Как доказать что прямая перпендикулярна плоскости. Признак перпендикулярности прямой и плоскости: теория и практика

Урок исследование

Перпендикулярность прямой и плоскости.

Цель урока : Показать множественность подходов к доказательству теоремы; совершенствовать исследовательские умения и навыки учащихся.

Подготовка к уроку : ученики-консультанты дома готовят по дополнительной литературе семь доказательств признака перпендикулярности прямой и плоскости.

Ход урока : I

Вступительное слово учителя:

Сегодняшний урок – урок исследования. Всем вместе предстоит в процессе решения задач и ответов на проблемные вопросы, подойти к формулировке теоремы перпендикулярности прямой и плоскости и познакомиться с семью вариантами доказательств этой теоремы с тем, чтобы выбрать наиболее оптимальный из них, обстоятельно мотивировать своё мнение.

1.Подготовка к формулировке теоремы:

Повторение определения перпендикуляра к плоскости, анализ практического применения данного понятия посредством решения задач.

Задача 1.

Даны: Плоскость, точки А и В в этой плоскости; АМ – прямая перпендикулярная этой плоскости. Определить вид треугольника АМВ.

Задачи по вариантам.

Дан плоский четырёхугольник АВСD. АМ – перпендикуляр к плоскости ABCD. Какие из треугольников ABC, ACD, ABD, BCD, ADM, ABM, CAM – прямоугольные.

ABCD – квадрат. Прямая ВК перпендикулярна плоскости квадрата. Какие из треугольников ABD, BCD, ABK, BDK, BCK – прямоугольные.

Консультанты собирают листочки и проверяют решения, а учитель подводит учащихся к выводу:

1.Верно ли утверждение, что прямая, перпендикулярная к плоскости,

перпендикулярна любой прямой лежащей в этой плоскости?

2.Когда же прямая перпендикулярна плоскости?

3.Сколько прямых лежат на плоскости? Можно ли их посчитать?

Ученик – консультант на модели из спиц показывает различные варианты: в плоскости две прямые в плоскости, прямая перпендикулярна одной из них. Вывод: прямая не перпендикулярна плоскости. Следующий вариант модели: прямая перпендикулярна двум прямым, лежащим в плоскости, и, оказывается, перпендикулярна плоскости. Далее для закрепления, можно взять модель из трёх прямых и т. д.

По завершению работы с моделями перед учащимися ставится очередной проблемный вопрос: сколько прямых достаточно в плоскости, чтобы сказать, что прямая перпендикулярна плоскости?

Исследовав ситуацию перпендикулярности прямой и плоскости, мы в плотную подошли к теореме, которая даст возможность выяснить на чертежах, на моделях и в практика перпендикулярность к прямой и плоскости. Попробуем сформулировать теорему.

Ребята предлагают свои варианты формулировки теоремы. Учитель выделяет наиболее рациональнее и предлагает прослушать различные варианты формулировки и доказательства рассматриваемой теоремы, которые ученик разыскали дома в рекомендованной литературе.

2. Доказательство теоремы:

Теорема: Если прямая, пересекающаяся с плоскостью, перпендикулярна каким - нибудь двум прямым, проведённым на этой плоскости через точку пересечения данной прямой и плоскости, то она перпендикулярна и ко всякой третьей прямой проведённой в этой плоскости через ту же точку пересечения.

Доказательство: Отложим на прямой AA 1 произвольной длины, но равные отрезки OA и OA 1 и проведём на плоскости какую-нибудь прямую, которая пересекла бы три прямые исходящие из точки О в точках C, D, и B .Эти точки соединим с точками A и A 1 ; мы получим несколько треугольников.∆ACB= ∆A 1 CB, так как у них BC - общая, AC=A 1 C - как наклонные к прямой AA 1 , одинаково удаленые от основания О перпендикуляра ОС. По той же причине AB=A 1 B .Из равенства этих треугольников следует, что ∟ABC=∟A 1 BC.

∆ABD=∆A 1 BD по первому признаку равенства треугольников: BD - общая, AB=A 1 B по доказанному, ∟ABC= ∟A 1 BC .Из равенства этих треугольников следует, что AD=A 1 D.

∆АОD=∆A1OD по третьему признаку равенства треугольников. Из равенства этих треугольников следует, что AOD= A1OD; и так как эти углы смежные, то AA1 перпендикулярна OD.

Теорема: Прямая, перпендикулярная двум пересекающимся прямым, принадлежащим плоскости, перпендикулярна плоскости.

Первый случай, когда все прямые a, b, c проходят через точку О – точку пересечения прямой с плоскостью α. Отметим на прямой р вектор OP, на прямой с вектор OC и докажем, что произведение векторов OP и OC равно 0.

Разложим вектор OC по векторам OA и OB, расположенные соответственно на прямых a и b; тогда (речь идет о векторах) OC=OA+OB. Значит:

OP∙OC=OP (OA+OB)=OP∙OA+OP∙OB

Но OP ┴ OA, OP ┴ OB; поэтому OP∙OA=0, OP∙OB=0. Отсюда OP∙OC=0; значит OP ┴ OC и р ┴ с. Но с – любая прямая плоскости; значит, р ┴ α

Второй случай , когда прямые a, b, c не проходят через точку О. Проведем через точку О прямые a1||a; b1||b; c1||c. По условию p ┴ а, p ┴ b, значит p ┴ а1, p ┴ b1, и, по доказанному выше, p ┴ с1, а поэтому p ┴ с. Прямая с – любая прямая плоскости α; значит прямая р перпендикулярна ко всем прямым, лежащим в плоскости α, а поэтому p ┴ α.

Теорема: Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна данной плоскости.

Доказательство можно взять из учебника А.В. Погорелов «Геометрия 7-11»

А 1

α A X B

А 2

IV вариант Э.Е. Лежандр

Теорема: Прямая перпендикулярная двум прямым, лежащим на плоскости, перпендикулярна самой плоскости. O

Дано: SO  OA, SO  OB, OA C  .,OB C 

Доказать: SO  

Доказательство:

1. Медиану треугольника можно выразить через стороны

4AM 2 =2(AB 2 +AC 2 )-BC 2

2 Через точку С проведём прямую так, чтобы отрезок АВ, заключённый между сторонами угла АОВ, разделился бы в этой точке пополам, то есть АС=ВС. SC – медиана треугольника АSВ: 4SС 2 =2(SА 2 +SВ 2 )-АВ 2 . ОС – медиана треугольника АОВ: 4ОВ 2 =2(АО 2 +ОВ 2 )-АВ 2 . Почленно вычитая эти равенства, получим: 4(SС 2 -ОС 2 )=2((SА 2 -АО 2 )+(SВ 2 -ОВ 2 )). Выражение в скобках в правой части равенства можно заменить по т. Пифагора. Для треугольника АОS: SО 2 =SА 2 -ОА 2 . Для треугольника ВОS: SО 2 =SВ 2 -ОВ 2 .

Отсюда: 4(SС 2 -ОС 2 )=2(SО 2 +SО 2 ), 4(SС 2 -ОС 2 )=4SО 2 , SС 2 -ОС 2 =SО 2 , откуда SС 2 =SО 2 +ОС 2 . Согласно обратной теоремы Пифагора, SО ОС. ОС – произвольная прямая, принадлежащая плоскости  , значит SО  .

Теорема: Если прямая перпендикулярна каждой из двух пересекающихся прямых лежащих в плоскости, то эта прямая перпендикулярна плоскости .

Докажем, что прямая l перпендикулярна любой третьей прямой в плоскости 

  1. Построение: Прямые m, n, g перенесем параллельно в точку О; ОА=ОС=ОD=ОВ, отсюда ABCD – прямоугольник, соединим A, B, C, D с некоторой точкой М.
  2. Треугольник АМD равен ВМС по трем сторонам, отсюда угол1 равен углу2. Треугольник МDL равен треугольнику МКВ по двум сторонам и углу между ними. МD=МВ, LD=BK – центрально симметричны; следовательно MK=LM.
  3. Треугольник MLK – равнобедренный, ОМ – медиана, значит, и высота. Получили ОМ  g, отсюда l  g, следовательно l  

Теорема: Если прямая перпендикулярна двум пересекающимся прямым на плоскости, то она перпендикулярно самой плоскости .

Р 1

Доказательство основано на симметрии относительно оси плоскости.

  1. Построение: l  l 1, m. O  l 1, m  n = O, OP=OP’ .
  2. Точки Р и Р’ – симметричны относительно оси m, также Р и Р’ – симметричны относительно оси n. Тогда  ((m  n)  ) – плоскость симметрии точек Р и Р’, следовательно, l 

3.Обсуждение различных вариантов доказательства теоремы. Учащиеся высказываю свои мнения о том, какое из доказательств, на их взгляд, является оптимальным и почему. Учитель разрешает выбрать для себя любой вариант и увязывает теорему с примерами из жизни: В технике часто встречается направление, перпендикулярное плоскости. Колонны устанавливают так, что их ось перпендикулярна плоскости фундамента; гвозди забивают в доску так, что они перпендикулярны плоскости доски; в цилиндре паровой машины шток перпендикулярен плоскости поршня и т.д. Особенно важно вертикальное направление, то есть направление силы тяжести, оно перпендикулярно горизонтальной плоскости.

Задача: ABCD – ромб, прямая ОК перпендикулярна диагоналям ромба.

Доказать: ОК перпендикулярна плоскости ромба.

Итог урока.

Задание на дом: п17, №120, №129

Перпендикулярность в пространстве могут иметь:

1. Две прямые

3. Две плоскости

Давай по очереди рассмотрим эти три случая: все относящиеся к ним определения и формулировки теорем. А потом обсудим очень важную теорему о трёх перпендикулярах.

Перпендикулярность двух прямых.

Определение:

Ты можешь сказать: тоже мне, открыли Америку! Но вспомни, что в пространстве всё не совсем так, как на плоскости.

На плоскости перпендикулярными могут оказаться только такие прямые (пересекающиеся):

А вот перпендикулярность в пространстве двух прямых может быть даже в случае если они не пересекаются. Смотри:

прямая перпендикулярна прямой, хотя и не пересекается с нею. Как так? Вспоминаем определение угла между прямыми: чтобы найти угол между скрещивающимися прямыми и, нужно через произвольную точку на прямой a провести прямую. И тогда угол между и (по определению!) будет равен углу между и.

Вспомнили? Ну вот, а в нашем случае - если окажутся перпендикулярны прямые и, то нужно считать перпендикулярными прямые и.

Для полной ясности давай рассмотрим пример. Пусть есть куб. И тебя просят найти угол между прямыми и. Эти прямые не пересекаются - они скрещиваются. Чтобы найти угол между и, проведём.

Из-за того, что - параллелограмм (и даже прямоугольник!), получается, что. А из-за того, что - квадрат, выходит, что. Ну, и значит.

Перпендикулярность прямой и плоскости.

Определение:

Вот картинка:

прямая перпендикулярна плоскости, если она перпендикулярна всем-всем прямым в этой плоскости: и, и, и, и даже! И ещё миллиарду других прямых!

Да, но как же тогда вообще можно проверить перпендикулярность в прямой и плоскости? Так и жизни не хватит! Но на наше счастье математики избавили нас от кошмара бесконечности, придумав признак перпендикулярности прямой и плоскости .

Формулируем:

Оцени, как здорово:

если найдутся всего лишь две прямые (и) в плоскости, которым перпендикулярна прямая, то эта прямая сразу окажется перпендикулярна плоскости, то есть всем прямым в этой плоскости (в том числе и какой-то стоящей сбоку прямой). Это очень важная теорема, поэтому нарисуем её смысл ещё и в виде схемы.

И опять рассмотрим пример .

Пусть нам дан правильный тетраэдр.

Задача: доказать, что. Ты скажешь: это же две прямые! При чём же здесь перпендикулярность прямой и плоскости?!

А вот смотри:

давай отметим середину ребра и проведём и. Это медианы в и. Треугольники - правильные и.

Вот оно, чудо: получается, что, так как и. И далее, всем прямым в плоскости, а значит, и. Доказали. И самым главным моментом оказалось именно применение признака перпендикулярности прямой и плоскости.

Когда плоскости перпендикулярны

Определение:

То есть (подробнее смотри в теме «двугранный угол») две плоскости (и) перпендикулярны, если окажется, что угол между двумя перпендикулярами (и) к линии пересечения этих плоскостей равен. И есть теорема, которая связывает понятие перпендикулярных плоскостей с понятием перпендикулярность в пространстве прямой и плоскости.

Теорема эта называется

Критерий перпендикулярности плоскостей.

Давай сформулируем:

Как всегда, расшифровка слов «тогда и только тогда» выглядит так:

  • Если, то проходит через перпендикуляр к.
  • Если проходит через перпендикуляр к, то.

(естественно, здесь и - плоскости).

Эта теорема - одна из самых важных в стереометрии, но, к сожалению, и одна из самых непростых в применении.

Так что нужно быть очень внимательным!

Итак, формулировка:

И снова расшифровка слов «тогда и только тогда». Теорема утверждает сразу две вещи (смотри на картинку):

давай попробуем применить эту теорему для решения задачи.

Задача : дана правильная шестиугольная пирамида. Найти угол между прямыми и.

Решение:

Из-за того, что в правильной пирамиде вершина при проекции попадает в центр основания, оказывается, что прямая - проекция прямой.

Но мы знаем, что в правильном шестиугольнике. Применяем теорему о трёх перпендикулярах:

И пишем ответ: .

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ В ПРОСТРАНСТВЕ. КОРОТКО О ГЛАВНОМ

Перпендикулярность двух прямых.

Две прямые в пространстве перпендикулярны, если угол между ними.

Перпендикулярность прямой и плоскости.

Прямая перпендикулярна плоскости, если она перпендикулярна всем прямым в этой плоскости.

Перпендикулярность плоскостей.

Плоскости перпендикулярны, если двугранный угол между ними равен.

Критерий перпендикулярности плоскостей.

Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.

Теорема о трех перпендикулярах:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является