Электролиты средней силы примеры. Сильные электролиты

Все вещества можно разделить на электролиты и неэлектролиты. К электролитам относятся вещества, растворы или расплавы которых проводят электрический ток (например, водные растворы или расплавы KCl, H 3 PO 4 , Na 2 CO 3). Вещества неэлектролиты при расплавлении или растворении электрический ток не проводят (сахар, спирт, ацетон и др.).

Электролиты подразделяются на сильные и слабые. Сильные электролиты в растворах или расплавах полностью диссоциируют на ионы. При написании уравнений химических реакций это подчеркивается стрелкой в одном направлении, например:

HCl→ H + + Cl -

Ca(OH) 2 → Ca 2+ + 2OH -

К сильным электролитам относятся вещества с гетерополярной или ионной кристаллической структурой (таблица 1.1).

Таблица 1.1 Сильные электролиты

Слабые электролиты на ионы распадаются лишь частично. Наряду с ионами в расплавах или растворах данных веществ присутствуют в подавляющем большинстве недиссоциированные молекулы. В растворах слабых электролитов параллельно с диссоциацией протекает обратный процесс - ассоциация, т.е соединение ионов в молекулы. При записи уравнения реакции это подчеркивается двумя противоположно направленными стрелками.

CH 3 COOH D CH 3 COO - + H +

К слабым электролитам относятся вещества с гомеополярным типом кристаллической решетки (таблица 1.2).

Таблица 1.2 Слабые электролиты

Равновесное состояние слабого электролита в водном растворе количественно характеризуют степенью электролитической диссоциации и константой электролитической диссоциации.

Степень электролитической диссоциации α представляет собой отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного электролита:

Степень диссоциации показывает, какая часть от общего количества растворенного электролита распадается на ионы и зависит от природы электролита и растворителя, а также от концентрации вещества в растворе, имеет безразмерную величину, хотя обыкновенно ее выражают в процентах. При бесконечном разбавлении раствора электролита степень диссоциации приближается к единице, что соответствует полной, 100%-ной, диссоциации молекул растворенного вещества на ионы. Для растворов слабых электролитов α <<1. Сильные электролиты в растворах диссоциируют полностью (α =1). Если известно, что в 0,1 М растворе уксусной кислоты степень электрической диссоциации α =0,0132, это означает, что 0,0132 (или 1,32%) общего количества растворённой уксусной кислоты продиссоциировало на ионы, а 0,9868 (или 98,68%) находится в виде недиссоциированных молекул. Диссоциация слабых электролитов в растворе подчиняется закону действия масс.



В общем виде обратимую химическую реакцию можно представить как:

a A + b B D d D + e E

Скорость реакции прямо пропорциональна произведению концентрации реагирующих частиц в степенях их стехиометрических коэффициентов. Тогда для прямой реакции

V 1 =k 1 [A] a [B] b ,

а скорость обратной реакции

V 2 =k 2 [D] d [Е] е.

В некоторый момент времени скорости прямой и обратной реакции выровняются, т.е.

Такое состояние называют химическим равновесием. Отсюда

k 1 [A] a [B] b = k 2 [D] d [Е] е

Сгруппировав постоянные величины с одной стороны, а переменные- с другой стороны, получим:

Таким образом, для обратимой химической реакции в состоянии равновесия произведение равновесных концентраций продуктов реакции в степенях их стехиометрических коэффициентов, отнесенное к такому же произведению для исходных веществ есть величина постоянная при данных температуре и давлении. Численное значение константы химического равновесия К не зависит от концентрации реагирующих веществ. Например, константу равновесия диссоциации азотистой кислоты в соответствии с законом действия масс можно записать в виде:

HNO 2 + H 2 OD H 3 O + + NO 2 -

.

Величину К а называют константой диссоциации кислоты, в данном случае азотистой.

Аналогично выражается и константа диссоциации слабого основания. Например, для реакции диссоциации аммиака:

NH 3 + H 2 O DNH 4 + + OH -

.

Величину К b называют константой диссоциации основания, в данном случае аммиака. Чем выше константа диссоциации электролита, тем сильнее электролит диссоциирует и тем выше концентрации его ионов в растворе при равновесии. Между степенью диссоциации и константой диссоциации слабого электролита существует взаимосвязь:

Это математическое выражение закона разбавления Оствальда: при разбавлении слабого электролита степень его диссоциации увеличивается.Для слабых электролитов при К ≤1∙ 10 -4 и С ≥0,1 моль/л используют упрощенное выражение:

К = α 2 С или α

Пример1 . Вычислите степень диссоциации и концентрацию ионов и [ NH 4 + ] в 0,1 М растворе гидроксида аммония, если К NH 4 OH =1,76∙10 -5


Дано: NH 4 OH

К NH 4 OH =1,76∙10 -5

Решение :

Так как электролит является достаточно слабым (К NH 4 OH =1,76∙10 –5 <1∙ 10 - 4) и раствор его не слишком разбавлен, можно принять, что:


или 1,33%

Концентрация ионов в растворе бинарного электролита равна C ∙α, так как бинарный электролит ионизирует с образованием одного катиона и одного аниона, то = [ NH 4 + ]=0,1∙1,33∙10 -2 =1,33∙10 -3 (моль/л).

Ответ: α=1,33 %; = [ NH 4 + ]=1,33∙10 -3 моль/л.

Теория сильных электролитов

Сильные электролиты в растворах и расплавах полностью диссоциируют на ионы. Однако экспериментальные исследования электропроводности растворов сильных электролитов показывают, что ее величина несколько занижена по сравнению с той электропроводностью, которая должна бы быть при 100 % диссоциации. Такое несоответствие объясняется теорией сильных электролитов, предложенной Дебаем и Гюккелем. Согласно этой теории, в растворах сильных электролитов между ионами существует электростатическое взаимодействие. Вокруг каждого иона образуется “ионная атмосфера” из ионов противоположного знака заряда, которая тормозит движение ионов в растворе при пропускании постоянного электрического тока. Кроме электростатического взаимодействия ионов, в концентрированных растворах нужно учитывать ассоциацию ионов. Влияние межионных сил создает эффект неполной диссоциации молекул, т.е. кажущейся степени диссоциации. Определенная на опыте величина α всегда несколько ниже истинной α. Например, в 0,1 М растворе Na 2 SO 4 экспериментальная величина α =45 %. Для учета электростатических факторов в растворах сильных электролитов пользуются понятием активности (а). Активностью иона называют эффективную или кажущуюся концентрацию, согласно которой ион действует в растворе. Активность и истинная концентрация связаны между собой выражением:

где f – коэффициент активности, который характеризует степень отклонения системы от идеальной из-за электростатических взаимодействий ионов.

Коэффициенты активности ионов зависят от величины µ, называемой ионной силой раствора. Ионная сила раствора является мерой электростатического взаимодействия всех ионов, присутствующих в растворе и равнаполовине суммы произведений концентраций (с) каждого из присутствующих в растворе ионов на квадрат его зарядового числа (z) :

.

В разбавленных растворах (µ<0,1М) коэффициенты активности меньше единицы и уменьшаются с ростом ионной силы. Растворы с очень низкой ионной силой (µ < 1∙10 -4 М) можно считать идеальными. В бесконечно разбавленных растворах электролитов активность можно заменить истинной концентрацией. В идеальной системе a = c и коэффициент активности равен 1. Это означает, что электростатические взаимодействия практически отсутствуют. В очень концентрированных растворах (µ>1М) коэффициенты активности ионов могут быть больше единицы. Связь коэффициента активности с ионной силой раствора выражается формулами:

при µ <10 -2

при 10 -2 ≤ µ ≤ 10 -1

+ 0,1z 2 µ при 0,1<µ <1

Константа равновесия, выраженная через активности, называется термодинамической. Например, для реакции

a A + b B d D + e E

термодинамическая константа имеет вид:

Она зависит от температуры, давления и природы растворителя.

Поскольку активность частицы , то

где К С - концентрационная константа равновесия.

Значение К С зависит не только от температуры, природы растворителя и давления, но и от ионной силы m . Так как термодинамические константы зависят от наименьшего числа факторов то, следовательно, являются наиболее фундаментальными характеристиками равновесия. Поэтому в справочниках приводятся именно термодинамические константы. Величины термодинамических констант некоторых слабых электролитов приведены в приложении данного пособия. =0,024 моль/л.

С ростом заряда иона коэффициент активности и активность иона уменьшается.

Вопросы для самоконтроля:

  1. Что такое идеальная система? Назовите основные причины отклонения реальной системы от идеальной.
  2. Что называют степенью диссоциации электролитов?
  3. Приведите примеры сильных и слабых электролитов.
  4. Какая взаимосвязь существует между константой диссоциации и степенью диссоциации слабого электролита? Выразите её математически.
  5. Что такое активность? Как связаны активность иона и его истинная концентрация?
  6. Что такое коэффициент активности?
  7. Как влияет заряд иона на величину коэффициента активности?
  8. Что такое ионная сила раствора, ее математическое выражение?
  9. Запишите формулы для расчета коэффициентов активности индивидуальных ионов в зависимости от ионной силы раствора.
  10. Сформулируйте закон действия масс и выразите его математически.
  11. Что такое термодинамическая константа равновесия? Какие факторы влияют на ее величину?
  12. Что такое концентрационная константа равновесия? Какие факторы влияют на ее величину?
  13. Как связаны термодинамическая и концентрационная константы равновесия?
  14. В каких пределах могут изменяться величины коэффициента активности?
  15. В чем заключаются основные положения теории сильных электролитов?

Слабые электролиты - вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе. К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH, C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония Ca 3 (PO 4) 2 ; Cu(OH) 2 ; Al(OH) 3 ; NH 4 OH;

Они плохо проводят (или почти не проводят) электрический ток.

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации выражается в долях единицы или в процентах (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O) на одну молекулу растворенного вещества. По принципу Ле-Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

HAn = H + + An - .

Константа равновесия К р этой реакции и есть константа диссоциации К д:

К д = . / . (10.11)

Если выразить равновесные концентрации через концентрацию слабого электролита С и его степень диссоциации α, то получим:

К д = С. α . С. α/С. (1-α) = С. α 2 /1-α. (10.12)

Это отношение называют законом разбавления Оствальда . Для очень слабых электролитов при α<<1 это уравнение упрощается:

К д = С. α 2 . (10.13)

Это позволяет заключить, что при бесконечном разбавлении степень диссоциации α стремится к единице.

Протолитическое равновесие в воде:

,

,

При постоянной температуре в разбавленных растворах концентрация воды в воде постоянна и равна 55,5 , ()

, (10.15)

где K в – ионное произведение воды.

Тогда =10 -7 . На практике из-за удобства измерения и записи используют величину – водородный показатель, (критерий) силы кислоты или основания. По аналогии .

Из уравнения (11.15): . При рН=7 – реакция раствора нейтральная, при рН<7 – кислая, а при pH>7 – щелочная.



При нормальных условиях (0°С):

, тогда

Рисунок 10.4 - pH различных веществ и систем

10.7 Растворы сильных электролитов

Сильные электролиты - это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO 4 , H 2 SO 4 ,HNO 3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) 2 ,Sr(OH) 2 ,Ca(OH) 2).

В растворе сильного электролита растворённое вещество находится, в основном, в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Принципиальное отличие сильных электролитов от слабых состоит в том, что равновесие диссоциации сильных электролитов полностью смещено вправо:

H 2 SO 4 = H + + HSO 4 - ,

а потому константа равновесия (диссоциации) оказывается величиной неопределённой. Снижение электропроводности при увеличении концентрации сильного электролита обусловлено электростатическим взаимодействием ионов.

Голландский ученый Петрус Йозефус Вильгельмус Дебай и немецкий ученый Эрих Хюккель, предложив модель, которая легла в основу теории сильных электролитов, постулировали:

1) электролит полностью диссоциирует, но в сравнительно разбавленных растворах (С М = 0,01 моль. л -1);

2) каждый ион окружён оболочкой из ионов противоположного знака. В свою очередь, каждый из этих ионов сольватирован. Это окружение называется ионной атмосферой. При электролитическом взаимодействии ионов противоположных знаков необходимо учитывать влияние ионной атмосферы. При движении катиона в электростатическом поле ионная атмосфера деформируется; она сгущается перед ним и разрежается позади него. Эта асимметрия ионной атмосферы оказывает тем более тормозящее действие движению катиона, чем выше концентрация электролитов и чем больше заряд ионов. В этих системах становится неоднозначным понятие концентрации и должно заменяться активностью. Для бинарного одно-однозарядного электролита КatAn = Kat + + An - активности катиона(а +) и аниона (а -) соответственно равны

а + = γ + . С + , а - = γ - . С - , (10.16)

где С + и С - - аналитические концентрации соответственно катиона и аниона;

γ + и γ - - их коэффициенты активности.

(10.17)

Определить активности каждого иона в отдельности невозможно, поэтому для одно-однозарядных электролитов пользуются средними геометрическими значениями активностей я

и коэффициентов активностей:

Коэффициент активности по Дебаю-Хюккелю зависит, по крайней мере, от температуры, диэлектрической проницаемости растворителя (ε) и ионной силы (I); последняя служит мерой интенсивности электрического поля, создаваемого ионами в растворе.

Для данного электролита ионная сила выражается уравнением Дебая-Хюккеля:

Ионная сила в свою очередь равна

где С – аналитическая концентрация;

z – заряд катиона или аниона.

Для одно-однозарядного электролита ионная сила совпадает с концентрацией. Таким образом, NaCl и Na 2 SO 4 при одинаковых концентрациях будит иметь разные ионные силы. Сопоставление свойств растворов сильных электролитов можно проводить только тогда, когда ионные силы одинаковы; даже небольшие примеси резко изменяют свойства электролита.

Рисунок 10.5 - Зависимость

Инструкция

Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные ( «-») к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).

Степень (a) электролитической диссоциации находится в зависимости от самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N

Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, вещества с сильнополярными или связями: это соли, которые хорошо растворимы, (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов ( ); молекул, которые недиссоциированные - практически нет.

Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.

К слабым относятся:
- органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
- некоторые из кислот (H2S, H2CO3 и пр.);
- практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
- вода.

Они практически не проводят электрический ток, или проводят, но плохо.

Обратите внимание

Хотя чистая вода проводит электрический ток очень плохо, она все-таки имеет измеримую электрическую проводимость, объясняемую тем, что вода немного диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет

Большинство электролитов – вещества агрессивные, поэтому при работе с ними будьте предельно осторожны и соблюдайте правила техники безопасности.

Сильное основание - неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) или щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ₂, Ва(ОН) ₂.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н₃РО₄

Инструкция

Сильные основания проявляют , характерные для всех . Наличие в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте , фенолфталеин или опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем сильнее основание, тем интенсивнее окрашивается индикатор.

Если необходимо узнать какие именно щелочи вам представлены, то проведите качественный анализ растворов. Наиболее распространенные сильные основания – лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом можно выделить Са(ОН) ₂, Ва(ОН) ₂ и LiOH. При с кислотой образуются нерастворимые . Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.
3 Са(ОН) ₂ + 2 Н₃РО₄ --→ Ca₃(PO₄)₂↓+ 6 H₂О

3 Ва(ОН) ₂ +2 Н₃РО₄ --→ Ва₃(PO₄)₂↓+ 6 H₂О

3 LiOH + Н₃РО₄ --→ Li₃РО₄↓ + 3 H₂О
Процедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени можно качественно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-красный цвет. Соли бария – в зеленый, а соли кальция – в малиновый.

Оставшиеся щелочи образуют растворимые ортофосфаты.

3 NaOH + Н₃РО₄--→ Na₃РО₄ + 3 H₂О

3 KOH + Н₃РО₄--→ K₃РО₄ + 3 H₂О

Необходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, соль натрия – пламя окрасится в ярко-желтый цвет, а калия – в розово-фиолетовый. Таким образом имея минимальный набор оборудования и реактивов вы определили все данные вам сильные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Почему происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах или расплавах диссоциируют на положительно заряженные и отрицательно заряженные ионы, благодаря чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами обладает большинство солей, кислот, оснований.

Инструкция

Какие вещества относятся к сильным ? Такие вещества, в растворах или расплавах которых подвергаются практически 100% молекул, причем вне зависимости от концентрации раствора. В перечень входит абсолютное большинство растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

А как ведут себя в растворах или расплавах слабые электролиты ? Во-первых, они диссоциируют в очень малой степени (не больше 3% от общего количества молекул), во-вторых, их идет тем хуже и медленнее, чем выше концентрация раствора. К таким электролитам относятся, например, (гидроксид аммония), большинство органических и неорганических кислот (включая плавиковую – HF) и, разумеется, всем нам знакомая вода. Поскольку лишь ничтожно малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости факторов: природы самого электролита, растворителя, температуры. Поэтому само это разделение в известной степени условно. Ведь одно и то же вещество может при различных условиях быть и сильным электролитом, и слабым. Для оценки силы электролита была введена специальная величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; сильные электролиты закону действующих масс не подчиняются.

Источники:

  • сильные электролиты список

Соли – это химические вещества, состоящие из катиона, то есть положительно заряженного иона, металла и отрицательно заряженного аниона – кислотного остатка. Типов солей много: нормальные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как можно определить основание соли?

Электролиты – это вещества, сплавы веществ либо растворы, которые имеют способность электролитически проводить гальванический ток. Определить, к каким электролитам относится вещество, дозволено применяя теорию электролитической диссоциации.

Инструкция

1. Суть данной теории заключается в том, что при расплавлении (растворении в воде) фактически все электролиты раскладываются на ионы, которые бывают как позитивно, так и негативно заряженные (что и именуется электролитической диссоциацией). Под воздействием электрического тока негативные (анионы «-») движутся к аноду (+), а позитивно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит наименование «моляризация»).

2. Степень (a) электролитической диссоциации находится в зависимости от природы самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к всеобщему числу введенных в раствор молекул (N). Получаете: a = n / N

3. Таким образом, мощные электролиты – вещества, всецело распадающиеся на ионы при растворении в воде. К крепким электролитам, как водится, относятся вещества с сильнополярными либо ионными связями: это соли, которые отлично растворимы, крепкие кислоты (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также мощные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В крепком электролите вещество, растворенное в нем, находится по большей части в виде ионов (анионов и катионов); молекул, которые недиссоциированные – фактически нет.

4. Слабые электролиты – такие вещества, которые диссоциируют на ионы лишь отчасти. Слабые электролиты совместно с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе крепкой концентрации ионов.К слабым относятся:- органические кислоты (примерно все) (C2H5COOH, CH3COOH и пр.);- некоторые из неорганических кислот (H2S, H2CO3 и пр.);- фактически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);- вода.Они фактически не проводят электрический ток, либо проводят, но дрянно.

Крепкое основание – неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) либо щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ?, Ва(ОН) ?.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н?РО?

Инструкция

1. Мощные основания проявляют химические свойства, характерные для всех гидроксидов. Присутствие щелочей в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте метилоранж, фенолфталеин либо опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем крепче основание, тем насыщеннее окрашивается индикатор.

2. Если нужно узнать какие именно щелочи вам представлены, то проведите добротный обзор растворов. Особенно распространенные мощные основания – гидроксиды лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом дозволено выделить Са(ОН) ?, Ва(ОН) ? и LiOH. При взаимодействии с ортофосфорной кислотой образуются нерастворимые осадки. Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.3 Са(ОН) ? + 2 Н?РО? –? Ca?(PO?)??+ 6 H?О3 Ва(ОН) ? +2 Н?РО? –? Ва?(PO?)??+ 6 H?О3 LiOH + Н?РО? –? Li?РО?? + 3 H?ОПроцедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени дозволено добротно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-алый цвет. Соли бария – в зеленый, а соли кальция – в красный.

3. Оставшиеся щелочи образуют растворимые ортофосфаты.3 NaOH + Н?РО?–? Na?РО? + 3 H?О3 KOH + Н?РО?–? K?РО? + 3 H?ОНеобходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, где находится соль натрия – пламя окрасится в ясно-желтый цвет, а ортофосфат калия – в розово-фиолетовый. Таким образом имея наименьший комплект оборудования и реактивов вы определили все данные вам мощные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, впрочем, в растворенном либо расплавленном виде становится проводником. Отчего происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах либо расплавах диссоциируют на позитивно заряженные и негативно заряженные ионы, вследствие чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами владеет множество солей, кислот, оснований.

Инструкция

1. Все ли электролиты идентичны по силе, то есть являются классными проводниками тока? Нет, от того что многие вещества в растворах либо расплавах диссоциируют лишь в малой степени. Следственно электролиты подразделяются на крепкие, средней силы и слабые.

2. Какие вещества относятся к мощным электролитам? Такие вещества, в растворах либо расплавах которых диссоциации подвергаются фактически 100% молекул, причем вне зависимости от концентрации раствора. В перечень крепких электролитов входит безусловное множество растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

3. Чем отличаются от них электролиты средней силы? Тем, что они диссоциируют в значительно меньшей степени (на ионы распадаются от 3% до 30% молекул). Типичные представители таких электролитов – серная и ортофосфорная кислоты.

4. А как ведут себя в растворах либо расплавах слабые электролиты ? Во-первых, они диссоциируют в дюже малой степени (не огромнее 3% от всеобщего числа молекул), во-вторых, их диссоциация идет тем дрянней и неторопливей, чем выше насыщенность раствора. К таким электролитам относятся, скажем, нашатырный спирт (гидроксид аммония), множество органических и неорганических кислот (включая плавиковую – HF) и, разумеется, каждым нам знакомая вода. От того что лишь жалко малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

5. Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости от многих факторов: природы самого электролита, растворителя, температуры. Следственно само это распределение в знаменитой степени условно. Чай одно и то же вещество может при разных условиях быть и мощным электролитом, и слабым. Для оценки силы электролита была введена особая величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; мощные электролиты закону действующих масс не подчиняются.

Соли – это химические вещества, состоящие из катиона, то есть позитивно заряженного иона, металла и негативно заряженного аниона – кислотного остатка. Типов солей много: типичные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как дозволено определить основание соли?

Инструкция

1. Представим, у вас есть четыре идентичные емкости с жгучими растворами. Вы знаете, что это – растворы углекислого лития, углекислого натрия, углекислого калия и углекислого бария. Ваша задача: определить, какая соль содержится в всей емкости.

2. Припомните физические и химические свойства соединений этих металлов. Литий, натрий, калий – щелочные металлы первой группы, их свойства дюже схожи, активность усиливается от лития к калию. Барий – щелочноземельный металл 2-й группы. Его углекислая соль отменно растворяется в жгучей воде, но дрянно растворяется в холодной. Стоп! Вот и первая вероятность сразу определить, в какой емкости содержится углекислый барий.

3. Охладите емкости, скажем, разместив их в сосуд со льдом. Три раствора останутся прозрачными, а четвертый стремительно помутнеет, начнет выпадать белый осадок. Вот в нем-то и находится соль бария. Отложите эту емкость в сторону.

4. Дозволено стремительно определить углекислый барий и иным методом. Поочередно отливайте немножко раствора в иную емкость с раствором какой-нибудь сернокислой соли (скажем, сульфата натрия). Только ионы бария, связываясь с сульфат-ионами, мигом образуют плотный белый осадок.

5. Выходит, углекислый барий вы определили. Но как вам различить соли 3 щелочных металлов? Это достаточно легко сделать, вам потребуются фарфоровые чашки для выпаривания и спиртовка.

6. Отлейте малое число всего раствора в отдельную фарфоровую чашку и выпарите воду на огне спиртовки. Образуются мелкие кристаллики. Внесите их в пламя спиртовки либо горелки Бунзена – с поддержкой стального пинцета, либо фарфоровой ложечки. Ваша задача – подметить цвет запылавшего «язычка» пламени. Если это соль лития – цвет будет ясно-красным. Натрий окрасит пламя в интенсивный желтый цвет, а калий – в пурпурно-фиолетовый. Кстати, если бы таким же образом испытали соль бария – цвет пламени должен был быть зеленым.

Полезный совет
Один известный химик в молодости приблизительно так же разоблачил алчную хозяйку пансиона. Он посыпал остатки недоеденного блюда хлористым литием – веществом, безусловно безобидным в мелких числах. На дальнейший день за обедом ломтик мяса из поданного к столу блюда был сожжен перед спектроскопом – и жильцы пансиона увидели ясно-красную полосу. Хозяйка готовила еду из вчерашних остатков.

Обратите внимание!
Правда чистая вода проводит электрический ток дюже дрянно, она все-таки имеет измеримую электрическую проводимость, поясняемую тем, что вода немножко диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет
Множество электролитов – вещества враждебные, следственно при работе с ними будьте предельно осмотрительны и соблюдайте правила техники безопасности.

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.