Геометрическая оптика. Явление полного внутреннего отражения

Если n 1 >n 2 , то >α, т.е. если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения (рис. 3)

Предельный угол падения. Если α=α п,=90˚ и луч будет скользить вдоль раздела сред воздух-вода.

Если α’>α п, то свет не пройдет во вторую прозрачную среду, т.к. полностью отразится. Это явление называется полным отражением света . Угол падения α п, при котором преломленный луч скользит вдоль поверхности раздела сред, называется предельным углом полного отражения.

Полное отражение можно наблюдать в равнобедренной прямоугольной стеклянной призме (рис.4), которая широко используется в перископах, биноклях, рефрактометрах и др.

а) Свет падает перпендикулярно первой грани и поэтому здесь не проходит преломления (α=0 и =0). Угол падения на вторую грань α=45˚, т.е.>α п, (для стекла α п =42˚). Поэтому на этой грани свет испытывает полное отражение. Это поворотная призма, которая поворачивает луч на 90˚.

б) В этом случае свет внутри призмы испытывает уже двукратное полное отражение. Это тоже поворотная призма, поворачивающая луч на 180˚.

в) В этом случае призма уже оборотная. При выходе лучей из призмы они параллельны падающим, но при этом верхний падающий луч становится нижним, а нижний верхним.

Широкое техническое применение явления полного отражения нашло в световодах.

Световод представляет собой большое число тонких стеклянных нитей, диаметр которых порядка 20мкм, а длинна около 1м каждая. Эти нити параллельны между собой и расположены вплотную (рис. 5)

Каждая нить окружена тонкой оболочкой из стекла, показатель преломления которого меньше, чем самой нити. Световод имеет два торца, взаимное расположение концов нитей на обоих торцах светопровода строго одинаково.

Если у одного торца световода поместить какой-либо предмет и осветить его, то на другом конце световода возникнет изображение этого предмета.

Изображение получается вследствие того, что в торец каждой из нитей попадает свет от какой-либо малой области предмета. Испытывая множество полных отражений, свет выходит из противоположного торца нити, передавая отражение данной малой области предмета.

Т.к. расположение нитей друг относительно друга строго одинаково, то на другом конце появляется соответствующее изображение предмета. Четкость изображения зависит от диаметра нитей. Чем меньше диаметр каждой нити, тем более четким будет являться изображение предмета. Потери световой энергии на пути следования светового луча обычно относительно невелики в жгутах (световодах), поскольку при полном отражении коэффициент отражения сравнительно высок (~0,9999). Потери энергии в основном обусловлены поглощением света веществом внутри волокна.



Например, в видимой части спектра в волокне длинной 1м теряется 30-70% энергии (но в жгуте).

Поэтому для передачи больших световых потоков и сохранения гибкости светопроводящей системы отдельные волокна собираются в жгуты (пучки) – световоды.

Световоды широко применяется в медицине для освещения холодным светом внутренних полостей и передачи изображения. Эндоскоп – специальный прибор для осмотра внутренних полостей (желудок, прямая кишка и т.д.). С помощью световодов передается лазерное излучение для лечебного воздействия на опухоли. Да и сетчатка глаза человека является высокоорганизованной волоконно-оптической системой состоящей из ~ 130х10 8 волокон.

Полное внутреннее отражение

Вну́треннее отраже́ние - явление отражения электромагнитных волн от границы раздела двух прозрачных сред при условии, что волна падает из среды с бо́льшим показателем преломления .

Неполное внутреннее отражение - внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение - внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны .

Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон .

В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду - там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Полное внутреннее отражение света

Рассмотрим внутреннее отражение на примере двух монохроматических лучей, падающих на границу раздела двух сред. Лучи падают из зоны более плотной среды (обозначена более тёмным голубым цветом) с коэффициентом преломления на границу с менее плотной средой (обозначена светло-голубым цветом) с коэффициентом преломления.

Красный луч падает под углом , то есть на границе сред он раздваивается - частично преломляется и частично отражается. Часть луча преломляется под углом .

Зелёный луч падает и полностью отражается src="/pictures/wiki/files/100/d833a2d69df321055f1e0bf120a53eff.png" border="0">.

Полное внутреннее отражение в природе и технике

Отражение рентгеновских лучей

Преломление рентгеновских лучей при скользящем падении было впервые сформулировано М. А. Кумаховым, разработавшим рентгеновское зеркало , и теоретически обосновано Артуром Комптоном в 1923 году .

Другие волновые явления

Демонстрация преломления, а значит и эффекта полного внутреннего отражения возможна, например, для звуковых волн на поверхности и в толще жидкости при переходе между зонами различной вязкости или плотности.

Явления, сходные с эффектом полного внутреннего отражения электромагнитного излучения, наблюдаются для пучков медленных нейтронов.

Если на поверхность раздела падает вертикально поляризованная волна под углом Брюстера , то будет наблюдаться эффект полного преломления - отраженная волна будет отсутствовать.

Примечания

Wikimedia Foundation . 2010 .

  • Полное дыхание
  • Полное изменение

Смотреть что такое "Полное внутреннее отражение" в других словарях:

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - отражение эл. магн. излучения (в частности, света) при его падении на границу раздела двух прозрачных сред из среды с большим показателем преломления. П. в. о. осуществляется, когда угол падения i превосходит нек рый предельный (критический) угол … Физическая энциклопедия

    Полное внутреннее отражение - Полное внутреннее отражение. При прохождении света из среды с n1 > n2 происходит полное внутреннее отражение, если угол падения a2 > aпр; при угле падения a1 Иллюстрированный энциклопедический словарь

    Полное внутреннее отражение - отражение оптического излучения (См. Оптическое излучение) (света) или электромагнитного излучения другого диапазона (например, радиоволн) при его падении на границу раздела двух прозрачных сред из среды с большим преломления показателем… … Большая советская энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн, происходит при прохождении их из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2 под углом падения a, превышающим предельный угол aпр, определяемый соотношением sinaпр=n2/n1. Полным… … Современная энциклопедия

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ, ОТРАЖЕНИЕ без ПРЕЛОМЛЕНИЯ света на границе. При прохождении света из более плотной среды (например, стекло) в менее плотную (вода или воздух) существует зона углов преломления, в которой свет не проходит через границу … Научно-технический энциклопедический словарь

    полное внутреннее отражение - Отражение света от среды оптически менее плотной с полным возвращением в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ - электромагнитных волн происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол… … Большой Энциклопедический словарь

    полное внутреннее отражение - электромагнитных волн, происходит при наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр … Энциклопедический словарь

Мы указывали в § 81, что при падении света на границу раздела двух сред световая энергия делится на две части: одна часть отражается, другая часть проникает через границу раздела во вторую среду. На примере перехода света из воздуха в стекло, т. е. из среды, оптически менее плотной, в среду, оптически более плотную, мы видели, что доля отраженной энергии зависит от угла падения. В этом случае доля отраженной энергии сильно возрастает по мере увеличения угла падения; однако даже при очень больших углах падения, близких к , когда световой луч почти скользит вдоль поверхности раздела, все же часть световой энергии переходит во вторую среду (см. §81, табл. 4 и 5).

Новое интересное явление возникает, если свет, распространяющийся в какой-либо среде, падает на границу раздела этой среды со средой, оптически менее плотной, т, е. имеющей меньший абсолютный показатель преломления. Здесь также доля отраженной энергии возрастает с увеличением угла падения, однако возрастание идет по иному закону: начиная с некоторого угла падения, вся световая энергия отражается от границы раздела. Это явление носит название полного внутреннего отражения.

Рассмотрим снова, как и в §81, падение света на границу раздела стекла и воздуха. Пусть световой луч падает из стекла на границу раздела под различными углами паления (рис. 186). Если измерить долю отраженной световой энергии и долю световой энергии, прошедшей через границу раздела, то получаются величины, приведенные в табл. 7 (стекло, так же как и в табл. 4, имело показатель преломления ).

Рис. 186. Полное внутреннее отражение: толщина лучей соответствует доле отряженной или прошедшей через границу раздела световой энергии

Угол падения , начиная с которого вся световая энергия отражается от границы раздела, называется предельным углом полного внутреннего отражения. У стекла, для которого составлена табл. 7 (), предельный угол равен приблизительно .

Таблица 7. Доли отраженной энергии для различных углов падения при переходе света из стекла в воздух

Угол падения

Угол преломления

Доля отраженной энергии (в %)

Обратим внимание, что при падении света на границу раздела под предельным углом угол преломления равен , т. е. в формуле, выражающей для данного случая закон преломления,

при мы должны положить или . Отсюда находим

При углах падения, больших преломленного луча не существует. Формально это следует из того, что при углах падения, больших из закона преломления для получаются значения, большие единицы, что, очевидно, невозможно.

В табл. 8 приведены предельные углы полного внутреннего отражения для некоторых веществ, показатели преломления которых приведены в табл. 6. Нетрудно убедиться в справедливости соотношения (84.1).

Таблица 8. Предельный угол полного внутреннего отражения на границе с воздухом

Вещество

Сероуглерод

Стекло (тяжелый флинт)

Глицерин

Полное внутреннее отражение можно наблюдать на границе воздушных пузырьков в воде. Они блестят потому, что падающий на них солнечный свет полностью отражается, не проходя внутрь пузырьков. Это особенно заметно на тех воздушных пузырьках, которые всегда имеются на стеблях и листьях подводных растений и которые на солнце кажутся сделанными из серебра, т. е. из материала, очень хорошо отражающего свет.

Полное внутреннее отражение находит себе применение в устройстве стеклянных поворотных и оборачивающих призм, действие которых понятно из рис. 187. Предельный угол для призмы составляет в зависимости от показателя преломления данного сорта стекла; поэтому применение таких призм не встречает затруднений в отношении подбора углов входа и выхода световых лучей. Поворотные призмы с успехом выполняют функции зеркал и выгодны тем, что их отражающие свойства остаются неизменными, тогда как металлические зеркал;: тускнеют с течениием времени из-за окисления металла. Надо заметить, что оборачивающая призма проще по устройству эквивалентной ей поворотной системы зеркал. Поворотные призмы применяются, в частности, в перископах.

Рис. 187. Ход лучей в стеклянной поворотной призме (а), оборачивающей призме (б) и в изогнутой пластмассовой трубке – световоде (в)

Предельный угол полного отражения - угол падения света на границу раздела двух сред, соответствующий углу преломления 90 град.

Волоконная оптика раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах.

4. Распространение волн в оптически неоднородной среде. Объяснение искривлений лучей. Миражи. Астрономическая рефракция. Неоднородная среда для радиоволн.

Мираж оптическое явление в атмосфере: отражение света границей между резко различными по плотности слоями воздуха. Для наблюдателя такое отражение заключается в том, что вместе с отдалённым объектом (или участком неба) видно его мнимое изображение, смещённое относительно предмета. Миражи делят на нижние, видимые под объектом, верхние, - над объектом, и боковые.

Нижний мираж

Наблюдается при очень большом вертикальном градиенте температуры (падении её с высотой) над перегретой ровной поверхностью, часто пустыней или асфальтированной дорогой. Мнимое изображение неба создаёт при этом иллюзию воды на поверхности. Так, уходящая вдаль дорога в жаркий летний день кажется мокрой.

Верхний мираж

Наблюдается над холодной земной поверхностью при инверсионном распределении температуры (растёт с её высотой).

Фата-моргана

Сложные явления миража с резким искажением вида предметов носят название Фата-моргана.

Объёмный мираж

В горах очень редко, при стечении определённых условий, можно увидеть «искажённого себя» на довольно близком расстоянии. Объясняется это явление наличием в воздухе «стоячих» паров воды.

Рефракция астрономическая - явление преломления световых лучей от небесных светил при прохождении через атмосферу/ Поскольку плотность планетных атмосфер всегда убывает с высотой, преломление света происходит таким образом, что своей выпуклостью искривленный луч во всех случаях обращен в сторону зенита. В связи с этим рефракция всегда «приподнимает» изображения небесных светил над их истинным положением

Рефракция вызывает на Земле ряд оптико-атмосферных эффектов: увеличение долготы дня вследствие того, что солнечный диск из-за рефракции поднимается над горизонтом на несколько минут раньше момента, в который Солнце должно было бы взойти на основании геометрических соображений; сплюснутость видимых дисков Луны и Солнца близ горизонта из-за того, что нижний край дисков поднимается рефракцией выше, чем верхний; мерцание звезд и др. Вследствие различия величины рефракции у световых лучей с разной длиной волны (синие и фиолетовые лучи отклоняются больше, чем красные) вблизи горизонта происходит кажущееся окрашивание небесных светил.

5. Понятие о линейно поляризованной волне. Поляризация естественного света. Неполяризованное излучение. Дихроичные поляризаторы. Поляризатор и анализатор света. Закон Малюса.

Поляриза́ция волн - явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.

линейная - колебания возмущения происходит в какой-то однойплоскости. В таком случае говорят о «плоско-поляризованной волне»;

круговая - конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой .

Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.

Дихроичный поляризатор содержит пленку, содержащую по крайней мере одно дихроичное органическое вещество, молекулы или фрагменты молекул которого имеют плоское строение. По крайней мере часть пленки имеет кристаллическую структуру. Дихроичное вещество имеет по крайней мере по одному максимуму спектральной кривой поглощения в спектральных диапазонах 400 - 700 нм и/или 200 - 400 нм и 0,7 - 13 мкм. При изготовлении поляризатора наносят на подложку пленку, содержащую дихроичное органическое вещество, накладывают на нее ориентирующее воздействие и сушат. При этом условия нанесения пленки и вид, и величину ориентирующего воздействия выбирают так, что параметр порядка пленки, соответствующий по крайней мере одному максимуму на спектральной кривой поглощения в спектральном диапазоне 0,7 - 13 мкм, имеет величину не менее 0,8. Кристаллическая структура по крайней мере части пленки представляет собой трехмерную кристаллическую решетку, образованную молекулами дихроичного органического вещества. Обеспечивается расширение спектрального диапазона работы поляризатора при одновременном улучшении его поляризационных характеристик.

Закон Малюса - физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где I 0 - интенсивность падающего на поляризатор света, I - интенсивность света, выходящего из поляризатора, k a - коэффициент прозрачности поляризатора.

6. Явление Брюстера. Формулы Френеля для коэффициента отражения для волн, электрический вектор которых лежит в плоскости падения, и для волн, электрический вектор которых перпендикулярен к плоскости падения. Зависимость коэффициентов отражения от угла падения. Степень поляризации отраженных волн.

Закон Брюстера - закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называетсяуглом Брюстера. Закон Брюстера: , где n 21 - показатель преломления второй среды относительно первой, θ Br - угол падения (угол Брюстера). С амплитудами падающей (U пад) и отраженной (U отр) волн в линии КБВ связано соотношением:

K бв = (U пад - U отр) / (U пад + U отр)

Через коэффициент отражения по напряжению (K U) КБВ выражается следующим образом:

K бв = (1 - K U) / (1 + K U)При чисто активном характере нагрузки КБВ равен:

K бв = R / ρ при R < ρ или

K бв = ρ / R при R ≥ ρ

где R - активное сопротивление нагрузки, ρ - волновое сопротивление линии

7. Понятие об интерференции света. Сложение двух некогерентных и когерентных волн, линии поляризации которых совпадают. Зависимость интенсивности результирующей волны при сложении двух когерентных волн от разности их фаз. Понятие о геометрической и оптической разности хода волн. Общие условия для наблюдения максимумов и минимумов интерференции.

Интерференция света - нелинейное сложение интенсивностей двух или нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной. При интерференции света происходит перераспределение энергии в пространстве.

Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн изменяется с течением времени. Формула для разности:

, где , ,

8. Лабораторные методы наблюдения интерференции света: опыт Юнга, бипризма Френеля, зеркала Френеля. Расчет положения максимумов и минимумов интерференции.

Опыт юнга - В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрируетинтерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света ), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

Бипризма Френеля - в физике - двойная призма с очень малыми углами при вершинах.
Бипризма Френеля является оптическим устройством, позволяющим из одного источника света формировать две когерентные волны, которые дают возможность наблюдать на экране устойчивую интерференционную картину.
Бипризма Френкеля служит средством экспериментального доказательства волновой природы света.

Зеркала Френеля - оптическое устройство, предложенное в 1816 О. Ж. Френелем для наблюдения явления интерференциикогерентных световых пучков. Устройство состоит из двух плоских зеркал I и II, образующих двугранный угол, отличающийся от 180° всего на несколько угловых мин (см. рис. 1 в ст. Интерференция света). При освещении зеркал от источника S отражённые от зеркал пучки лучей можно рассматривать как исходящие из когерентных источников S1 и S2, являющихся мнимыми изображениями S. В пространстве, где пучки перекрываются, возникает интерференция. Если источник S линеен (щель) и параллелен ребру Ф. з., то при освещении монохроматическим светом интерференционная картина в виде параллельных щели равностоящих тёмных и светлых полос наблюдается на экране М, который может быть установлен в любом месте в области перекрытия пучков. По расстоянию между полосами можно определить длину волны света. Опыты, проведённые с Ф. з., явились одним из решающих доказательств волновой природы света.

9. Интерференция света в тонких пленках. Условия образования светлых и темных полос в отраженном и проходящем свете.

10. Полосы равного наклона и полосы равной толщины. Интерференционные кольца Ньютона. Радиусы темных и светлых колец.

11. Интерференция света в тонких пленках при нормальном падении света. Просветвление оптических приборов.

12. Оптические интерферометры Майкельсона и Жамена. Определение показателя преломления вещества с помощью двулучевых интерферометров.

13. Понятие о многолучевой интерференции света. Интерферометр Фабри-Перо. Сложение конечного числа волн одинаковых амплитуд, фазы которых образуют арифметическую прогрессию. Зависимость интенсивности результирующей волны от разности фаз интерферирующих волн. Условие образования главных максимумов и минимумов интерференции. Характер многолучевой интерференционной картины.

14. Понятие о дифракции волн. Волновой параметр и границы применимости законов геометрической оптики. Принцип Гюйгенса-Френеля.

15. Метод зон Френеля и доказательство прямолинейного распространения света.

16. Дифракция Френеля на круглом отверстии. Радиусы зон Френеля при сферическом и плоском волновом фронте.

17. Дифракция света на непрозрачном диске. Расчет площади зон Френеля.

18. Проблема увеличения амплитуды волны при прохождении через круглое отверстие. Амплитудные и фазовые зонные пластинки. Фокусирующие и зонные пластинки. Фокусирующая линза как предельный случай ступенчатой фазовой зонной пластинки. Зонирование линз.

    На рисунке а показан нормальный луч, который проходит границу «воздух — плексиглас» и выходит из плексигласовой пластины, не претерпевая никакого отклонения при прохождении двух границ между плексигласом и воздухом. На рисунке б показан луч света, входящий в полукруглую пластину нормально без отклонения, но составляющий угол у с нормалью в точке О внутри пластины плексигласа. Когда луч покидает более плотную среду (плексиглас), скорость его распространения в менее плотной среде (воздухе) увеличивается. Поэтому он преломляется, составляя угол х по отношению к нормали в воздухе, который больше, чем у.

    Исходя из того что n = sin (угол, который луч составляет с нормалью в воздухе) / sin (угол, который луч составляет с нормалью в среде), плексигласа n n = sin x/sin у. Если производится несколько измерений х и у, то показатель преломления плексигласа может быть подсчитан усреднением результатов для каждой пары величин. Угол у может быть увеличен путем перемещения источника света по дуге круга с центром в точке О.

    Результатом этого является увеличение угла х до тех пор, пока не достигается положение, показанное на рисунке в , т. е. пока х не станет равен 90 о . Ясно, что угол х не может быть больше. Угол, который теперь луч образует с нормалью внутри плексигласа, называется критическим или предельным углом с (это тот угол падения на границу из более плотной среды в менее плотную, когда угол преломления в менее плотной среде составляет 90°).

    Обычно наблюдается слабый отраженный луч, так же как и яркий луч, который преломляется вдоль прямого края пластины. Это является следствием частичного внутреннего отражения. Заметьте также, что когда используется белый свет, то свет, появляющийся вдоль прямого края, разлагается на цвета спектра. Если источник света продвинут далее вокруг дуги, как на рисунке г , так что I внутри плексигласа становится больше критического угла с и преломления на границе двух сред не происходит. Вместо этого луч испытывает полное внутреннее отражение под углом r по отношению к нормали, где r = i.

    Чтобы произошло полное внутреннее отражение , угол падения i должен быть измерен внутри более плотной среды (плексигласа) и он должен быть больше критического угла с. Заметьте, что закон отражения также справедлив для всех углов падения больше критического угла.

    Критический угол бриллианта составляет лишь 24°38". Его «высверк», таким образом, зависит от той легкости, с которой происходит множественное полное внутреннее отражение, когда он освещается светом, что в большой мере зависит от искусной огранки и полировки, усиливающей этот эффект. Ранее было определено, что n = 1 /sin с, поэтому точное измерение критического угла с позволит определить n.

    Исследование 1. Определить n для плексигласа методом нахождения критического угла

    Поместите полукруглую пластину плексигласа в центре большого листа белой бумаги и тщательно обведите ее очертания. Найдите среднюю точку О прямого края пластины. При помощи транспортира постройте нормаль NO, перпендикулярную этому прямому краю в точке О. Вновь поместите пластину в ее очертания. Передвигайте источник света вокруг дуги влево от NO, все время направляя падающий луч на точку О. Когда преломленный луч пойдет вдоль прямого края, как показано на рисунке, отметьте путь падающего луча тремя точками Р 1 , Р 2 , и P 3 .

    Временно уберите пластину и соедините три эти точки прямой линией, которая должна пройти через О. При помощи транспортира измерьте критический угол с между прочерченным падающим лучом и нормалью. Вновь аккуратно поместите пластину в ее очертания и повторите проделанное прежде, но на этот раз двигайте источник света вокруг дуги вправо от NO, непрерывно направляя луч на точку О. Запишите два измеренных значения с в таблицу результатов и определите среднее значение критического угла с. Затем определите показатель преломления n n для плексигласа по формуле n n = 1 /sin с.

    Прибор для исследования 1 может быть также использован для того, чтобы показать, что для лучей света, распространяющихся в более плотной среде (плексиглас) и падающих на границу раздела «плексиглас — воздух» под углами, большими критического угла с, угол падения i равен углу отражения r.

    Исследование 2. Проверить закон отражения света для углов падения, больших критического угла

    Поместить полукруглую пластину плексигласа на большой лист белой бумаги и тщательно обведите ее очертания. Как и в первом случае, найдите среднюю точку О и постройте нормаль NO. Для плексигласа критический угол с = 42°, следовательно, углы падения i > 42° больше критического угла. При помощи транспортира постройте лучи под углами 45°, 50°, 60°, 70° и 80° к нормали NO.

    Вновь аккуратно поместите пластину плексигласа в ее очертания и направьте луч света из источника света вдоль линии 45°. Луч направится к точке О, отразится и появится с дугообразной стороны пластины по другую сторону от нормали. Отметьте три точки P 1 , Р 2 и Р 3 на отраженном луче. Временно уберите пластину и соедините три точки прямой линией, которая должна пройти через точку О.

    При помощи транспортира измерьте угол отражения r между и отраженным лучом, записав результаты в таблицу. Аккуратно поместите пластину в ее очертания и повторите проделанное для углов 50°, 60°, 70° и 80° к нормали. Запишите значение r в соответствующее место таблицы результатов. Постройте график зависимости угла отражения r от угла падения i. Прямолинейный график, построенный в диапазоне углов падения от 45° до 80°, будет достаточен, чтобы показать, что угол i равен углу r.