корабль из 1960-х годов - технологии ушли далеко вперед, и сегодня можно добиться лучших результатов.

Новая российская лунная программа изначально строилась вокруг проекта тяжелой ракеты «Ангара-А5». Разработка линейки ракет «Ангара» на экологичном топливе (по сравнению с токсичным гептилом , на котором летают «Протоны») шла с начала 90-х годов, и за все это время «Ангара-А5» была испытана всего один раз - в 2014 году. В итоге из-за дороговизны ракеты от её эксплуатации было решено отказаться.

Ракета-носитель «Ангара-А5»

Внимание российских инженеров переключилось на советскую ракету «Зенит», которую создатель частной космической компании SpaceX Элон Маск как-то назвал «лучшей в мире, если не считать Falcon». «Зенит» была создана как разгонная ступень для тяжелой ракеты «Энергия», теперь же её планируют доработать и превратить в самостоятельную единицу под названием «Феникс».

У «Феникса» есть несколько преимуществ перед «Ангарой». Во-первых, её создание должно обойтись в два-три раза дешевле. Во-вторых, для «Ангары» необходимо строить отдельный стартовый стол на космодроме, «Феникс» же можно запускать как с Байконура, так и с «Морского старта» - плавучей платформы, позволяющей осуществлять запуск из океана. Это дает возможность стартовать точно с экватора, что придает ракете максимальное ускорение за счет вращения Земли.

В 2016 году обанкротившийся ранее «Морской старт» был приобретен авиакомпанией S7, которая одновременно с этим заказала 12 ракет типа «Зенит» у завода «Южмаш». Первый коммерческий старт с этой площадки запланирован уже на 2017 год.

Предполагается, что для запуска пилотируемого полета к Луне можно будет использовать несколько «Фениксов», объединенных в одну ракету-носитель. Нечто подобное пытаются реализовать и в SpaceX с ракетой Falcon Heavy, правда, её испытания откладываются уже в течение нескольких лет.

Окончательно от «Ангары» в Роскосмосе отказываться не стали - по последним данным, для неё всё же построят стартовый стол на космодроме «Восточный» с прицелом на будущие пилотируемые запуски.

Запуски к Луне должны начаться уже скоро. Первый российский автоматический лунный модуль должен отправиться к месту назначения в 2019 году в рамках миссии «Луна-25 Глоб». Предполагается, что миссия позволит отработать технологии мягкой посадки на территории Южного полюса Луны - перспективного района для основания колонии.

Уже много лет ведется разработка космического корабля нового поколения «Федерация» - он должен заменить «Союзы» и «Прогрессы» и доставить на Луну четырех российских космонавтов. Первые беспилотные запуски корабля намечены на 2021 год, а первый пилотируемый полет - на 2024 год.

Лидер по-прежнему США

В NASA тоже разрабатывают новый космический корабль под названием Orion. Его испытания были проведены в 2014 году, а первый пилотируемый полет может состояться уже в конце 2018 года - причем сразу к Луне.

Изначально на 2018 год был запланирован беспилотный полет «Ориона». Полет к Луне должен был стать испытанием и для корабля, и для тяжелой ракеты SLS, создаваемой американцами с прицелом на марсианскую экспедицию. Но с приходом администрации Дональда Трампа начались разговоры о том, что раз к Луне полетит уже готовая техника, почему бы не снабдить её экипажем.

Как только в NASA начались публичные обсуждения пилотируемого полета, SpaceX , что готова в 2018 году отправить к Луне двоих туристов на корабле Dragon 2 и ракете Falcon Heavy.

Однако ни Falcon Heavy, ни SLS еще даже не прошли испытаний. Потенциально обе ракеты могут стать «чемпионами» современности по грузоподъемности, но заявления о пилотируемом запуске в 2018 году пока не выглядят реалистичными.

«Запасная» планета

Элон Маск не скрывает, что его главная мотивация в деле колонизации Марса - создание «резервной копии» человечества. Век развития цивилизации пришелся на достаточно спокойный период в истории Земли - не было резких изменений климата, падений крупных метеоритов, угрозы вулканической активности и прочих катастроф, которые в истории планеты случались регулярно.

Идея запасного дома не нова, и о ней всерьёз рассуждал ещё Циолковский. Вариантов не так много - это либо , либо Луна.

Подлунный мир

Поверхность Луны примерно равна сумме площадей трех крупнейших стран Земли - России, Канады и Китая. Луна в 81 раз легче Земли, а сила тяжести на ней меньше в шесть раз. Но по космическим масштабам Луна и Земля - тела примерно одного порядка. Иногда даже говорят, что они составляют двойную планетную систему.

Луна всего в полтора раза меньше Меркурия - такого соразмерного спутника больше нет ни у одной планеты в Солнечной системе (похожую систему составляют теперь уже бывшая планета Плутон и её спутник Харон, но они во много раз легче Земли и Луны).

Поверхность Луны не пригодна для жизни в первую очередь из-за трех факторов: перепады температур от –150 ºC до +120 ºC, космическая радиация и постоянная бомбардировка микрометеоритами. Землю от всего этого защищает атмосфера, которой у Луны нет - испаряющиеся под действием излучения Солнца с поверхности гелий, водород и другие газы очень сильно разрежены.

На поверхности Луны лежит толстый слой стертого в пыль реголита , по большей части состоящего из смеси стекла и песка. Теоретически его можно использовать для защиты от радиации и небольших метеоритов. Как и на Марсе, базу на Луне имеет смысл покрывать слоем грунта в несколько метров - это можно сделать, например, при помощи управляемого взрыва, как предполагалось в проекте советской лунной базы «Звезда».

Из-за воздействия солнечного ультрафиолета пыль на Луне наэлектризована и особенно опасна для здоровья и электроники. В отличие от частичек земной пыли, которые сглаживаются эрозией, лунные пылинки имеют остроконечную форму. К концу третьих суток американских лунных экспедиций перчатки скафандров астронавтов стирались пылью почти до дыр.

Избавиться от всех этих проблем можно под поверхностью Луны, но создание такой «подлунной» базы потребует больших затрат энергии. Есть и совсем экзотические предложения - например, бурить в толще Луны многокилометровые тоннели, превращая их в целые ландшафты земного типа с искусственным освещением.

Застывшие базальтовые лавы Луны настолько прочны, что широкие тоннели не потребуют никаких укреплений, а плотность пород позволит заполнять их кислородом, не боясь, что он сразу же весь утечет. Для создания в них обитаемых условий нужно будет раздобыть воду, кислород и энергию.

Лунные колодцы

Миссия «Луны-24» оказалось не только последней в 20 веке, но и чрезвычайно полезной - в привезенной ей образцах грунта советские ученые нашли небольшое содержание воды. В начале 21 века американский орбитальный зонд LRO с помощью российского детектора обнаружил в полярных зонах Луны грунт с концентрацией воды не менее 3%. Стоимость гипотетических миссий сразу снизилась благодаря возможности не брать с собой запасы жидкости.

Но добывать воду на Луне будет непросто - при температуре –150 ºC водяной лед становится прочнее стали. Существует мнение, что в будущем проще и дешевле окажется транспортировать на Луну пролетающие мимо ледяные кометы, используя миниатюрные реактивные двигатели.

Электростанция на аутсорсе

Единственный доступный источник энергии на Луне - это Солнце. Из-за отсутствия атмосферы солнечные батареи на Луне могут вырабатывать в шесть-восемь раз больше энергии, чем на поверхности Земли. Отсутствие погодных условий делает выработку стабильной во времени.

Существуют целые проекты превращения Луны в огромную электростанцию. Если построить вокруг лунного экватора пояс из солнечных батарей, то он смог бы вырабатывать энергию круглосуточно. С помощью направленного СВЧ-излучения её можно было бы передавать на Землю.

Строительством таких сооружений могут заниматься роботы, причем большую часть необходимых для этого материалов можно добывать на месте. Впрочем, подобные проекты пока относятся скорее к области фантастики.

Добыча ресурсов

Написать

Развитие космической техники неизбежно приведет человечество к тому, что через несколько десятилетий понятие "ближний космос" будет включать и Луну. Вначале пилотируемые космические корабли и орбитальные станции перейдут на более высокие геостационарные орбиты и в окололунное пространство. А следующим шагом будет начало освоения Луны - создание на ее поверхности постоянно действующей обитаемой базы.

Геостационарная орбита - круговая экваториальная орбита, удаленная от поверхности Земли примерно на 35 800 км. Период обращения по такой орбите равен звездным суткам (23 часа 56 минут 4 секунды среднего солнечного времени). При этом условии угловая скорость ИСЗ относительно центра Земли равна угловой скорости вращения Земли - ИСЗ постоянно будет находиться над определенной точкой земного экватора.

Однако позволительно спросить: зачем людям нужна Луна? Какая от нее может быть польза?

В последние годы в хозяйственной деятельности человечества наметилась новая цель - изучение и использование внеземных природных ресурсов. Мы столкнулись с проблемой нехватки источников энергии, полезных ископаемых, запасов чистой пресной воды. Надо искать замену тому, что исчезает на нашей планете. И люди невольно обращают свой взгляд на Луну - ближайший объект в космическом пространстве. Близость Луны к Земле и ее доступность для новой космической техники позволяют вовлечь Луну в круг земных проблем.

Когда мы говорим о целесообразности использования ресурсов Луны, то это не только поиски и разработка ее полезных ископаемых. В соседнем мире мы не найдем богатых рудных месторождений, пластов каменного угля и, видимо, запасов нефти. Зато наш естественный спутник обладает многими другими важными потенциальными ресурсами, и по мере развития космонавтики люди непременно будут их использовать.
Высокий уровень индустриализации современного общества с каждым годом приближает нас к глобальной экологической катастрофе. Но как может помочь нам Луна, если на ней нет ни атмосферы, ни даже маленького озерца?

Конечно, никто не собирается возить с Луны воздух и воду. Но ведь можно вывезти с Земли на Луну нашу индустрию, особенно наши вредные радиоактивные и химические производства. Понятно, что для осуществления такой грандиозной промышленной перестройки земной цивилизации предстоит проделать трудный и сложный путь, и начало этому пути должно быть положено уже в первой половине XXI века.

Прежде чем устраивать на Луне поселения, необходимо подумать: как обеспечить ее жителей кислородом и водой? Как наладить добычу жизненно необходимых веществ на месте? Ведь не возить же все с Земли!

По имеющимся прогнозам, основные породообразующие минералы на Луне - пироксен, плагиоклаз, ильменит - содержат в среднем 40% кислорода. Вот они и должны послужить исходным материалом для получения кислорода. Технология получения кислорода из лунного грунта уже отработана в наземных лабораториях. В США разработан проект автоматизированного завода для промышленного производства кислорода на Луне. Производительность такого завода - до 1000 т кислорода в год.

Среди первоочередных задач, помимо создания на Луне запасов жидкого кислорода, стоит задача получения и накопления воды. Известно, что лунные породы обезвожены. Но не исключено, что в коре Луны содержится много воды в виде подповерхностных ледников. И вполне возможно, что открытые в последние годы так называемые лунные купола являются не чем иным, как гидролак-колитами - вершинами подлунных наледей. А пока этот вопрос будет выясняться, придется наладить производство воды на Луне химическим путем.

Потоки солнечного ветра (солнечных корпускул) и галактические космические лучи представляют собой почти чистый водород с примесью гелия. Расчет показывает, что за 1 млрд лет на каждый квадратный сантиметр лунной поверхности в виде корпускулярного излучения должно было упасть около 10 г водорода. Лунный реголит впитывает водород подобно тому, как губка впитывает воду. За всю историю существования Луны в ее поверхностном слое накопилось такое количество водорода, которое эквивалентно содержанию воды порядка 1 л в кубическом метре реголита.
Основной технологический процесс получения водорода из лунных пород - это их нагревание до высоких температур. Затем водород подается в установку, которая загружена кислородсодержащей породой, например ильменитом. Здесь он вступает в химическую реакцию с кислородом, в результате чего образуется водяной пар. Для получения воды пар охлаждают. Судя по земным экспериментам, выход воды при обработке 45 кг ильменита составляет 450 г.

Приведем еще один пример: в 20 кг лунной породы (реголита) содержится такое количество кислорода, которое вполне достаточно для дыхания одного человека в течение суток.

Из лунного грунта можно добывать и другие нужные химические вещества. Словом, запасы минерального сырья на Луне так велики, что со временем отпадет всякая необходимость в их доставке с Земли. Это позволяет надеяться, что Луна может быть успешно освоена и заселена людьми.

Проблема заселения Луны людьми - это прежде всего проблема строительства таких лунных жилищ, внутри которых были бы созданы земные условия. Они должны надежно изолировать людей от безвоздушного космического пространства, препятствовать резким колебаниям температуры, защищать от метеоритов и опасных излучений. Для этого жилые отсеки лучше всего помещать в специальные углубления, а сверху их засыпать толстым слоем лунного грунта.

Упрятанное от враждебной человеку космической среды, лунное жилище будет связано воздухопроводами с оранжереей, расположенной на поверхности Луны. Оранжерея тоже должна быть герметично изолирована от окружающего ее безвоздушного пространства. Она обильно облучается солнечными лучами, и произрастающие в ней растения очищают искусственную атмосферу от углекислоты и насыщают ее кислородом. Со временем на Луне будет налажено производство своих продуктов питания.

Надо подумать об источниках энергии для лунной базы. Главным направлением развития лунной энергетики должно быть использование солнечной энергии путем преобразования ее в электрическую. Прообраз таких установок - солнечные батареи, которые широко применяются на различных космических аппаратах.

Из-за отсутствия на Луне атмосферы на единицу ее поверхности приходится примерно в 3 раза больше солнечной радиации (лучистой энергии), чем на единицу поверхности Земли. Следовательно, в смысле облучения солнечными лучами поверхность Луны эквивалентна поверхности всех земных материков. И если бы удалось замостить какую-то ее часть полупроводниковыми фотоэлементами и найти способы передачи энергии на Землю, то Луна могла бы стать для нас, пожалуй, самой главной электростанцией. Правда, у такой электростанции есть существенный недостаток: она вырабатывает электрическую энергию только в дневное время.

Но есть и другие источники энергии, действие которых не зависит от времени суток, например ядерные энергоустановки. Решение энергетической проблемы человечество возлагает также на управляемые термоядерные реакции. Одна из таких реакций - слияние ядер дейтерия (тяжелого водорода) и изотопа гелия (гелий-3). Эта реакция совершается при малых затратах и почти полном отсутствии радиоактивных отходов, что исключает опасность радиоактивного заражения окружающей среды.

На Земле изотоп гелия встречается очень редко. Зато на Луне, приносимый солнечным ветром, он в течение 4 млрд лет впитывался в лунный грунт. Результаты лабораторного анализа лунного грунта показывают, что в поверхностном слое реголита накопилось порядка 1 млн т запасов гелия-3. Такого количества ядерного топлива хватило бы на десятки тысяч лет не только для лунных поселений, но и для всего человечества.

Богатства Луны огромны! Надо только научиться их добывать и рационально использовать для развития лунной индустрии и энергетики. Когда Луна станет местом сосредоточения промышленности землян, наша голубая планета Земля превратится в подлинный оазис жизни.

В эпоху своего возникновения Луна находилась в несколько раз ближе к Земле, чем теперь, и гораздо быстрее вращалась вокруг своей оси. Гравитационное притяжение соседней Земли вызывало на расплавленной поверхности лунного шара сильные приливы. Под их воздействием Луна приняла несколько вытянутую форму, а когда она затвердела, форма ее так и осталась вытянутой.

Приливное трение постепенно замедляло скорость вращения Луны. Это происходило до тех пор, пока период вращения Луны вокруг оси не стал равен периоду ее обращения по орбите вокруг Земли. И теперь нам видна только одна сторона Луны.

Поскольку масса Земли в 81 раз больше массы Луны, то приливная сила, оказываемая Землей на Луну, гораздо больше, чем приливная сила, оказываемая Луной на Землю. Как известно, волны лунных приливов, надвигаясь каждый раз на восточные берега земных материков, создают силу приливного трения водных масс о твердое тело нашей планеты. В результате Земля замедляет свое вращение, а продолжительность суток постепенно возрастает. При сохранении скорости увеличения длины суток на 1,5 секунды за 100 тыс. лет уже в текущем геологическом периоде (через 10 млн лет) в земном году будет на одни сутки меньше.

Приливное взаимодействие в системе Земля-Луна приводит еще к тому, что наш спутник отходит от Земли все дальше и дальше. Вычисления показали, что это будет происходить до тех пор, пока продолжительность лунного месяца и земных суток не сравняются и не достигнут примерно 50-55 теперешних суток. Луна будет тогда находиться от Земли раза в полтора дальше, чем теперь, то есть примерно на расстоянии 600 тыс. км.

Приливная эволюция системы Земля-Луна совершается также под влиянием притяжения Солнца, но гораздо медленнее. Так, в результате приливного воздействия центрального светила период вращения нашей Земли должен увеличиваться до тех пор, пока он не станет равным годичному периоду обращения Земли. В таком положении, возможно, окажется планета Меркурий.

Постепенное удлинение земных суток вследствие солнечных приливов нарушит установившееся относительное равновесие в системе Земля-Луна. Луна станет приближаться к Земле. Расчеты показывают, что через многие миллиарды лет это сближение должно завершиться катастрофой.

Можно подумать, что Луна упадет на Землю, но до этого дело, видимо, не дойдет. Просто, когда Луна приблизится к Земле на запретное расстояние - достигнет так называемого предела Роша, ближе которого она не может сохранить устойчивую форму, наш естественный спутник будет разорван на части мощными земными приливными силами. Из множества лунных фрагментов вокруг Земли возникнет кольцо, похожее на кольцо Сатурна. Разрыв Луны произойдет примерно тогда, когда расстояние между центрами двух небесных тел (Земли и Луны) сократится до 18 тыс. км.

Восстановление эволюционного пути Луны проливает свет на ряд спорных моментов в прошлом и позволяет заглянуть в будущее Земли.

Самые холодные места на Земле и рядом не стоят близко к температуре лунной ночи - и создать базу, которая будет способна оградить поселенцев от такой температуры, очень нелегко. В течение многих десятилетий мысли о колонизации Луны волновали ученых и дальновидных людей. На экранах телевизоров и мониторов появлялись самые разные концепции лунных колоний.

Возможно, лунная колония будет следующим логичным шагом для человечества. Это наш ближайший сосед по звездам, который находится в каких-то 383 000 километрах от нас, что упрощает поддержку ресурсами. Кроме того, на Луне в избытке гелия-3, идеального топлива для термоядерных реакторов, которого на Земле очень мало.

Маршрут для постоянной лунной колонии теоретически набрасывали разные космические программы. Китай выразил заинтересованность в размещении базы на обратной стороне Луны. В октябре 2015 года стало известно, что Европейское космическое агентство и Роскосмос планируют ряд миссий к Луне, чтобы оценить возможности для размещения постоянных поселений.

Тем не менее у нашего спутника есть ряд проблем. Один оборот совершает за 28 земных дней, а лунная ночь длится 354 часа - больше 14 земных дней. Длинный ночной цикл означает существенный спад температур. Температура на экваторе варьируется от 116 градусов по Цельсию днем до -173 градусов ночью.

Лунная ночь будет короче, если разместить базу на Северном или Южном полюсе. «Есть много причин строить такую базу на полюсах, но необходимо учитывать и другие факторы, помимо часов солнечного света», говорит Эдмонд Троллоп, инженер по космическим операциям в Telespazio VEGA Deutschland. Как и на Земле, на полюсах может быть очень холодно.

На лунных полюсах Солнце будет перемещаться вдоль горизонта, а не по небу, поэтому придется выстраивать боковые панели (в форме стен), что усложнит строительство. Большая плоская база на экваторе собирала бы много тепла, но чтобы добраться до тепла на полюсе, придется строить вверх, а это непросто. «При разумно выбранном месте, разницу температур можно будет с легкостью контролировать», говорит Волкер Майвальд, ученый Немецкого аэрокосмического центра DLR.

Широкая вариативность температур в цикле дня и ночи означает, что придется обеспечивать лунные базы не только достаточной изоляцией от леденящего холода и жгучей жары, но и справляться с термическими напряжениями и тепловым расширением.

Тепловая защита
Первые роботизированные миссии на Луну, вроде советских миссий « », были спроектированы прожить один лунный день (две земных недели). Посадочные модули миссий NASA Surveyor могли возобновить работу на следующий лунный день. Но урон, нанесенный компонентам во время ночи, зачастую не позволял получить научные данные.

Луноходы советской космической программы с одноименным названием, которая проводилась в конце 60–70-х годов, включала элементы радиоактивного нагрева с хитроумной системой вентиляции, что позволило аппаратам прожить до 11 месяцев. Луноходы впадали в спячку ночью и запускались с солнцем, когда становилась доступна солнечная энергия.

Один из вариантов избежать высоких тепловых колебаний - закопать здание в лунный реголит. Этот порошкообразный материал, который покрывает поверхность Луны, имеет низкую теплопроводность и высокую устойчивость к солнечной радиации. Это значит, что он обладает сильными теплоизолирующими качествами, и чем глубже колония, тем выше тепловая защита. Кроме того, поскольку база будет нагреваться, а тепло на Луне передается плохо из-за отсутствия атмосферы, это снизит дальнейшее термическое напряжение.

Тем не менее, хотя идея «закопать» колонию, в принципе, была принята успешно, на практике это будет невероятно сложной задачей. «Я пока не видел проекта, который мог бы с этим совладать, - говорит Волкер. - Предполагают, это будут роботизированные строительные машины, которыми можно будет управлять удаленно».

Врезать или накрыть?
Другой метод, с помощью которого можно было достичь нужного результата, лежит в самой земле. Пенетраторы, способные пробить поверхность в процессе удара, уже предлагались (но в меньших масштабах) для нескольких лунных миссий, вроде японской Lunar-A и британского MoonLite (в настоящее время проект отложен, хотя идея посадки с проникновением была настолько убедительной, что ЕКА решило использовать ее для механизма быстрой доставки образцов для анализа с поверхности и подповерхности планеты или луны). Преимущество этой концепции в том, что база зарывается при столкновении, а значит подвергнется относительно умеренным термическим условиям прежде, чем будет защищена.

Тем не менее останется проблема с обеспечением энергией, поскольку типичный проект с проникновением предлагает лишь очень ограниченные возможности по использованию солнечной энергии. Есть также проблемы нагрузок высокого ускорения при столкновении и высокой точности, необходимая для наведения. «Силу столкновения, необходимую для зарывания структуры, будет очень трудно согласовать с необходимыми функциями пилотируемой базы», говорит Троллоп.

Альтернативой такому решению будет насыпать лунный реголит сверху на колонию, возможно, используя машины типа гидравлических экскаваторов. Но чтобы сделать это эффективно, придется работать быстро.

Если лунный реголит не получится насыпать на колонию, тогда над ней можно развернуть «шляпу» многослойной изоляции (MLI), которая предотвратит рассеивание тепла. Теплоизоляционные материалы MLI широко используются на космических аппаратах, защищая их от холода космоса.

Преимущество такого метода в том, что он позволяет использовать массивы солнечных батарей для сбора и хранения энергии в течение двухнедельного лунного дня. Но если будет собрано недостаточно энергии, придется учитывать и альтернативные методы генерации энергии.

Термоэлектрические генераторы могли бы обеспечивать колонию энергией в течение ночного цикла: при своей низкой эффективности они, впрочем, не имеют проблем с обслуживанием, поскольку не имеют движущихся частей. Радиоизотопные термоэлектрические генераторы (РИТЭГ) предлагают большую эффективность и имеют очень компактный источник топлива. Но базу придется экранировать от радиации, при этом позволив ей передавать тепло. Логистика установки генератора со съемным радиоактивным изотопом кишит проблемами: риски будут на всем пути, от взлета с Земли до посадки на Луну, наряду с проблемами политики и безопасности.

Можно было бы использовать и реакторы ядерного деления, но с ними будет еще больше проблем, включая перечисленные выше.

А если будут разработаны термоядерные реакторы, их тоже можно будет использовать на Луне, учитывая избыток гелия-3. Также могут пригодиться батареи - вроде литий-ионных - при условии достаточной генерации солнечной энергии за две недели ночного цикла.

Есть идея обеспечить энергией станцию на поверхности во время ночного цикла с помощью орбитального спутника, который будет передавать энергию через микроволны или лазер. Исследование этой идеи проводилось 10 лет назад. В ходе исследования выяснилось, что для большой лунной базы, требующей сотни киловатт энергии, поставляемой с орбиты 50-киловаттным лазером, ректенна (тип антенны, которая конвертирует электромагнитную энергию в прямой электрический ток) будет 400 метров в диаметре, а на спутнике - 5 квадратных километров солнечных батарей. На Международной космической станции порядка 3,3 кв. км солнечных панелей.

Несмотря на значительные трудности в строительстве колонии, которая должна будет противостоять суровому ночному лунному циклу, они не являются непреодолимыми. При соответствующей тепловой защите и соответствующей системе выработки энергии во время длинной двухнедельной ночи, мы можем получить лунную колонию уже в ближайшие двадцать лет. И тогда сможем обратить свой взор подальше.

Спасибо за новость порталу