Какие из перечисленных ниже колебаний являются затухающими. Затухающие колебания

До сих пор мы рассматривали гармонические колебания, возникающие, как это уже отмечалось, при наличии в системе единственной силы - силы упругости или квазиупругой силы. В окружающей нас природе, строго говоря, таких колебаний не существует. В реальных системах кроме упругих или квазиупругих сил всегда присутствуют и другие силы, отличающиеся по характеру действия от упругих - это силы, возникающие при взаимодействии тел системы с окружающей средой - диссипативные силы. Конечным результатом их действия является переход механической энергии движущегося тела в теплоту. Другими словами, происходит рассеяние или диссипация механической энергии. Процесс рассеяния энергии не является чисто механическим и для своего описания требует привлечения знаний из других разделов физики. В рамках механики мы можем описать этот процесс путем введения сил трения или сопротивления. В результате рассеяния энергии амплитуда колебаний убывает. В этом случае принято говорить, что колебания тела или системы тел затухают. Затухающие колебания уже не являются гармоническими, так как их амплитуда и частота со временем изменяются.

Колебания, которые вследствие рассеяния энергии в колеблющейся системе происходят с непрерывно уменьшающейся амплитудой, называются затухающими. Если колебательная система, выведенная из состояния равновесия, совершает колебания под действием только внутренних сил, без сопротивления и рассеяния (диссипации) энергии, то совершающиеся в ней колебания называются свободными (или собственными) незатухающими колебаниями. В реальных механических системах с диссипацией энергии свободные колебания всегда затухающие. Их частота со отличается от частоты со 0 колебаний системы без затухания (о 0 тем больше, чем больше влияние сил сопротивления.

Рассмотрим затухающие колебания на примере пружинного маятника. Ограничимся рассмотрением малых колебаний. При малых скоростях колебаний силу сопротивления можно принять пропорциональной величине скорости колебательных смещений

где v = 4 - скорость колебаний; г - коэффициент пропорциональности, называемый коэффициентом сопротивления. Знак минус в выражении (2.79) для силы сопротивления обусловлен тем, что она направлена в сторону, противоположную скорости движения колеблющегося тела.

Зная выражения для квазиупругой силы i^p = -и силы сопротивления F c = с учетом совместного действия этих сил, можно записать динамическое уравнение движения тела, совершающего затухающие колебания

В этом уравнении коэффициент (3 в соответствии с формулой (2.49) заменим на ты], после чего последнее уравнение разделим наши получим

Будем искать решение уравнения (2.81) в виде функции времени вида

Здесь пока еще неопределенная постоянная величина у. Начальная фаза в нашем рассмотрении будет для упрощения предполагаться равной нулю, т.е. мы можем «включить» секундомер тогда, когда колебательное смещение проходит через положение равновесия (нуль координаты).

Определить величину у можем путем подстановки в дифференциальное уравнение затухающих колебаний (2.81) предполагаемого решения (2.82), а также получаемых из него скорости

и ускорения

Подстановка (2.83) и (2.84) совместно с (2.82) в (2.81) дает После сокращения на /1 () е" : " и умножения на «-1» получим Решив это квадратное уравнение относительно у, имеем

Подставив у в (2.82), найдем, как зависит смещение от времени при затухающих колебаниях. Введем обозначения

где символом со обозначена угловая частота затухающих колебаний и соо угловая частота свободных колебаний без затухания. Видно, что при S > 0 частота со затухающих колебаний всегда меньше частоты

Таким образом, и, следовательно, смещение при затухающих колебаниях может быть выражено в виде

Выбор знака «+» или «-» в показателе второй экспоненты произволен и отвечает сдвигу колебаний по фазе на л . Будем записывать затухающие колебания с учетом выбора знака «+», тогда выражение (2.90) будет

Это и есть искомая зависимость смещения от времени. Ее можно переписать и в тригонометрической форме (ограничиваясь действительной частью)

Искомая зависимость амплитуды A(t ) от времени может быть представлена в виде

где А(, - амплитуда в момент времени t = 0.

Постоянную 8, равную согласно (2.88) отношению коэффициента сопротивления г к удвоенной массе т колеблющегося тела, называют коэффициентом затухания колебаний. Выясним физический смысл этого коэффициента. Найдем то время т, за которое амплитуда затухающих колебаний уменьшится в е (основание натуральных логарифмов е = 2,72) раз. Для этого положим

Используя соотношение (2.93), получим: или

откуда следует

Следовательно, коэффициент затухания 8 - это величина, обратная времени т, по прошествии которого амплитуда затухающих колебаний уменьшится в е раз. Величина т, имеющая размерность времени, называется постоянной времени затухающего колебательного процесса.

Кроме коэффициента 8 для характеристики процесса затухания колебаний часто используют так называемый логарифмический декремент затухания X, равный натуральному логарифму отношения двух амплитуд колебаний, отделенных друг от друга промежутком времени, равным периоду Т

Выражение под логарифмом, обозначенное символом d, называется просто декрементом колебаний (декрементом затухания).

Используя выражение амплитуды (2.93), получим:

Выясним физический смысл логарифмического декремента затухания. Пусть амплитуда колебаний уменьшается в е раз по прошествии N колебаний. Время т, за которое тело совершит N колебаний, можно выразить через период т = NT. Подставив это значение т в (2.97), получаем 8NT= 1. Поскольку 67"= А., то NX = 1, или

Следовательно, логарифмический декремент затухания есть величина, обратная числу колебаний, за которые амплитуда затухающих колебаний уменьшится в е раз.

В ряде случаев зависимость амплитуды колебаний от времени A{t) удобно выразить через логарифмический декремент затухания А. Показатель степени 61 выражения (2.93) можно записать согласно (2.99) следующим образом:

Тогда выражение (2.93) принимает вид

где величина, равная числу N колебаний, совершаемых системой за время т.

В таблице 2.1 проведены примерные значения (по порядку величины) логарифмических декрементов затухания некоторых колебательных систем.

Таблица 2.1

Значения декрементов затухания некоторых колебательных систем

Проанализируем теперь влияние сил сопротивления на частоту колебаний. При смешении тела из положения равновесия и возвращении его в положение равновесия, на него все время будет действовать сила сопротивления, вызывая его торможение.

Это значит, что те же самые участки пути при затухающих колебаниях будут пройдены телом за больший интервал времени, чем при свободных колебаниях. Период затухающих колебаний Т, следовательно, будет больше периода собственных свободных колебаний. Из выражения (2.89) видно, что различие в частотах становится тем больше, чем больше коэффициент затухания б. При больших б (б > соо) затухающие колебания вырождаются в апериодический {не периодический) процесс, при котором в зависимости от начальных условий система возвращается в положение равновесия сразу без его прохождения, либо перед остановкой проходит положение равновесия однократно (совершает только одно колебание) - см. рис. 2.16.

Рис. 2.16. Затухающие колебания:

На рисунке 2.16, а изображен график зависимости %{t) и A{t) (при 5 > со 0 и начальной фазе соо, колебания вовсе невозможны (этому случаю соответствует мнимое значение частоты, определяемой из равенства (2.89). Система становится демпфирующей, а колебательный процесс - апериодическим (рис. 2.16, б).

  • Запись ехр(х) эквивалентна е*. Мы будем пользоваться обеими формами.
  • При общем рассмотрении колебаний полное значение фазы колебаний задается начальными условиями, т.е. величиной смещения 4(0 и скорости 4(0 в начальный моментвремени (t = 0) и включает слагаемое

И получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Затухание колебаний

Свободные колебания в реальных условиях не могут продолжаться вечно. Для механических систем всегда имеет место сопротивление среды, вследствие чего энергия движения объекта рассеивается при трении. В электромагнитных контурах колебания затухают за счет сопротивления проводников.

Уравнение затухающих колебаний

Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме оно записывается следующим образом:

Из этого выражения можно получить еще одну каноническую форму:

Здесь x и t – координаты пространства и времени, А – первоначальная амплитуда. – коэффициент затухания, который зависит от сопротивления среды r и массы колеблющегося объекта m:

Чем больше сопротивление среды, тем больше энергии рассеивается при вязком трении. И наоборот – чем больше масса (а значит, инерционность) тела, тем дольше оно будет продолжать движение.

Циклическая частота свободных колебаний (такой же системы, но без трения) учитывает силу упругости в системе (например, жесткость пружины k):

Строго говоря, в случае затухающих колебаний нельзя говорить про период – время между повторяющимися движениями системы постоянно увеличивается. Однако если колебания затухают медленно, для них с достаточной точностью можно определить период Т:

Циклическая частота затухающих колебаний

Еще одна характеристика затухающих колебаний – циклическая частота:

Время релаксации – это коэффициент, показывающий, за какое время амплитуда колебаний уменьшится в е раз:

Отношение амплитуды изменяющейся величины в двух последовательных периодах называют декрементом затухания:

Эту же характеристику при расчетах часто представляют в виде логарифма:

Добротность Q характеризует, насколько силы упругости системы превышают силы сопротивления среды, препятствуя диссипации энергии:

Примеры решения задач

ПРИМЕР 1

Задание После того, как к пружине подвесили груз, она растянулась на 9,8 см. Пружина колеблется в вертикальном направлении, . Определить период колебаний.
Решение Так как пружина растягивается под весом, то на нее действует сила тяжести:

Силе тяжести противодействует сила упругости пружины:

Из двух выражений найдём коэффициент упругости:

Подставим коэффициент упругости в формулу для периода затухающих колебаний:

Зная, что логарифмический декремент затухания выразим из него неизвестную величину , подставим в знаменатель формулы и выразим Т:

Ответ

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания - колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m . Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний системы с течением времени расходуется на работу против сил трения, поэтому собственные колебания всегда затухают – их амплитуда постепенно уменьшается. Потеря энергии происходит и при деформациях тел, так как вполне упругих тел не существует, а деформации не вполне упругих тел сопровождаются частичным переходом механической энергии в энергию хаотического теплового движения частиц этих тел.

Во многих случаях в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаний, пропорциональны величине скорости. Будем называть эти силы, независимо от их происхождения, силами трения или сопротивления и вычислять их по следующей формуле: . Здесь r – коэффициент сопротивления среды, – скорость движения тела. Знак минус указывает на то, что силы трения всегда направлены в сторону, противоположную направлению движения тела.

Запишем уравнение второго закона Ньютона для затухающих прямолинейных колебаний пружинного маятника

Здесь: m – масса груза, k – жесткость пружины, – проекция скорости на ось ОХ, – проекция ускорения на ось ОХ. Поделим обе части уравнения (13) на массу m и перепишем его в виде:

. (14)

Введем обозначения:

, (15)

. (16)

Назовем коэффициентом затухания, а мы ранее назвали собственной циклической частотой. С учетом введенных обозначений (15 и 16) уравнение (14) запишется

. (17)

Это дифференциальное уравнение затухающих колебаний любой природы. Вид решения этого линейного дифференциального уравнения второго порядка зависит от соотношения между величиной – собственной частотой незатухающих колебаний и коэффициентом затухания .

Если трение очень велико (в этом случае ), то система, выведенная из положения равновесия, возвращается в него, не совершая колебаний («ползет»). Такое движение (кривая 2 на рис.3) называют апериодическим.

Если же в начальный момент система с большим трением находится в положении равновесия и ей сообщается некоторая начальная скорость , то система достигает наибольшего отклонения от положения равновесия , останавливается и после этого смещение асимптотически стремится к нулю (рис.4).



Рис.3 Рис.4

Если система выведена из положения равновесия при условии и отпущена без начальной скорости, то система также не переходит положения равновесия. Но в этом случае время практического приближения к нему оказывается меньше, чем в случае большого трения (кривая 1 на рис 3). Такой режим называется критическим и к нему стремятся при использовании различных измерительных приборов (для быстрейшего отсчета показаний).



при малом трении (в этом случае ) движение носит колебательный характер (рис.5) и решение уравнения (17) имеет вид:

(19)

описывает изменение амплитуды затухающих колебаний со временем. Амплитуда затухающих колебаний уменьшается с течением времени (рис.5) и тем быстрее, чем больше коэффициент сопротивления и чем меньше масса колеблющегося тела, то есть чем меньше инертность системы.


Рис.5

Величину

называют циклической частотой затухающих колебаний. Затухающие колебания представляют собой непериодические колебания, так как в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Поэтому назвать частотой можно лишь условно в том смысле, что она показывает, сколько раз за секунд колеблющаяся система проходит через положение равновесия. По этой же причине величину

(21)

можно назвать условным периодом затухающих колебаний .

Для характеристики затухания введем следующие величины:

Логарифмический декремент затухания;

Время релаксации;

Добротность.

Отношение двух любых последовательных смещений, разделенных во времени одним периодом называют декрементом затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения значений амплитуды затухающих колебаний в моменты времени t и t+T (натуральный логарифм отношение двух любых последовательных смещений, разделенных во времени одним периодом):

Поскольку и , то .

Воспользуемся формулой зависимости амплитуды от времени (19) и получим

Выясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда затухающих колебаний убывает в е раз и назовем его временем релаксации . Тогда . отсюда следует, что

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β: