История возникновения и основоположники развития экологических наук. История развития экологии как науки

1-билет. Экология. Основоположник экологии.

Экология изучает условия существования живых организмов с окружающей средой. Экология как наука сформировалась в середине 19 века, когда возникло понимание, что не только строение и развитие организмов, но и их взаимоотношения со средой обитания подчинены определенным закономерностям. В 1866году немецкий естествоиспытатель Эрнст Геккель предложил термин «экология», а также ясно сформулировал ее содержание. Рождение экологии как самостоятельной науки состоялось к началу1900г.Но уже 20-30-ые годы ХХ века называют «золотым веком» экологии. К концу ХХ века сложилось мнение, что экология как наука выходит за рамки биологии, является междисциплинарной и стоит на стыке биологических, геолого-географических, технических и социально- экономических наук.

2-билет. Вклад ученых в развитии экологии. 1866- Геккель предложил термин «экология».

В 1798году Т.Мальтус описал уравнение экспоненциального роста популяции. Уравнение логистического роста популяции было предложено П.Ф.Ферхлюстом в 1838г. Французский врач В.Эдварс в 1824г. опубликовал книгу «Влияние физических факторов на жизнь», которая положила начало экологической и

сравнительно физиологии, а Ю.Либих (1840) сформулировал знаменитый «Закон минимума».

В России профессор Карл Францевич Рулье в 1841-1858гг. дал практически полный перечень принципиальных проблем экологии, но не нашел выразительного термина для обозначения этой науки.

Обсуждая механизмы взаимоотношений организмов со средой, Рулье очень близко подошел классическим принципам Ч.Дарвина, что по праву его можно считать предшественником Дарвина. Исследовал экологию и почвовед-географ В,В.Докучаев (1846- 1903), показавший тесную взаимосвязь живых организмов и неживой

природы на примере почвообразования и выделения природных зон. Также можно назвать и других ученых внесших свой вклад в создание экологии как науки – это и Г.Ф.Морозов, В.И.Вернадский, В.Н.Сукачев и др. Из современников, посвятивших себя и способствующих развитию экологии можно назвать целые плеяды исследователей, многие из которых являются авторами монографий, учебников и учебных пособий. Это Д.Н.Кашкаров, Ч.Элтон, Н.П.Наумов,С.С.Шварц, М.С.Гиляров, Ф.Клементс, В.Лахрер, Ю.Одум, Бигон, Дажо, Уиттекер и многие другие.

3-билет. Современная экология: предмет, объект и цель исследования. Целью современной экологии считается сохранение и развитие человеческой, общественной и природной подсистем Земли. Предмет изучения экологии – структура связей между организмом и окружающей средой.

Объект изучения экологии – экосистемы.

4-билет. Системы и свойства систем . Экология как наука рассматривает системы – звенья и члены, которых находятся в тесной взаимосвязи и взаимозависимости. Система – это совокупность элементов, определенным образом связанных и взаимодействующих между собой, т.е. любой объект

может быть представлен как результат взаимодействия образующих его частей, и поэтому его можно считать системой. Части системы называют элементами системы, которые могут быть физическими, химическими, биологическими или смешанными. Универсальным свойством экосистемы является – эмерджентность (от англ. emergens – возникновение, появление), возникновение новых свойств системы как целого, которое не является простой суммой свойств, слагающих ее частей или элементов. Например, одно дерево, как и редкий древостой не составляет леса, поскольку не создает определенной среды (почвенного покрова, гидрологического режима, микроклимата) и свойственных лесу взаимосвязи различных звеньев. Недоучет эмерджентности приводит к крупным просчетам при вмешательстве человека в жизнь экосистем. Например, сельскохозяйственные поля (агроценозы) имеют низкий коэффициент

эмерджентности и поэтому характеризуются низкой способностью к саморегулированию и устойчивости. В них из-за бедности видового состава организмов, крайне незначительны связи и поэтому велика вероятность

интенсивного размножения отдельных нежелательных видов (сорняков, вредителей). Отличительной чертой любой системы является наличие у нее входа и выхода, причем определенное изменение входной величины влечет за собой некоторое изменение и величины выходной.

Обычно различают три вида систем:

1) замкнутые, которые не обмениваются с соседними системами ни

веществом, ни энергией;

2) закрытые, которые обмениваются с соседней системой энергией, но

не веществом;

3) открытые, которые обмениваются с соседними системами и веществом

и энергией.

5. Системы. Характреные особенности. Система обладает разл.свойствами(вопрос №4), делится на 3 вида (вопрос №4), в ней существуют разл. связи(вопрос №6), а также существуют законы поведения системы (вопрос №7).

6-билет. СВЯЗИ В СИСТЕМАХ. Прямая – это такая связь, при которой один элемент (А) действует на

другой (В) без ответной реакции (А → В). Пример – действие древесного яруса леса на случайно выросшее под его пологом травянистое растение. Или действие солнечной системы на земные процессы. При обратной связи элемент «В» отвечает на действие элемента «А». Обратные связи бывают положительными и отрицательными. Обратная положительная связь ведет к усилению процесса в одном

направлении. Пример, - заболачивание территории, например, после вырубки

Закон поведения

Свойства

ВХОД ВЫХОД леса. Снятие лесного полога и уплотнение почвы обычно ведет к накоплению воды на ее поверхности. Это в свою очередь, дает возможность поселяться здесь растениям – влагонакопителям, например, сфагновым мхам, содержание воды в которых в 25-30 раз превышает вес их тела. Процесс начинает действовать в одном направлении: увеличение увлажнения → обеднение кислородом → замедление разложения растительных остатков →накопление торф → дальнейшее усиление заболачивания.

Обратная отрицательная связь действует таким образом, что в ответ на усиление действия элемента «А» увеличивается противоположная по направлению сила действия элемента «В». Такая связь позволяет сохранять систему в состоянии устойчивого динамического равновесия, называемое гомеостазом (homois-то же, statos-состояние), т.е. принципом равновесия. Гомеостаз- это механизм, посредством которого живой организм, противодействуя внешним воздействиям, поддерживает параметры своей внутренней среды на таком постоянном уровне, который обеспечивает его нормальную жизнедеятельность (величина кровяного давления, частота пульса концентрация солей в организме, температура и т.д.). Если же функционирование этого механизма будет нарушено, то возникший дискомфорт в организме может привести и к ее гибели.

7-билет. Законы поведения систем

Так согласно закону внутреннего динамического равновесия вещество, энергия, информация и качество биосферы в целом взаимосвязаны и любое изменение одного из этих показателей вызывает изменение всех других показателей. Т.е. в действие вступает принцип Ле-Шателье-Брауна : при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется. В соответствии вышеназванным принципом эти изменения происходят в направлении, обеспечивающем сохранение общей суммы вещественно-энергетических и динамических качеств систем, т.е. ее устойчивости. Таким образом, экосистемы сопротивляются воздействиям, нарушающим их стабильность. Но если антропогенная нагрузка превысит способности природы к самоочищению и самовосстановлению, принцип Ле-Шателье-Брауна перестанет действовать. И тогда это может привести к полной гибели соответствующей экосистемы или биосферы в целом.

8-Билет. Характерная особенность (экосистем) Экосистема - это единый природный или природно-антропогенный комплекс, который выступает как функциональное целое и образован живыми организмами и средой обитания.

Любая экосистема состоит их двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов – биоценозом, а второй факторами среды – биотопом или экотопом. В таком случае можно записать: экосистема = биоценоз + биотоп (экотоп).

Основным понятием и основной таксономической единицей в экологии является экосистема.

Этот термин ввел в науку в 1935 г. английский учёный ботаник-эколог А. Тенсли.

Под экосистемой понимается любое сообщество живых существ и среды их обитания, объединённых в единое функциональное целое.

9-билет.Блоковая модель биогеоценоза(по Сукачеву)

Для того чтобы экосистемы функционировали (существовали) нео­граниченно долго и как единое целое, они должны обладать свойствами связывания и высвобождения энергии, а также круговоротом веществ. Экосистема, кроме этого, должна иметь механизмы, позволяющие про­тивостоять внешним воздействиям (возмущениям, помехам), гасить их. Для раскрытия этих механизмов познакомимся с различными видами структур и другими характеристиками (свойствами) экосистем.

Блоковая модель экосистемы. Любая экосистема состоит из двух блоков. Один из них представлен комплексом взаимосвязанных живых организмов - биоценозом, а второй - факторами среды - биотопом или экотопом. В таком случае можно записать: экоси­стема = биоценоз + биотоп (экотоп). В. Н. Сукачев блоковую модель в ранге биогеоценоза в виде схемы изобразил на рис. 2.

Этот рисунок позволяет наглядно представить, чем отличаются понятия «экосистема» и «биогеоценоз», на что мы обращали внимание в разделе «Основные понятия...». Биогеоценоз, по В. Н. Су­качеву, включает все названные блоки и звенья. Это понятие обыч­но используют применительно к сухопутным системам. В биогеоценозах обязательно наличие в качестве основного звена расти­тельного сообщества (фитоценоза). Примеры биогеоценозов - однородные участки леса, луга, степи, болота и т. п.

Экосистемы могут и не иметь растительное звено. Таким при­мером являются системы, формирующиеся на базе разлагающих­ся органических остатков, гниющих в лесу деревьев, трупов жи­вотных и т. п. В них достаточно присутствие зооценоза и микробоценоза или только микробоценоза, способных осуществлять круго­ворот веществ.

Таким образом, каждый биогеоценоз может быть назван экосистемой, но не каждая экосистема относится к рангу биогеоценоза.

Чтобы снять терминологические неясности, соавтор В. Н. Су­качева по формированию науки биогеоценологии - профессор В. Н. Дылис - образно определил биогеоценоз как экосистему, но только в рамках фитоценоза.

Биогеоценозы и экосистемы могут различаться и по временно­му фактору (продолжительности существования). Любой биогео­ценоз потенциально бессмертен, поскольку все время пополняется энергией за счет деятельности растительных фото- или хемосинтезирующих организмов. В то же время экосистемы без раститель­ного звена заканчивают свое существование одновременно с выс­вобождением в процессе разложения субстрата всей содержащей­ся в нем энергии. Надо, однако, иметь в виду, что в настоящее вре­мя термины «экосистема» и «биогеоценоз» нередко рассматрива­ются как синонимы

10-БИЛЕТ.Классификация по Одуму (экосистем)

Поскольку энергия является главной движущей силой всех экосистем, то в основу их классификации положен именно энергетический принцип. За Ю. Одум (1989) выделяют четыре типа экосистем:

    Природные экосистемы, которые получают только энергию Солнца. Это открытые океаны, большие площади горных лесов, глубокие озера. Они занимают более 70% площади земного шара и имеют низкую производительность. Однако значение их на планете велико, поскольку они участвуют в круговороте воды, формирующие климат, очищают воздух, поддерживают гомеостаз биосферы.

    Природные экосистемы, которые получают энергию Солнца и других природных источников энергии. Кроме Солнца, они используют энергию ветра, дождя, приливов, прибоя, течений. Примером такой экосистемы могут быть эстуарии.

    Экосистемы, которые получают энергию от Солнца, а также от человека. Например, наземные и водные экосистемы, о которых Ю. Одум писал, что хлеб, рис, кукуруза, картофель частично сделаны из нефти (Одум, 1989).

    Искусственные экосистемы существуют благодаря энергии Солнца. Это индустриальная городская экосистема.

Экосистемы можно разделить на наземные и водные или на экосистемы, трофические цепи которых начинаются с продуцентов, и экосистемы, цепи питания которых начинаются с детритоядних организмов.

11-билет.Свойства и виды (экосистем):

Свойства:

Способствовать осуществлению круговорота веществ в природе;

Противодействовать внешним воздействиям;

Производить биологическую продукцию.

Водные экосистемы-это реки, озера, пруды, болота -пресноводные экосистемы, а также моря и океаны -водоемы с соленой водой.

Наземные экосистемы- это тундровая, таежная, лесная, лесостепная, степная, полупустынная, пустынная, горная экосистема.

12-билет.Экосистема и биогеоценоз. Общность и отличие

Близкий по содержанию смысл имеет термин«биогеоценоз», введённый академиком В.Н. Сукачевым.

В понятие «биогеоценоз» относят обычно сухопутные природные системы, где обязательно в качестве основного звена присутствует растительный покров (фитоценоз). Исходя из этого, каждый биогеоценоз можно назвать экосистемой, но не каждая экосистема может быть отнесена к рангу биогеоценоза.

Близким по значению понятием является экосистема - система, состоящая из взаимосвязанных между собой сообществ организмов разных видов и среды их обитания. Экосистема - более широкое понятие, относящееся к любой подобной системе. Биогеоценоз, в свою очередь - класс экосистем, экосистема, занимающая определенный участок суши и включающая основные компоненты среды - почву, подпочву, растительный покров, приземный слой атмосферы. Не являются биогеоценозами водные экосистемы, большинство искусственных экосистем. Таким образом, каждый биогеоценоз - это экосистема, но не каждая экосистема - биогеоценоз. Для характеристики биогеоценоза используются два близких понятия: биотоп и экотоп(факторы неживой природы:климат, почва). Биотоп - это совокупность абиотических факторовв пределах территории, которую занимает биогеоценоз. Экотоп - это биотоп, на который оказывают воздействие организмы из других биогеоценозов. По содержанию экологический термин «биогеоценоз» идентичен физико-географическому терминуфация.

Биогеоценозы и экосистемы могут различаться и по временному фактору (продолжительности существования). Любой биогеоценоз потенциально бессмертен, поскольку все время пополняется энергией за счет деятельности растительных фото- или хемосинтезирующих организмов. В то же время экосистемы без растительного звена заканчивают свое существование одновременно с высвобождением в процессе разложения субстрата всей содержащейся в нем энергии. Надо, однако, иметь в виду, что в настоящее время термины «экосистема» и «биогеоценоз» нередко рассматриваются как синонимы.

13.Экологические факторы. Классификация

14-билет.Адаптация.Виды и примеры Адаптация это приспособление строения, функций органов и организма в целом, а также популяции живых существ к изменениям окружающей среды. Различают генотипическую и фенотипическую адаптацию. В основе первой лежат механизмы мутаций, изменчивости, естественного отбора. Они явились причиной формирования современных видов животных и растений. Фенотипическая адаптация – это процесс, протекающий в течение индивидуальной жизни. В результате него организм приобретает устойчивость к какому-либо фактору внешней среды. Это позволяет ему существовать в условиях значительно отличающихся от нормальных. В физиологии и медицине это также процесс сохранения нормального функционального состояния гомеостатических систем, которые обеспечивают развитие, сохранение нормальной работоспособности и жизнедеятельности человека в экстремальных условиях. Выделяют также сложные и перекрестные адаптации. Сложные адаптации возникают в естественных условиях, например к условиям определенных климатических зона, когда организм человека подвергается влиянию комплекса патогенных факторов (на Севере низкая температура, пониженное атмосферное давление, изменение длительности светового дня и т.д.). Перекрестные или кросс – адаптации это адаптации, при которых развитие устойчивости к одному фактору, повышает резистентность к сопутствующему. Существует два типа адаптивных приспособительных реакций. Первый тип называют пассивным. Эти реакции проявляются на клеточно-тканевом уровне и заключается в формировании определенной степени устойчивости или толернтности к изменениям интенсивности действия какого-либо патогенного фактора внешней среды, например пониженного атмосферного давления. Это позволяет сохранять нормальную физиологическую активность организма при умеренных колебаниях интенсивности данного фактора. Второй тип приспособления – активный. Этот тип заключается в активации специфических адаптивных механизмов. В последнем случае адаптация идет по резистивному типу. Т.е. за счет активного сопротивления воздействию. Если интенсивность воздействия фактора на организм отклоняется от оптимальной величины в ту или иную сторону, но параметры гомеостаза при этом остаются достаточно стабильными, то такие зоны колебаний называется зонами нормы. Имеется две подобных зоны. Одна из них расположена в области недостатка интенсивности фактора, другая в области избытка. Любое смещение интенсивности фактора за пределы зон нормы вызывает перегрузку адаптивных механизмов и нарушению гомеостаза. Поэтому за пределами зон нормы выделяют зоны пессимума

В процессе адаптации выделяют два этапа: срочный и долговременный. Первый, начальный, обеспечивает несовершенную адаптацию. Он начинается с момента действия раздражителя и осуществляется на основе имеющихся функциональных механизмов (например усиление теплопродукции при охлаждении). Долговременный этап адаптации развивается постепенно, в результате длительного или многократного воздействия фактора внешней среды. В его основе лежит многократная активизация механизмов срочной адаптации и постепенное накопление структурных перестроек. Примером долговременной адаптации является изменения механизмов теплообразования и теплоотдачи в холодных климатических условиях. Базисом фенотипической является комплекс последовательных морфофизиологических перестроек, направленных на сохранение постоянства внутренней среды. Основным звеном в механизмах адаптации являются связи физиологических функций с генетическим аппаратом клеток. Под действием экстремального фактора среды происходит увеличение нагрузки на функциональную систему. Это ведет к усилению синтеза нуклеиновых кислот и белков в клетках органов, входящих в систему. В результате в них формируется структурный след адаптации. Активизируются аппараты этих клеток, выполняющие базисные функции: энергетический обмен, трансмембранный транспорт, сигнализацию. Именно этот структурный след является основой долговременной фенотипической адаптации.

Однако адаптационные механизмы позволяют компенсировать изменения фактора среды лишь в определенных пределах и определенное время. В результате воздействия на организм факторов, превышающих возможности адаптационных механизмов, развивается дизадаптация. Она приводит к дисфункции систем организма. Следовательно, происходит переход адаптационной реакции в патологическую – болезнь. Примером болезней дизадаптации являются сердечно-сосудистые заболевания у не коренных жителей Севера.

15-БИЛЕТ. Биологическая активность организма.Анализ. Количественное выражение (доза) фактора, соответствующая потребностям организма и обеспечивающее наиболее благоприятные условия для его жизни, рассматривают как оптимальное.На шкале количественных изменений фактора диапазон колебаний,соответствующий указанным условиям,составляет зону оптимума. Специфические адаптивные механизмы, свойственные виду, дают организму возможность переносить определенные отклонения от оптимальных значений без нарушения нормальных функций организма. Эти зоны определяются как зоны норм, таких как вы видите две, соответственно отклонение от оптимума в сторону недостаточной выраженности фактора и в сторону его избытка. Дальнейший сдвиг в сторону недостатка или избытка фактора снижает эффективность действия адаптивных механизмов и как следствие, нарушает жизнедеятельность организма – это может проявиться в виде замедления и приостановки роста, нарушения цикла размножения, неправильного течения линьки и т.д. На кривой этому состоянию соответствуют зоны пессимума при крайнем недостатке или избытке фактора. За пределами этих зон жизнь невозможна.

Виды, переносящие большие отклонения фактора от оптимальных величин, обозначаются термином, содержащим название фактора с приставкой эври. Например, эвритермные животные и растения – это организмы, переносящие большие колебания температур, соответственно устойчивые к этому фактору

Виды, малоустойчивые к изменениям фактора обозначаются термином с тем же корнем, но с приставкой стено (от греч. – узкий). Так, стенотермные организмы, это неустойчивые к изменениям температуры виды. Стеногалинные виды - это в основном земноводные и пресноводные организмы, не переносящие большие изменения солености воды.Для развития проростков кокосовой пальмы нужна (помимо других условий) температура не ниже 26°С и не выше 41°С для сибирской лиственницы средняя температура вегетационного периода должна быть не выше 16°С. Для нормального существования наземных животных и человека определены и нижние и верхние пределы температуры, освещенности, концентрации кислорода в воздухе, атмосферного давления и т.д. В отношении человека применяется понятие «прожиточный минимум», но нет правда, понятия «прожиточный максимум», с точки зрения экологии оно тоже должно бы существовать.

16-БИЛЕТ Взаимосвязи организмов по «интересам». Взаимосвязиклассифицируют по «интересам», на базе которых организмы строят свои отношения. Самый распространенный тип связей базируется на интересах питания – пищевых или трофических, которое означает питание одного организма другим, продуктами его жизнедеятельности или сходной пищей. Сюда относится опыление растений насекомыми – энтомофильные (рафлезия) или птицами, орнитофильные (колибри-орхидея). На базе трофических связей возникают цепи питания – пастбищные и детритные, когда одни организмы питаются другими.

Следующий тип связей – форический,возникает когда одни организмы участвуют в распространении других или их зачатков (семян, плодов, спор).

Выделяют также фабрический тип связей, характеризует использование одними организмами других или их продуктов жизнедеятельности, частей. Например, использование растений, перьевого покрова, шерсти, пуха для постройки гнезд, убежищ и т.д.

17-БИЛЕТ. Организмы. Взаимоотношения. Данная классификация строится по принципу влияния, которое оказывают организмы на другие организмы в процессе взаимных контактов..

В России профессор Московского университета Карл Францевич Рулье на протяжении 1841-1858 гг. дал практически полный перечень принципиальных проблем экологии, не найдя, однако, выразительного термина для обозначения этой науки. Он первый четко определил принцип взаимоотношений организма и среды: "Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое живое существо получает возможность к жизни частию из себя, а частию из внешности". Развивая этот принцип, К.Ф. Рулье делит взаимоотношения со средой на две категории: "явления жизни особной" и "явления жизни общей", что соответствует современным представлениям об экологических процессах на уровне организма и на уровне популяций и биоценозов. В опубликованных лекциях и отдельных статьях он поставил проблемы изменчивости, адаптации, миграций, ввел понятие "стация", рассмотрел влияние человека на природу и т. д. При этом механизм взаимоотношений организмов со средой К.Ф. Рулье обсуждал с позиций, настолько близких к классическим принципам Ч. Дарвина, что его по праву можно считать предшественником Дарвина. К сожалению, К.Ф. Рулье умер в 1858 г., за год до выхода в свет "Происхождения видов". Труды его практически неизвестны за рубежом, но в России они имели огромное значение, послужив основой формирования мощной когорты экологов-эволюционистов, некоторые из которых были его прямыми учениками (Н.А. Северцов, А.П. Богданов, С.А Усов).

И все же начало развития экологии как самостоятельной науки следует отсчитывать от трудов Э. Геккеля, давшего четкое определение ее содержания. Надо лишь отметить, что, говоря об "организмах", Э. Геккель, как это было тогда принято, не имел в виду отдельных особей, а рассматривал организмы как представителей конкретных видов. По существу, основное направление, сформулированное Э. Геккелем, соответствует современному пониманию аутэкалогии , те экологии отдельных видов. В течение долгого времени основное развитие экологии шло в русле аутэкологического подхода. На развитие этого направления большое влияние оказала теория Ч. Дарвина, показавшая необходимость изучения естественной совокупности видов растительного и животного мира, непрерывно перестраивающихся в процессе приспособления к условиям среды, что является основой процесса эволюции.

В середине XX в. на фоне продолжающихся работ по изучению образа жизни выделяется серия исследований, посвященных физиологическим механизмам адаптации. В России это направление в основном сформировалось в 30-е годы трудами Н.И Калабухова и А.Д. Слонима. Первый из них, зоолог, пришедший к необходимости применения физиологических методов для изучения адаптации; второй - физиолог, понявший необходимость исследования адаптивного значения отдельных физиологических процессов. Такие пути формирования физиологического направления в экологии характерны для мировой науки того времени. Эколого-физиологическое направление в экологии животных и растений, накопив огромный фактический материал, послужило основой появления большой серии монографий, "всплеск", которой приходится на 60.70-е годы.

Одновременно с этим в первой половине XX в. начались широкие работы по изучению надорганизменных биологических систем. Их основой послужило формирование концепции биоценозов как многовидовых сообществ живых организмов, функционально связанных друг с другом. Эта концепция в основном создана трудами К. Мебиуса (1877), С. Форбса (1887) и др. В 1916 г. Ф. Клементе показал динамичность биоценозов и адаптивный смысл этого; А. Тинеманн (1925) предложил понятие "продукция", а Ч. Элгон (1927) опубликовал первый учебник-монографию по экологии, в котором четко выделил своеобразие биоценотических процессов, определил понятие трофической ниши и сформулировал правило экологических пирамид. В 1926 г. появилась книга В.И. Вернадского "Биосфера", в которой впервые была показана планетарная роль совокупности всех видов живых организмов-"живого вещества". Начиная с 1935 г. с введением А. Тенсли понятия экосистема экологические исследования надорганизменного уровня стали развиваться особенно широко; примерно с этого времени стало практиковаться возникшее в самом начале XX в. деление экологии на аутэкологию (экологию отдельных видов) и синэкологию (экологические процессы на уровне многовидовых сообществ, биоценозов). Последнее направление широко использовало количественные методы определения функций экосистем и математическое моделирование биологических процессов, направление, позднее получившее название теоретической экологии. Еще раньше (1925-1926) А. Лотка и В. Вольтерра создали математические модели роста популяций, конкурентных отношений и взаимодействия хищников и их жертв. В России (30-е годы) под руководством Г.Г. Винберга велись обширные количественные исследования продуктивности водных экосистем. В 1934 г. Г.Ф. Гаузе опубликовал книгу "Борьба за существование" (The struggle for existence. Baltimore, 1934), в которой экспериментально и с помощью математических расчетов показал принцип конкурентного исключения и исследовал взаимоотношения типа хищник - жертва. Экосистемные исследования остаются одним из основных направлений в экологии и в наше время. Уже в монографии Ч. Элтона (1927) впервые отчетливо выделено направление популяционной экологии. Практически, все исследования экосистемного уровня строились на том, что межвидовые взаимоотношения в биоценозах осуществляются между популяциями конкретных видов. Таким образом, в составе экологии сформировалось популяционное направление, которое иногда называют демэкологией.

В середине нашего столетия стало ясно, что популяция не просто "население", т.е. сумма особей на какой-то территории, а самостоятельная биологическая (экологическая) система надорганизменного уровня, обладающая определенными функциями и механизмами авторегуляции, которые поддерживают ее самостоятельность и функциональную устойчивость. Это направление наряду с интенсивным исследованием многовидовых систем занимает важное место в современной экологии.

Некоторые исследователи полагают, что исследования на популяционном уровне представляют центральную проблему экологии. Раскрытие роли многовидовых совокупностей живых организмов в осуществлении биогенного круговорота веществ и поддержании жизни на Земле привело к тому, что в последнее время экологию чаще определяют как науку о надорганизменных биологических системах или же только о многовидовых сообществах - экосистемах. По-видимому, такой подход обедняет содержание экологии, особенно если учесть тесную функциональную связь организменного, популяционного и биоценотического уровней в глобальных экологических процессах.

Вероятно, более правильно рассматривать экологию как науку о закономерностях формирования, развития и устойчивого функционирования биологических систем разного ранга в их взаимоотношениях с условиями среды. При таком подходе экология включает в себя все три уровня организации биологических систем: организменный, популяционный и экосистемный; в последних сводках такой подход звучит все более четко.

24.09.2017 статья

Как известно, экология - достаточно молодая наука, появившаяся как отдельная дисциплина на рубеже XIX и XX веков. Собственно, наукой её стали считать лишь в ближе к 60м годам XX века, когда состояние окружающей среды вызвало у людей серьёзное беспокойство. А вот предыстория экологии началась гораздо раньше: далеко не каждому известно, что, возможно, первым экологом на Земле был… Аристотель!

«История животных» Аристотеля - первый в мире учебник экологии

Трактат Аристотеля «История животных» стала первой попыткой систематизировать представителей животного мира в соответствии с их строением, средой обитания, способом размножения и т.д. В наше время некоторые названия, использованные философом, кажутся по-детски наивными. Например, Аристотель поделил животных на «кровяных» (собака, лошадь) и бескровных (сюда вошли насекомые). Однако не стоит недооценивать значение этого труда, состоящего из 10 книг, для становления современной науки экологии. На протяжении столетий, начиная с эпохи Средневековья и заканчивая XVIII веком, «История животных» использовалась как важнейший источник систематизированной информации о животных и природе.

Авторы Античного мира и тема экологии

Аристотель оказался не единственным среди своих современников, кого волновали вопросы экологии. В частности, Гиппократ (460 - 356 до н.э.), называемый отцом медицины, является автором множества трудов, посвящённых врачеванию и анатомии человека, а также темам, непосредственно связанным с экологией.

Говоря о произведениях, посвящённых изучению природы в те дни, нельзя не упомянуть и Гераклита, считающегося первооснователем диалектики. К сожалению, из всех произведений Гераклита, частично сохранился лишь труд «О природе», да и то в виде нескольких крошечных отрывков-цитат.

Сборник эпических произведений «Махабхарата», ставших одним из крупнейших литературных сборников Древней Индии, содержит сведения о повадках и особенностях более чем 50 животных, описанию которых придается не меньшее значение, чем текстам на богословскую, правовую и политическую тематики.

Теофраст Эрезийский (371 - 280 до н.э.), являющийся учеником Аристотеля, продолжил дело своего учителя по исследованию мира природы и посвятил немало времени изучению сортов и форм растений, а также их зависимости от условий существования. Результатом упорного многолетнего труда стали книги «История растений» и «Причины растений», сделавшие философа в глазах всего мира «отцом ботаники».

Средневековая наука экология

Интерес к экологии в Средние века заметно поутих в сравнении с Древним миром. Внимания общества, сосредоточенного на богословии, элементарно не хватало на изучение природы и её законов. Весь интерес к природе ограничивался изучением целебных свойств трав, а происходящее вокруг принято было считать промыслом Божиим и принимать как неизбежность.

Однако наблюдалось и проявление интереса к характеру природы в чужих, неизведанных странах. В XIII веке немалую роль в развитии экологии сыграли путешествия бесстрашного Марко Поло и его книга, написанная под впечатлением посещения невиданных в те времена далёких земель ― «Книга о разнообразии Мира».

Существенные изменения в плане интереса к экологии произошли лишь в XIII веке.

Альберт Великий (Альберт фон Больштедт)

Альберт Кельнский, возведённый в ранг святых в 1931 году, был в высшей степени примечательной личностью.

Родившийся в конце XII столетия, будущий философ примерно в 1212 году стал студентом Падуанского университета, где проявил недюжинные способности к естественным наукам, не пользующихся в то время особым успехом среди молодёжи.

Тщательно изучая труды Аристотеля, Альберт стал автором нескольких книг, в которых главное внимание уделялось основным положениям ботаники, законам жизнедеятельности растений. Именно он впервые подчёркивает взаимосвязь размножения растений с питанием и наличием «солнечного тепла», обращает особенное внимание на причины их зимнего «сна».

Венсант де Бове (1190 ―1264)

Доминиканский монах, живший во Франции в XIII, внёс свою лепту в развитие экологии как науки в виде огромной энциклопедии «Зерцало великое», одна из частей которой посвящена естественным наукам ― астрономии, алхимии, биологии ― и названа «Зерцало природное».

В качестве примера трудов, направленных на изучение природы в Средние века, можно привести также и «Поучение Владимира Мономаха», получившее распространение в XI веке, и произведение доминиканского монаха Иоанна Сиенского «О поучениях и сходствах вещей», написанное в начале XIV века.

Однако следует заметить, что отношение к природе в те времена было исключительно потребительским, и основной целью исследований являлся поиск путей обогащения и максимального использования природных ресурсов наряду с приложением минимальных усилий.

Экологическая наука эпохи Возрождения

В этот период наблюдается перелом во всех сферах жизни человека ― от выхода экономических отношений на более высокий уровень до стремительного и разностороннего развития наук.

Предпосылками подобных метаморфоз послужили политические процессы, происходящие в социуме XIV - начала XVII веков: становление буржуазного общества заставило его членов по-новому взглянуть на природу и собственно на человека как её неотъемлемую часть.

Пришла пора систематизировать стихийно копившиеся на протяжении веков знания и разделить их на самостоятельные отрасли, не смешивая воедино открытия из области физики, географии, химии и ботаники. Черты биологии как науки начали чётко прорисовываться в общественном сознании.

Конечно же, науки тех веков были далеки от экологии в современном понимании этого слова, но нельзя не согласиться, что в сравнении со Средневековьем, это был прорыв…

Имена, вошедшие в историю экологии Реннесанса

Если развитие экологии как науки в Средние века было сопряжено с накоплением знаний, то вполне естественным является то, что основной особенностью периода Возрождения стала систематизация и анализ имеющихся данных.

Первыми систематиками стали:

  • Андреа Цезальпин или Чезальпино (1519-1603), открывший период искусственных систем в ботанике и систематизировавший растения согласно строению их семян, цветков и плодов, опираясь на труды Аристотеля;
  • Джон Рей (1623-1705), создавший научное естественноисторическое общество в Англии, автор книги «Catalogue de la flore de Cambridge» и других научных сочинений, посвященных ботанике;
  • Жозеф Питтон де Турнефор (1656- 1708) ― член Парижской академии наук, создавший оригинальную классификацию растений на основании строения венчика цветка.

Можно назвать ещё множество имён, чья деятельность была объединена одной общей идеей: состояние и обилие растений непосредственно зависит от условий их произрастания, качества почвы, погодных условий и прочих факторов.

Первые экологические эксперименты

Проведение первого в истории человечества эксперимента экологической направленности стало своеобразным предвестником появления экологии как науки. Роберт Бойль (1627- 1691) ― известный английский химик ― доказал посредством эксперимента влияние атмосферного давления на животных.

Интересно, что эксперименты, связанные с растениями, начали проводиться гораздо раньше, чем с животными.

Экология и путешествия

Немалый вклад в развитие экологии сделали и путешественники XVII-XVIII веков, обращавшие внимание на образ жизни животных в разных странах, миграции и межвидовые взаимоотношения, проводя параллели и делая логические заключения о зависимости этих фактов от условий обитания.

Среди них ― Антони ван Левенгук, натуралист из Нидерландов. Французский биолог Жорж-Луи Лекле́рк, граф де Бюффо́н, чьи работы стали основой учения Дарвина и Ламарка.

Наука и сплетни

Путь становления экологии нельзя назвать гладким и планомерным ― бытовавшие в мире средневековые нелепицы продолжали провозглашаться в качестве научных аксиом.

К примеру, идея самопроизвольного зарождения жизни на Земле, господствовавшая в обществе, была наголову разбита итальянским биологом Франческо Реди ещё в конце XVII столетия, но продолжала существовать вплоть до XIX века.

Учёные мужи свято верили, что птицы и насекомые могут зарождаться из веток деревьев, а выращивание гомункулуса (человекоподобного существа) в колбе считалось вполне реальной задачей, хотя и противозаконной. Для создания мыши предположительно требовался человеческий пот, поэтому на роль лучшего материала для таких целей претендовала грязная рубашка.

Становление экологии в России

Российские натуралисты XVIII века, как и географы, уделяли серьёзное внимание взаимосвязи растительного и животного мира с климатом. Самые известные имена ученых, посвятивших этому вопросу свои труды, ― это И. И. Лепёхин и С.П. Крашенников, М. Ломоносов и С. Паллас.

Симон Паллас (1767 – 1810)

Настоящим шедевром стал труд Петера Симона Палласа, немецкого учёного, пребывавшего на русской службе, под названием «Зоография». Книга содержала подробное описание 151 вида млекопитающих и 425 видов птиц, включая их экологию и даже экономическое значение, которое они представлялидля страны. В ней Паллас особое внимание уделяет миграциям и развивает идею расселения животных по территории России с целью увеличения популяций. Благодаря этому труду Паллас заслуженно считается основателем зоогеографии.

Михаил Ломоносов (1711 – ­1765)

Известный российский учёный придавал большое значение влиянию окружающей среды на живые организмы и предпринимал попытки выяснить особенности существования древних моллюсков и насекомых, изучая их останки. Его труд «Слово о слоях земных» стало одним из первых трактатов, посвящённых вопросам геологии.

Рождение современной экологии

Если ранее экология как наука находилась на стадии зарождения, проявляясь в смежных формах ботанической географии, зоогеографии и т.д., то XIX век может по праву считаться веком появления науки экологии как биологической дисциплины.

Теория естественного отбора, идея которой принадлежит одновременно нескольким учёным (Ч. Дарвин, А. Уоллес, Э. Блайт, В. Уэллс, П. Мэтью), как и труды датского ботаника и первого эколога Йоха́ннеса Эуге́ниуса Ва́рминга, стали основой новой науки.

В конце века (1896г.) была выпущена первая книга на тему экологии, где в названии употреблялся экологический термин: «Экологическая география растений». Автор книги ― Й.Э. Варминг – создал концепцию экологии и впервые прочитал курс экологии в университете, за что обрёл заслуженное имя основателя этой науки, существовавшей первое время в форме раздела биологии

Автором самого термина «экология» является Эрнст Генрих Геккель ― естествоиспытатель и философ, живший в Германии в конце XIX― начале XX века. Кроме этого названия новой науки, Геккелю принадлежат такие термины как «питекантроп», «онтогенез» и «филогенез».

Первоначальное значение термина заметно отличалось от современного понимания этого слова. Геккель видел экологию как «…науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все условия существования» (Э. Геккель, «Всеобщая морфология организмов»).Таким образом, предназначение экологии учёный видел в изучении взаимоотношений отдельных видов, что соответствует современному пониманию аутэкологии.

Трансформация смысла, вкладываемого в термин, происходила постепенно, по мере того, как перед человечеством вставали вопросы охраны окружающей среды.

Самостоятельной наукой экология стала лишь в первой половине XX века, когда человечество вплотную подошло к вопросу необходимости охраны природы и окружающей среды. Только к середине века опыт, кропотливо накопленный на протяжении веков человечеством, был собран воедино, как мельчайшие фрагменты сложной мозаики, чтобы дать жизнь науке, чьей целью является сохранение жизни всей планеты.

Термин экология (от греч.”oicos”-дом,убежище,”logos”- учение)был в первые введен в 1866г немец-им ученным

Эрнестом Геккелем. В современном пониманий

экология- это наука о взаимоотношениях организмов

между собой и с окр. неживой и живой природой.

Предметом изучения яв-ся структура связи живых

организмов с окр. Средой.Экология как наука

сформировалась в середине 19 века, когда возникло

понимание, что не только строение и развитие организмов,

но и их взаимоотношения со средой обитания подчинены

определенным закономерностям. В 1866году немецкий

естествоиспытатель Эрнст Геккель в двухтомной монографии

«Общая морфология организма» назвал экологией один из

разделов биологии – науку об условиях обитания организмо

в в окружающей их среде, где Геккель дал свое определение

экологии как науки:«Под экологией мы понимаем общую науку

об отношениях организмов с окружающей средой, куда мы

относим в широком смысле все условия существования».

Таким образом, Э.Геккель предложил в!866году термин

«экология», а также ясно сформулировал ее содержание.

Геккель написал свой труд не на пустом месте, а на

основании большого фактического материала, накопленного

в биологии за время ее длительного развития. Так, в 1798году

Т.Мальтус описал уравнение экспоненциального роста популяции,

на основе которой строил свои демографические концепции.

Уравнение логистического роста популяции было предложено

П.Ф.Ферхлюстом в 1838г. Французский врач В.Эдварс в 1824г.

которая положила начало экологической и сравнительно физиологии,

а Ю.Либих (1840) сформулировал знаменитый

«Закон минимума», не потерявший своего значения и в современной

экологии. В России профессор Московского университета Карл Францевич

Рулье в1841-1858гг. дал практически полный перечень принципиальных

проблем экологии, но не нашел выразительного термина для обозначения

этой науки.Обсуждая механизмы взаимоотношений организмов со средой,

Рулье очень близко подошел классическим принципам Ч.Дарвина, что по

т.е. за год до выхода в свет «Происхождения видов». Также существенный



вклад в развитие отдельных разделов общей экологии внесли исследования

почвоведа-географа В,В.Докучаева (1846-1903), показавшего тесную взаимосвязь

живых организмов и неживой природы на примере почвообразования и

выделения природных зон. Также можно назвать и других ученых внесших

свой вклад в создание экологии как науки – это и Г.Ф.Морозов, В.И.Вернадский,

В.Н.Сукачев и др. Из современников, посвятивших себя и способствующих

развитию экологии можно назвать целые плеяды исследователей, многие из

Это Д.Н.Кашкаров,Ч.Элтон, Н.П.Наумов,С.С.Шварц, М.С.Гиляров, Ф.Клементс,

В.Лахрер,Ю.Одум, Бигон, Дажо, Уиттекер и многие другие. Рождение экологии

как самостоятельной науки состоялось к началу 1900г.Но уже 20-30-ые годы

ХХ века называют «золотым веком» экологии. Вэто время были созданы базовые

теоретические модели, характеризующие рост популяций и взаимодействие между

ними. Сегодня многие ученые считают экологию наукой о взаимоотношениях живых

организмов между собой и средой обитания, при этом человечество рассматривается



как часть природы. Американский эколог, Ю.Одум первоначально предлагал краткое и

наименее специальное определение: «экология – это биология окружающей среды

(enviromental biology). Действительно экология близка к биологии, возникла как

самостоятельный раздел биологии, ориентированной на окружающую среду.

Но в данный период происходит «экологизация» -процесс проникновения идей и

проблем экологии в другие области знания, и поэтому понятие экологии существенно

расширилось. Это привело к размыванию понятия «экология» и даже утрате предмета

исследования,потере четких границ с другими науками. К концу ХХ века сложилось мнение,

что экология как наука выходит за рамки биологии, является междисциплинарной

и стоит на стыке биологических, геолого-географических, технических и социально-

экономических наук. Первоначальные классические представления об экологии теперь

часто уходят на второй план и вытесняются проблемами сегодняшнего дня. Изменилось

и определение экологии как науки, данное Ю.Одумом, в его фундаментальном труде

«Экология» (1986) она трактуется уже как – междисциплинарная область знания об

устройстве и функционировании многоуровневых систем в природе и обществе, в их

взаимосвязи.Целью современной экологии считается сохранение и развитие человеческой,

общественной и природной подсистем Земли.

Экология – это наука, которая изучает законы природы, взаимодействие живых организмов с окружающей средой, основы которой заложил Эрнст Геккель в 1866 году. Однако люди интересовались секретами природы еще с древности, имели бережное отношение к ней. Понятий термина «экология» существуют сотни, в разные времена ученые давали свои определения экологии. Само слово состоит из двух частиц, с греческого «ойкос» переводится как дом, а «логос» — как учение.

С развитием технического прогресса состояние окружающей среды стало ухудшаться, что привлекло внимание мирового сообщества. Люди заметили, что воздух стал загрязненным, исчезают виды животных и растений, ухудшается вода в реках. Этим и многим другим явлениям дали название – .

Глобальные экологические проблемы

Большинство экологических проблем из локальных переросли в глобальные. Изменение небольшой экосистемы в конкретной точке мира может повлиять на экологию всей планеты. К примеру, изменение океанического течения Гольфстрим приведет к крупным климатическим изменениям, похолоданию климата в Европе и Северной Америке.

На сегодняшний день ученые насчитывают десятки глобальных экологических проблем. Приведем лишь наиболее актуальные из них, которые угрожают жизни на планете:

  • — изменение климата;
  • — истощение запасов пресной воды;
  • — сокращение популяций и исчезновение видов и ;
  • — истощение полезных ископаемых;

Это далеко не весь перечень глобальных проблем. Скажем так, экологические проблемы, которые можно приравнять к катастрофе, — это загрязнение биосферы и . Ежегодно температура воздуха повышается на +2 градуса по Цельсию. Причиной этого являются парниковые газы. В Париже проводилась всемирная конференция, посвященная проблемам экологии, на которой многие страны мира обязались сократить количество выбросов газов. В результате высокой концентрации газов происходит таяние льдов на полюсах, повышается уровень воды, что в дальнейшем грозит затоплению островов и берегов континентов. Чтобы предотвратить надвигающуюся катастрофу, требуется выработать совместные действия и проводить мероприятия, которые будут способствовать замедлению и прекращению процесса глобального потепления.

Предмет изучения экологии

На данный момент существует несколько разделов экологии:

  • — общая экология;
  • — биоэкология;

У каждого раздела экологии существует свой предмет изучения. Наиболее популярной является общая экология. Она изучает окружающий мир, который состоит из экосистем, их отдельные компоненты – и рельеф, почва, животный и растительный мир.

Значение экологии для каждого человека

Забота об экологии на сегодняшний день стала модным занятием, прситавку «эко» используют везде. Но многие из нас даже не осознают глубины всех проблем. Конечно, это хорошо, что огромное человечество людей стало неравнодушным к жизни нашей планеты. Однако стоит осознать, что состояние окружающей среды зависит от каждого человека.

Любой житель планеты может ежедневно выполнять простые действия, что поможет улучшить экологию. К примеру, можно сдавать макулатуру и уменьшить использование воды, экономить электроэнергию и выбрасывать мусор в урну, выращивать растения и использовать предметы многоразового использования. Чем больше людей будет выполнять эти правила, тем будет больше шансов сохранить нашу планету.