Эффект доплера формула частоты. При движении приемника скорость волны относительно него складывается из скорости волны относительно среды и скорости прибора относительно среды, т.е

– важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна - это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой , длиной и частотой . Звук, который мы слышим - это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе - добро пожаловать в нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера .


Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером , было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).


Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией .

Эффект Доплера также используют в оптике , акустике , радиоэлектронике , астрономии , радиолокации .

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.


Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с - скорость распространения волн в среде, w0 - частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с , v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у , и они охотно поделятся своим опытом! А в конце - еще немного про теорию Большого взрыва и эффект Доплера.

В акустике изменение частоты, обусловленное эффектом Доплера, определяется скоростями движения источника и приемника по отношению к среде, являющейся носителем звуковых волн (см. формулу (103.2)). Для световых волн также существует эффект Доплера. Однако особой среды, которая служила бы носителем электромагнитных волн, не существует. Поэтому доплеровское смещение частоты световых волн определяется только относительной скоростью источника и приемника.

Свяжем с источником света начало координат системы К, а с приемником - начало координат системы К (рис. 151.1). Оси направим, как обычно, вдоль вектора скорости v, с которой система К (т. е. приемник) движется относительно системы К (т е. источника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К иметь вид

Здесь и - частота волны, фиксируемая в системе отсчета, связанной с источником, т. е. частота, с которой колеблется источник. Мы предполагаем, что световая волна распространяется в вакууме; поэтому фазовая скорость равна с.

Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета. Следовательно, в системе К волна (151.1) описывается уравнением

где - частота, фиксируемая в системе отсчета К т. е. частота, воспринимаемая приемником. Мы снабдили штрихами все величины, кроме с, которая одинакова во всех системах отсчета.

Уравнение волны в системе К можно получить из уравнения в системе К, перейдя от с помощью преобразований Лоренца.

Заменив в и t согласно формулам (63.16) 1-го тома, получим

(роль играет v). Последнее выражение легко привести к виду

Уравнение (151.3) описывает в системе К ту же волну, что и уравнение (151.2). Поэтому должно выполняться соотношение

Изменим обозначения: частоту источника со обозначим через а частоту приемника - через . В результате формула примет вид

Перейдя от круговой частоты к обычной, получим

(151.5)

Фигурирующая в формулах (151.4) и (151.5) скоростью приемника по отношению к источнику есть величина алгебраическая. При удалении приемника и согласно при приближении приемника к источнику так что со

В случае, если формулу (151.4) можно приближенно записать следующим образом:

Отсюда, ограничившись членами порядка получим

(151.6)

Из этой формулы можно найти относительное изменение частоты:

(151.7)

(под подразумевается ).

Можно показать, что, кроме рассмотренного нами продольного эффекта, для световых волн существует также поперечный эффект Доплера. Он заключается в уменьшении воспринимаемой приемником частоты, наблюдающемся в том случае, когда вектор относительной скорости направлен перпендикулярно к прямой, проходящей через приемник, и источник (когда, например, источник движется по окружности, в центре которой помещаемся приемник).

В этом случае частота в системе источника связана с частотой со в системе приемника соотношением

Относительное изменение частоты при поперечном эффекте Доплера

пропорционально квадрату отношения и, следовательно, значительно меньше, чем при продольном эффекте, для которого относительное изменение частоты пропорционально первой степени

Существование поперечного эффекта Доплера было доказано экспериментально Айвсом в 1938 г. В опытах Айвса определялось изменение частоты излучения атомов водорода в каналовых лучах (см. последний абзац § 85). Скорость атомов составляла примерно 106 м/с. Эти опыты представляют собой непосредственное экспериментальное подтверждение справедливости преобразований Лоренца.

В общем случае вектор относительной скорости можно разложить на две составляющие, одна из которых направлена вдоль луча, а другая - перпендикулярно к лучу. Первая составляющая обусловит продольный, вторая - поперечный эффект Доплера.

Продольный эффект Доплера используется для определения радиальной скорости звезд. Измерив относительное смещение линий в спектрах звезд, можно по формуле (151.4) определить

Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекул относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от до где - частота, излучаемая молекулами, v - скорость теплового движения (см. формулу (151.6)). Таким образом, регистрируемая ширина спектральной линии составит Величину

(151.10)

называют доплеровской шириной спектральной линии (под v подразумевается наиболее вероятная скорость молекул). По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а следовательно, и о температуре светящегося газа.

Регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только относительное движение источника и приёмника.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

где f 0 - частота, с которой источник испускает волны, c - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

u - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив значение частоты из формулы (1) в формулу (2), получим формулу для общего случая.

где с - скорость света, v - относительная скорость приёмника и источника (положительная в случае их удаления друг от друга).

Как наблюдать эффект Доплера

Поскольку явление характерно для любых колебательных процессов, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

Доплеровский радар

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Смотреть что такое "Доплеровское смещение" в других словарях:

    доплеровское смещение - Doplerio poslinkis statusas T sritis fizika atitikmenys: angl. Doppler displacement; Doppler shift vok. Doppler Verschiebung, f rus. доплеровский сдвиг, m; доплеровское смещение, n pranc. déplacement Doppler, m; déviation Doppler, f … Fizikos terminų žodynas

    доплеровское смещение частоты - Doplerio dažnio poslinkis statusas T sritis radioelektronika atitikmenys: angl. Doppler frequency displacement; Doppler frequency shift vok. Doppler Frequenzverschiebung, f rus. доплеровский сдвиг частоты, m; доплеровское смещение частоты, n… … Radioelektronikos terminų žodynas

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Увеличение длин волн (l) линий в эл. магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн lисп)/lисп, где lисп и lприн… … Физическая энциклопедия

    Гравитационное синее смещение кванта (фотона) или иной элементарной частицы (такой как электрон, или протон) при её падении в гравитационное поле (создаваемое жёлтой звездой в нижней части … Википедия

    Понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается… … Большая советская энциклопедия

    Изменение частоты колебаний w или длины волны l, воспринимаемой наблюдателем, при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Д. э. проще всего объяснить на след. примере. Пусть неподвижный источник испускает … Физическая энциклопедия

    Теории относительности образуют существенную часть теоретического базиса современной физики. Существуют две основные теории: частная (специальная) и общая. Обе были созданы А.Эйнштейном, частная в 1905, общая в 1915. В современной физике частная… … Энциклопедия Кольера

    Раздел астрономии, изучающий космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа.… … Энциклопедия Кольера

    Горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к… … Энциклопедия Кольера

Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Это явление, открытое в 1842 г., носит название эффекта Доплера .

Звуковые волны распространяются в воздухе (или другой однородной среде) с постоянной скоростью, которая зависит только от свойств среды. Однако, длина волны и частота звука могут существенно изменяться при движении источника звука и наблюдателя.

Рассмотрим простой случай, когда скорость источника υ И и скорость наблюдателя υ Н относительно среды направлены вдоль прямой, которая их соединяет. За положительное направление для υ И и υ Н можно принять направление от наблюдателя к источнику. Скорость звука υ всегда считается положительной.

Рис. 2.8.1 иллюстрирует эффект Доплера в случае движущегося наблюдателя и неподвижного источника. Период звуковых колебаний, воспринимаемых наблюдателем, обозначен через T Н. Из рис. 2.8.1 следует:

Принимая во внимание

Если наблюдатель движется в направлении источника (υ Н > 0), то f Н > f И, если наблюдатель движется от источника (υ Н < 0), то f Н < f И.

На рис. 2.8.2 наблюдатель неподвижен, а источник звука движется с некоторой скоростью υ И. В этом случае согласно рис. 2.8.2 справедливо соотношение:

Отсюда следует:

Если источник удаляется от наблюдателя, то υ И > 0 и, следовательно, f Н < f И. Если источник приближается к наблюдателю, то υ И < 0 и f Н > f И.

В общем случае, когда и источник, и наблюдатель движутся со скоростями υ И и υ Н, формула для эффекта Доплера приобретает вид:

Это соотношение выражает связь между f Н и f И. Скорости υ И и υ Н всегда измеряются относительно воздуха или другой среды, в которой распространяются звуковые волны. Это так называемый нерелятивистский Доплер-эффект .

В случае электромагнитных волн в пустоте (свет, радиоволны) также наблюдается эффект Доплера. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость υ источника и наблюдателя.

Выражение для релятивистского Доплер-эффекта имеет вид

где c - скорость света. Когда υ > 0, источник удаляется от наблюдателя и f Н < f И, в случае υ < 0 источник приближается к наблюдателю, и f Н > f И.

Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).

Воспринимаемая частота волны зависит от относительной скорости ее источника.

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема. Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн. По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями. Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух). Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится. Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим. Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально. Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817-1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.). Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру. Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость. Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины. Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Christian Johann Doppler, 1803-53

Австрийский физик. Родился в Зальцбурге в семье каменщика. Окончил Политехнический институт в Вене, остался в нем на младших преподавательских должностях до 1835 года, когда получил предложение возглавить кафедру математики Пражского университета, что в последний момент заставило его отказаться от назревшего решения эмигрировать в Америку, отчаявшись добиться признания в академических кругах на родине. Закончил свою карьеру в должности профессора Венского королевского имперского университета.