Дисперсная случайная величина х задана законом распределения. Теоретический материал по модулям "теория вероятности и математическая статистика"

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Случайные величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Случайные величины

    Дискретные и непрерывные случайные величины

Одним из основных понятий в теории вероятностей является понятие случайной величины . Случайной величиной называется величина, которая в результате испытания из множества возможных своих значений принимает только одно, причём заранее неизвестно, какое именно.

Случайные величины бывают дискретными и непрерывными . Дискретной случайной величиной (ДСВ) называется случайная величина, которая может принимать конечное число изолированных друг о друга значений, т.е. если возможные значения этой величины можно пересчитать. Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый промежуток числовой прямой.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z и т.д. Возможные значения случайных величин обозначаются соответствующими малыми буквами.

Запись
означает «вероятность того, что случайная величинаХ примет значение, равное 5, равна 0.28».

Пример 1 . Один раз бросают игральный кубик. При этом могут выпасть цифры от 1 до 6, обозначающие число очков. Обозначим случайную величину Х ={число выпавших очков}. Эта случайная величина в результате испытания может принять только одно из шести значений: 1, 2, 3, 4, 5 или 6. Следовательно, случайная величина Х есть ДСВ.

Пример 2 . При бросании камня он пролетает некоторое расстояние. Обозначим случайную величину X ={расстояние полёта камня}. Эта случайная величина может принять любое, но только одно, значение из некоторого промежутка. Следовательно, случайная величина Х есть НСВ.

    Закон распределения дискретной случайной величины

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины .

Если известны все возможные значения
случайной величиныХ и вероятности
появления этих значений, то считают, что закон распределения ДСВХ известен и он может быть записан в виде таблицы:

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки
,
, …,
и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.

Пример 3 . В зерне, предназначенном для очистки, содержится 10% сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину X ={число сорняков среди четырёх отобранных}. Построить закон распределения ДСВ Х и многоугольник распределения.

Решение . По условию примера . Тогда:

Запишем закон распределения ДСВ Х в виде таблицы и построим многоугольник распределения:

    Математическое ожидание дискретной случайной величины

Наиболее важные свойства дискретной случайной величины описываются её характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ Х :

Математическим ожиданием ДСВ Х называется сумма произведений каждого значения этой величины на соответствующую вероятность:
.

Математическое ожидание случайной величины приближённо равно среднему арифметическому всех её значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 8 . Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0.1, 0.45, 0.3 и 0.15. Найти математическое ожидание числа очков при одном выстреле.

Решение . Обозначим случайную величину X ={число выбитых очков}. Тогда . Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8.2, а при 10 выстрелах – 82.

Основными свойствами математического ожидания являются:


.


.


, где
,
.

.

, где Х и Y – независимые случайные величины.

Разность
называетсяотклонением случайной величины Х от её математического ожидания. Эта разность является случайной величиной и её математическое ожидание равно нулю, т.е.
.

    Дисперсия дискретной случайной величины

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия , которая даёт возможность оценить рассеяние (разброс) значений случайной величины около её математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т.е. меньшую дисперсию.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

В практических задачах для вычисления дисперсии используют равносильную формулу .

Основными свойствами дисперсии являются:


.


X задана законом распределения вероятностей: Тогда ее среднее квадратическое отклонение равно … 0,80

Решение:
Среднее квадратическое отклонение случайной величины Х определяется как , где дисперсию дискретной случайной величины можно вычислить по формуле .Тогда , а


Решение:
A (вынутый наудачу шар – черный) применим формулу полной вероятности: .Здесь вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен черный шар.


Дискретная случайная величина Х задана законом распределения вероятностей: Тогда вероятность равна …

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле . Тогда

Или . Решив последнее уравнение, получаем два корня и

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …



Решение:
Для вычисления события А (среди отобранных деталей нет годных) воспользуемся формулой где n m – число элементарных исходов, благоприятствующих появлению события А. нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть .

А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть .


Банк выдает 44% всех кредитов юридическим лицам, а 56% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,2; а для физического лица эта вероятность составляет 0,1. Тогда вероятность того, что очередной кредит будет погашен в срок, равна …

0,856

Решение:
Для вычисления вероятности события A (выданный кредит будет погашен в срок) применим формулу полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан физическому лицу. Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины Х

0,655

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков не меньше девяти, равна …

Решение:
Для вычисления события (сумма выпавших очков будет не меньше девяти) воспользуемся формулой , где – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события A . В нашем случае возможны элементарных исходов испытания, из которых благоприятствующими являются исходы вида , , , , , , , и , то есть . Следовательно,

Тема: Законы распределения вероятностей дискретных случайных величин

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

Решение:
По определению . Следовательно, и . Этим условиям удовлетворяет, например, значение

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана функцией распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Эта случайная величина распределена равномерно в интервале . Тогда ее дисперсию можно вычислить по формуле . То есть

Тема: Полная вероятность. Формулы Байеса
В первой урне 6 черных шаров и 4 белых шара. Во второй урне 2 белых и 8 черных шаров. Из наудачу взятой урны вынули один шар, который оказался белым. Тогда вероятность того, что этот шар вынули из первой урны, равна …

Решение:
A (вынутый наудачу шар – белый) по формуле полной вероятности: . Здесь – вероятность того, что шар извлечен из первой урны; – вероятность того, что шар извлечен из второй урны; – условная вероятность того, что вынутый шар белый, если он извлечен из первой урны; – условная вероятность того, что вынутый шар белый, если он извлечен из второй урны.
Тогда .
Теперь вычислим условную вероятность того, что этот шар был извлечен из первой урны, по формуле Байеса:

Тема: Числовые характеристики случайных величин
Дискретная случайная величина X задана законом распределения вероятностей:

Тогда ее дисперсия равна …

7,56
3,2
3,36
6,0

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле

Тема: Законы распределения вероятностей дискретных случайных величин

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Определение вероятности
Внутрь круга радиуса 4 наудачу брошена точка. Тогда вероятность того, что точка окажется вне вписанного в круг квадрата, равна …

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет бракованных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет бракованных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три небракованные детали из семи, то есть . Следовательно,

Тема: Полная вероятность. Формулы Байеса

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Решение:
Воспользуемся формулой . Тогда

Тема: Полная вероятность. Формулы Байеса

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A
.
.

Тема: Числовые характеристики случайных величин

Тогда ее математическое ожидание равно …

Решение:
Воспользуемся формулой . Тогда .

Тема: Определение вероятности

Решение:

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей . Тогда математическое ожидание a и среднее квадратическое отклонение этой случайной величины равны …

Решение:
Плотность распределения вероятностей нормально распределенной случайной величины имеет вид , где , . Поэтому .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда значения a и b могут быть равны …

Решение:
Так как сумма вероятностей возможных значений равна 1, то . Этому условию удовлетворяет ответ: .

Тема: Определение вероятности
В круг радиуса 8 помещен меньший круг радиуса 5. Тогда вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в меньший круг, равна …

Решение:
Для вычисления вероятности искомого события воспользуемся формулой , где – площадь меньшего круга, а – площадь большего круга. Следовательно, .

Тема: Полная вероятность. Формулы Байеса
В первой урне 3 черных шара и 7 белых шаров. Во второй урне 4 белых шара и 5 черных шаров. Из первой урны переложили один шар во вторую урну. Тогда вероятность того, что шар, вынутый наудачу из второй урны, будет белым, равна …

0,47
0,55
0,35
0,50

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен черный шар.
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины :

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Полная вероятность. Формулы Байеса
Банк выдает 70% всех кредитов юридическим лицам, а 30% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,15; а для физического лица эта вероятность составляет 0,05. Получено сообщение о невозврате кредита. Тогда вероятность того, что этот кредит не погасило юридическое лицо, равна …

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A (выданный кредит не будет погашен в срок) по формуле полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан физическому лицу. Тогда
.
Теперь вычислим условную вероятность того, что этот кредит не погасило юридическое лицо, по формуле Байеса:
.

ЗАДАНИЕ N 11 сообщить об ошибке
Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет годных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть . Следовательно,

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Дисперсию непрерывной случайной величины можно вычислить по формуле

Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда ее функция распределения вероятностей имеет вид …

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Полная вероятность. Формулы Байеса
Имеются три урны, содержащие по 5 белых и 5 черных шаров, и семь урн, содержащих по 6 белых и 4 черных шара. Из наудачу взятой урны вытаскивается один шар. Тогда вероятность того, что этот шар белый, равна …

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что шар извлечен из первой серии урн; – вероятность того, что шар извлечен из второй серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из первой серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из второй серии урн.
Тогда .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков – десять, равна …

Определение 2.3. Случайная величина, обозначаемая X, называется дискретной, если она принимает конечное либо счетное множество значений, т.е. множество – конечное либо счетное множество.

Рассмотрим примеры дискретных случайных величин.

1. Однократно бросают две монеты. Число выпадений гербов в этом эксперименте – случайная величина Х . Ее возможные значения 0,1,2, т. е. – конечное множество.

2. Регистрируется число вызовов "Скорой помощи" в течение некоторого заданного промежутка времени. Случайная величина Х – число вызовов. Ее возможные значения 0, 1, 2, 3, ...,т.е. ={0,1,2,3,...}– счетное множество.

3. В группе 25 студентов. В какой-то день регистрируется число студентов, пришедших на занятия, – случайная величина Х . Ее возможные значения: 0, 1, 2, 3, ...,25 т.е. ={0, 1, 2, 3, ..., 25}.

Хотя все 25 человек в примере 3 пропустить занятия не могут, но случайная величина Х принимать это значение может. Это означает, что значения случайной величины обладают различной вероятностью.

Рассмотрим математическую модель дискретной случайной величины.

Пусть проводится случайный эксперимент, которому соответствует конечное или счетное пространство элементарных событий . Рассмотрим отображение этого пространства на множество действительных чисел, т. е. каждому элементарному событию поставим в соответствие некоторое действительное число , . Множество чисел при этом может быть конечным или счетным, т. е. или

Система подмножеств, в которую входит любое подмножество , в том числе одноточечное, образует -алгебру числового множества ( – конечно или счетно).

Поскольку любому элементарному событию поставлены в соответствие определенные вероятности р i (в случае конечного все ), причем , то и каждому значению случайной величины можем поставить в соответствие определенную вероятность р i , такую, что .

Пусть х – произвольное действительное число. Обозначим Р Х (х) вероятность того, что случайная величина Х приняла значение, равное х , т.е. Р Х (х)=Р(Х=х) . Тогда функция Р Х (х) может принимать положительные значения лишь при тех значениях х , которые принадлежат конечному либо счетному множеству , а при всех остальных значениях вероятность этого значения Р Х (х)=0.

Итак, мы определили множество значений , -алгебру как систему любых подмножеств и каждому событию {X = х } сопоставили вероятность дпя любых , т.е. построили вероятностное пространство .

Например, пространство элементарных событий эксперимента, состоящего в двукратном подбрасывании симметричной монеты, состоит из четырех элементарных событий: , где



При двукратном подбрасывании монеты выпали две решетки ; при двукратном подбрасывании монеты выпали два герба ;

При первом подбрасывании монеты выпала решетка, а при втором – герб ;

При первом подбрасывании монеты выпал герб, а при втором – решетка .

Пусть случайная величина Х – число выпадений решетки. Она определена на и множество ее значений . Все возможные подмножества , в том числе и одноточечные, образуют - алгебру, т.е. ={Ø, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}.

Вероятность события {Х=х i }, і = 1,2,3 , определим как вероятность появления события, являющегося его прообразом:

Таким образом, на элементарных событиях {X = х i } задали числовую функцию Р Х , так, что .

Определение 2.4. Законом распределения дискретной случайной величины называется совокупность пар чисел (х i , р i), где х i – возможные значения случайной величины, а р i – вероятности, с которыми она принимает эти значения, причем .

Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующиеим вероятности:

Такая таблица называется рядом распределения. Чтобы придать ряду распределения более наглядный вид, его изображают графически: на оси Ох наносят точки х i и проводят из них перпендикуляры длиной р i . Полученные точки соединяют и получают многоугольник, который является однойиз форм закона распределения (рис. 2.1).

Таким образом, для задания дискретной случайной величины нужно задать ее значения и соответствующиеим вероятности.

Пример 2.2. Денежный приемник автомата срабатывает при каждом опускании монеты с вероятностью р . Как только он сработал, монеты не опускают. Пусть Х – число монет, которые надо опустить до срабатывания денежного приемника автомата. Построить ряд распределения дискретной случайной величины Х .



Решение. Возможные значения случайной величины Х : х 1 = 1, х 2 = 2,..., х к =к, … Найдем вероятности этих значений: р 1 – вероятность того, что денежный приемник сработает при первом опускании, и р 1 =р; р 2 – вероятность того, что будут произведены две попытки. Для этого нужно, чтобы: 1) при первой попытке денежный приемник не сработал; 2) при второй попытке – сработал. Вероятность этого события равна (1–р)р . Аналогично и так далее, . Ряд распределения Х примет вид

1 2 3 к
р qp q 2 p q r -1 p

Заметим, что вероятности р к образуют геометрическую прогрессию со знаменателем: 1–p=q , q<1, поэтому такое распределение вероятностей называется геометрическим .

ІІредположим далее, что построена математическая модель эксперимента, описываемого дискретной случайной величиной Х , и рассмотрим вычисление вероятностей наступления произвольных событий .

Пусть произвольное событие содержит конечное либо счетное множество значений х i : A= {х 1 , х 2 ,..., х i , ... } .Событие А можно представить в виде объединения несовместных событий вида : . Тогда, применяя аксиому Колмогорова 3, получаем

так как вероятности наступления событий мы определили равными вероятностям появления событий, являющихся их прообразами. Это значит, что и вероятность любого события , , можно вычислить по формуле , так как это событие представимо в виде, объединения событий , где .

Тогда и функция распределения F(х) = Р(– <Х<х) находится по формуле . Отсюда следует, что функция распределения дискретной случайной величины Х разрывна и возрастает скачками, т. е. является ступенчатой функцией (рис. 2.2):

Если множество конечно, то число слагаемых в формуле конечно, если же счётно, то и число слагаемых счетно.

Пример 2.3. Техническое устройство состоит из двух элементов, работающих независимо друг от друга. Вероятность выходаиз строя первого элемента за время Т равна 0,2, а вероятность выхода второго элемента – 0,1. Случайная величина Х – число отказавших элементов за время Т. Найти функцию распределения случайнойвеличины и построить ее график.

Решение. Пространство элементарных событий эксперимента, состоящего в исследовании надежности двух элементов технического устройства, определяется четырьмя элементарными событиями , , , : – оба элемента исправны; – первый элемент исправен, второй неисправен; – первый элемент неисправен, второй исправен; – оба элемента неисправны. Каждоеиз элементарных событий можно выразить через элементарные события пространств и , где – первый элемент исправен; – первый элемент вышел из строя; – второй элемент исправен; – второй элемент вышел из строя. Тогда , и таккак элементы технического устройства работают независимо друг от друга, то

8. Чему равна вероятность того, что значения дискретной случайной величины принадлежат промежутку ?

Дискретной называют случайную величину, которая может принимать отдельные, изолированные значения с определенными вероятностями.

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно:

Р(0) = ; Р(1) = ; Р(2) = ; Р(3) = .

ПРИМЕР 2. Число отказавших элементов в приборе, состоящем из пяти элементов. Возможные значения: 0, 1, 2, 3, 4, 5; их вероятности зависят от надежности каждого из элементов.

Дискретная случайная величина Х может быть задана рядом распределения или функцией распределения (интегральным законом распределения).

Рядом распределения называется совокупность всех возможных значений х i и соответствующих им вероятностей р i = Р ( Х = х i ), он может быть задан в виде таблицы:

х i

х n

р i

р n

При этом вероятности р i удовлетворяют условию

р i = 1 , потому, что

где число возможных значений n может быть конечным или бесконечным.

Графическое изображение ряда распределения называется многоугольником распределения . Для его построения возможные значения случайной величины (х i ) откладываются по оси абсцисс, а вероятности р i - по оси ординат; точки А i c координатами ( х i ,р i ) соединяются ломаными линиями.

Функцией распределения случайной величины Х называется функция F (х ), значение которой в точке х равно вероятности того, что случайная величина Х будет меньше этого значения х , то есть

F (х) = Р (Х< х).

ФункцияF (х ) для дискретной случайной величины вычисляется по формуле

F (х)= р i , (1.10.1)

где суммирование ведется по всем значениям i , для которых х i < х.

ПРИМЕР 3. Из партии, содержащей 100 изделий, среди которых имеется 10 дефектных, выбраны случайным образом пять изделий для проверки их качества. Построить ряд распределений случайного числа Х дефектных изделий, содержащихся в выборке.

Решение . Так как в выборке число дефектных изделий может быть любым целым числом в пределах от 0 до 5 включительно, то возможные значения х i случайной величины Х равны:

х 1 = 0, х 2 = 1, х 3 = 2, х 4 = 3, х 5 = 4, х 6 = 5.

Вероятность Р (Х = k ) того, что в выборке окажется ровно k (k = 0, 1, 2, 3, 4, 5) дефектных изделий, равна

Р (Х = k ) = .

В результате расчетов по данной формуле с точностью 0,001 получим:

р 1 = Р (Х = 0) @ 0,583; р 2 = Р (Х = 1) @ 0,340; р 3 = Р (Х = 2) @ 0,070;

р 4 = Р (Х = 3) @ 0,007; р 5 = Р (Х = 4) @ 0; р 6 = Р (Х = 5) @ 0.

Используя для проверки равенство р k =1, убеждаемся, что расчеты и округление произведены правильно (см. табл.).

х i

р i

ПРИМЕР 4. Дан ряд распределения случайной величины Х :

х i

р i

Найти функцию распределения вероятности F (х ) этой случайной величины и построить ее.

Решение . Если х £ 10, то F ( х ) = Р (Х < х ) = 0;

если 10 < х £ 20 , то F ( х ) = Р (Х <х ) = 0,2 ;

если 20 < х £ 30 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 = 0,5 ;

если 30 < х £ 40 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 = 0,85 ;

если 40 < х £ 50 , то F ( х ) = Р (Х < х ) = 0,2 + 0,3 + 0,35 + 0,1=0,95 ;

если х > 50 , то F ( х ) = Р ( Х < х ) = 0,2 + 0,3 + 0,35 + 0,1 + 0,05 = 1.

В приложениях теории вероятностей основное значение имеет количественная характеристика эксперимента. Величина, которая может быть количественно определена и которая в результате эксперимента может принимать в зависимости от случая различные значения, называется случайной величиной.

Примеры случайных величин:

1. Число выпадений четного числа очков при десяти бросаниях игральной кости.

2. Число попаданий в мишень стрелком, который производит серию выстрелов.

3. Число осколков разорвавшегося снаряда.

В каждом из приведенных примеров случайная величина может принимать лишь изолированные значения, то есть значения, которые можно пронумеровать с помощью натурального ряда чисел.

Такая случайная величина, возможные значения которой есть отдельные изолированные числа, которые эта величина принимает с определенными вероятностями, называется дискретной.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Законом распределения дискретной случайной величины называют перечень её возможных значений и соответствующих им вероятностей. Закон распределения дискретной случайной величины можно задать в виде таблицы (ряд распределения вероятностей), аналитически и графически (многоугольник распределения вероятностей).

При осуществлении того или иного эксперимента возникает необходимость оценивать изучаемую величину «в среднем». Роль среднего значения случайной величины играет числовая характеристика, называемая математическим ожиданием, которая определяется формулой

где x 1 , x 2 ,.. , x n – значения случайной величины X , а p 1 , p 2 , ... , p n – вероятности этих значений (заметим, что p 1 + p 2 +…+ p n = 1).

Пример. Производится стрельба по мишени (рис. 11).

Попадание в I дает три очка, в II – два очка, в III – одно очко. Число очков, выбиваемых при одном выстреле одним стрелком, имеет закон распределения вида

Для сравнения мастерства стрелков достаточно сравнить средние значения выбиваемых очков, т.е. математические ожидания M (X ) и M (Y ):

M (X ) = 1 0,4 + 2  0,2 + 3  0,4 = 2,0,

M (Y ) = 1 0,2 + 2  0,5 + 3  0,3 = 2,1.

Второй стрелок дает в среднем несколько большее число очков, т.е. при многократной стрельбе он будет давать лучший результат.

Отметим свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

M (C ) = C .

2. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

M = (X 1 + X 2 +…+ X n )= M (X 1)+ M (X 2)+…+ M (X n ).

3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий cомножителей

M (X 1 X 2 X n ) = M (X 1)M (X 2)M (X n ).

4. Математическое отрицание биноминального распределения равно произведению числа испытаний на вероятность появления события в одном испытании (задача 4.6).

M (X ) = пр .

Для оценки того, каким образом случайная величина «в среднем» уклоняется от своего математического ожидания, т.е. для того чтобы охарактеризовать разброс значений случайной величины в теории вероятностей служит понятие дисперсии.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения:

D (X ) = M [(X - M (X )) 2 ].

Дисперсия является числовой характеристикой рассеивания случайной величины. Из определения видно, что чем меньше дисперсия случайной величины, тем кучнее располагаются её возможные значения около математического ожидания, то есть тем лучше значения случайной величины характеризуются её математическим ожиданием.

Из определения следует, что дисперсия может быть вычислена по формуле

.

Дисперсию удобно вычислять по другой формуле:

D (X ) = M (X 2) - (M (X )) 2 .

Дисперсия обладает следующими свойствами:

1. Дисперсия постоянной равна нулю:

D (C ) = 0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D (CX ) = C 2 D (X ).

3. Дисперсия суммы независимых случайных величин равна сумме дисперсии слагаемых:

D (X 1 + X 2 + X 3 +…+ X n )= D (X 1)+ D (X 2)+…+ D (X n )

4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:

D (X ) = npq .

В теории вероятностей часто используется числовая характеристика, равная корню квадратному из дисперсии случайной величины. Эта числовая характеристика называется средним квадратным отклонением и обозначается символом

.

Она характеризует примерный размер уклонения случайной величины от её среднего значения и имеет одинаковую со случайной величиной размерность.

4.1. Стрелок проводит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна 0,3.

Построить ряд распределения числа попаданий.

Решение . Число попаданий является дискретной случайной величиной X . Каждому значению x n случайной величины X отвечает определенная вероятность P n .

Закон распределения дискретной случайной величины в данном случае можно задать рядом распределения .

В данной задаче X принимает значения 0, 1, 2, 3. По формуле Бернулли

,

найдем вероятности возможных значений случайной величины:

Р 3 (0) = (0,7) 3 = 0,343,

Р 3 (1) =0,3(0,7) 2 = 0,441,

Р 3 (2) =(0,3) 2 0,7 = 0,189,

Р 3 (3) = (0,3) 3 = 0,027.

Расположив значения случайной величины X в возрастающем порядке, получим ряд распределения:

X n

Заметим, что сумма

означает вероятность того, что случайная величина X примет хотя бы одно значение из числа возможных, а это событие достоверное, поэтому

.

4.2 .В урне имеются четыре шара с номерами от 1 до 4. Вынули два шара. Случайная величинаX – сумма номеров шаров. Построить ряд распределения случайной величиныX .

Решение. Значениями случайной величиныX являются 3, 4, 5, 6, 7. Найдем соответствующие вероятности. Значение 3 случайной величиныX может принимать в единственном случае, когда один из выбранных шаров имеет номер 1, а другой 2. Число всевозможных исходов испытания равно числу сочетаний из четырех (число возможных пар шаров) по два.

По классической формуле вероятности получим

Аналогично,

Р (Х = 4) =Р (Х = 6) =Р (Х = 7) = 1/6.

Сумма 5 может появиться в двух случаях: 1 + 4 и 2 + 3, поэтому

.

Х имеет вид:

Найти функцию распределения F (x ) случайной величиныX и построить ее график. Вычислить дляX ее математическое ожидание и дисперсию.

Решение . Закон распределения случайной величины может быть задан функцией распределения

F (x ) = P (X x ).

Функция распределения F (x ) – неубывающая, непрерывная слева функция, определенная на всей числовой оси, при этом

F (- )= 0,F (+ )= 1.

Для дискретной случайной величины эта функция выражается формулой

.

Поэтому в данном случае

График функции распределения F (x ) представляет собой ступенчатую линию (рис. 12)

F (x )

Математическое ожидание М (Х ) является взвешенной средней арифметической значенийх 1 , х 2 ,……х n случайной величиныХ при весахρ 1, ρ 2, …… , ρ n и называется средним значением случайной величиныХ . По формуле

М (Х ) = х 1 ρ 1 + х 2 ρ 2 + ……+ х n ρ n

М (Х ) = 3·0,14+5·0,2+7·0,49+11·0,17 = 6,72.

Дисперсия характеризует степень рассеяния значений случайной величины от своего среднего значения и обозначаетсяD (Х ):

D (Х )[(Х-М (Х )) 2 ] = М (Х 2) –[М (Х )] 2 .

Для дискретной случайной величины дисперсия имеет вид

или она может быть вычислена по формуле

Подставляя числовые данные задачи в формулу, получим:

М (Х 2) = 3 2 ∙ 0,14+5 2 ∙ 0,2+7 2 ∙ 0,49+11 2 ∙ 0,17 = 50,84

D (Х ) = 50,84-6,72 2 = 5,6816.

4.4. Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величиныХ - числа выпадений четного суммарного числа очков на двух игральных костях.

Решение . Введем в рассмотрение случайное событие

А = {на двух костях при одном бросании выпало в сумме четное число очков}.

Используя классическое определение вероятности найдем

Р (А )= ,

где n - число всевозможных исходов испытания находим по правилу

умножения:

n = 6∙6 =36,

m - число благоприятствующих событиюА исходов - равно

m = 3∙6=18.

Таким образом, вероятность успеха в одном испытании равна

ρ = Р (А )= 1/2.

Задача решается с применением схемы испытаний Бернулли. Одним испытанием здесь будет бросание двух игральных костей один раз. Число таких испытаний n = 2. Случайная величинаХ принимает значения 0, 1, 2 с вероятностями

Р 2 (0) =,Р 2 (1) =,Р 2 (2) =

Искомое биноминальное распределение случайной величины Х можно представить в виде ряда распределения:

х n

ρ n

4.5 . В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить распределение вероятностей дискретной случайной величиныХ – числа стандартных деталей среди отобранных и найти ее математическое ожидание.

Решение. Значениями случайной величиныХ являются числа 0,1,2,3. Ясно, чтоР (Х =0)=0, поскольку нестандартных деталей всего две.

Р (Х =1) =
=1/5,

Р (Х= 2) =
= 3/5,

Р (Х =3) =
= 1/5.

Закон распределения случайной величины Х представим в виде ряда распределения:

х n

ρ n

Математическое ожидание

М (Х )=1 ∙ 1/5+2 ∙ 3/5+3 ∙ 1/5=2.

4.6 . Доказать, что математическое ожидание дискретной случайной величиныХ - числа появлений событияА вn независимых испытаниях, в каждом из которых вероятность появления события равнаρ – равно произве-дению числа испытаний на вероятность появления события в одном испыта-нии, то есть доказать, что математическое ожидание биноминального распределения

М (Х ) =n . ρ ,

а дисперсия

D (X ) =np .

Решение. Случайная величинаХ может принимать значения 0, 1, 2…,n . ВероятностьР (Х = к) находится по формуле Бернулли:

Р (Х =к)=Р n (к)=ρ к (1) n- к

Ряд распределения случайной величины Х имеет вид:

х n

ρ n

q n

ρq n- 1

ρq n- 2

ρ n

где q = 1- ρ .

Для математического ожидания имеем выражение:

М (Х )=ρq n - 1 +2 ρ 2 q n - 2 +…+.n ρ n

В случае одного испытания, то есть при n = 1для случайной величиныХ 1 –числа появлений событияА - ряд распределения имеет вид:

х n

ρ n

M (X 1)= 0 ∙ q+ 1 ∙ p = p

D (X 1) = p p 2 = p (1- p ) = pq .

Если Х к – число появлений событияА в к-ом испытании, тоР (Х к )= ρ и

Х=Х 1 2 +….+Х n .

Отсюда получаем

М (Х )(Х 1 )(Х 2)+ (Х n )= ,

D (X )=D (X 1)+D (X 2)+ ... +D (X n )=npq.

4.7. ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание дискретной случайной величиныХ -числа партий, в каждой из которых окажется равно 4 стандартных изделия – если проверке подлежит 50 партий.

Решение . Вероятность того, что в каждой произвольно выбранной партии окажется 4 стандартных изделия, постоянна; обозначим ее черезρ .Тогда математическое ожидание случайной величиныХ равноМ (Х )= 50∙ρ.

Найдем вероятность ρ по формуле Бернулли:

ρ=Р 5 (4)== 0,94∙0,1=0,32.

М (Х )= 50∙0,32=16.

4.8 . Бросаются три игральные кости. Найти математическое ожидание суммы выпавших очков.

Решение. Можно найти распределение случайной величиныХ - суммы выпавших очков и затем ее математическое ожидание. Однако такой путь слишком громоздок. Проще использовать другой прием, представляя случайную величинуХ , математическое ожидание которой требуется вычислить, в виде суммы нескольких более простых случайных величин, математическое ожидание которых вычислить легче. Если случайная величинаХ i – это число очков, выпавших наi – й кости (i = 1, 2, 3), то сумма очковХ выразится в виде

Х = Х 1 + Х 2 + Х 3 .

Для вычисления математического ожидания исходной случайной величины останется лишь воспользоваться свойством математического ожидании

М (Х 1 + Х 2 + Х 3 ) = М (Х 1 ) + М (Х 2) + М (Х 3 ).

Очевидно, что

Р (Х i = К )= 1/6, К = 1, 2, 3, 4, 5, 6, i = 1, 2, 3.

Следовательно, математическое ожидание случайной величины Х i имеет вид

М (Х i ) = 1/6∙1 + 1/6∙2 +1/6∙3 + 1/6∙4 + 1/6∙5 + 1/6∙6 = 7/2,

М (Х ) = 3∙7/2 = 10,5.

4.9. Определить математическое ожидание числа приборов, отказавших в работе за время испытаний, если:

а) вероятность отказа для всех приборов одна и та же равна р , а число испытуемых приборов равно n ;

б) вероятность отказа для i го прибора равна p i , i = 1, 2, … , n .

Решение. Пусть случайная величина Х – число отказавших приборов, тогда

Х = Х 1 + Х 2 + … + Х n ,

X i =

Ясно, что

Р (Х i = 1)= Р i , Р (Х i = 0)= 1Р i , i= 1, 2,, n.

М (Х i )= 1∙Р i + 0∙(1–Р i ) i ,

М (Х )(Х 1)(Х 2)+ … +М (Х n ) 1 2 + … +Р n .

В случае «а» вероятность отказа приборов одна и та же, то есть

Р i =p , i= 1, 2, , n .

М (Х )= np .

Этот ответ можно было получить сразу, если заметить, что случайная величина Х имеет биномиальное распределение с параметрами (n , p ).

4.10. Две игральные кости бросают одновременно два раза. Написать биномиальный закон распределения дискретной случайной величины Х – числа выпадения четного числа очков на двух игральных костях.

Решение. Пусть

А ={выпадение четного числа на первой кости},

В = {выпадение четного числа на второй кости}.

Выпадение четного числа на обеих костях при одном бросании выразится произведением АВ. Тогда

Р (АВ ) = Р (А )∙Р (В ) =
.

Результат второго бросания двух игральных костей не зависит от первого, поэтому применима формула Бернулли при

n = 2, р = 1/4, q = 1 – р = 3/4.

Случайная величина Х может принимать значения 0, 1, 2, вероятность которых найдем по формуле Бернулли:

Р (Х= 0) = Р 2 (0) = q 2 = 9/16,

Р (Х= 1) = Р 2 (1) = С , р q = 6/16,

Р (Х= 2) = Р 2 (2) = С , р 2 = 1/16.

Ряд распределения случайной величины Х:

4.11. Устройство состоит из большого числа независимо работающих элементов с одинаковой очень малой вероятностью отказа каждого элемента за время t . Найти среднее число отказавших за время t элементов, если вероятность того, что за это время откажет хотя бы один элемент, равна 0,98.

Решение. Число отказавших за время t элементов – случайная величина Х , которая распределена по закону Пуассона, поскольку число элементов велико, элементы работают независимо и вероятность отказа каждого элемента мала. Среднее число появлений события в n испытаниях равно

М (Х ) = np .

Поскольку вероятность отказа К элементов из n выражается формулой

Р n (К )
,

где  = np , то вероятность того, что не откажет ни один элемент за время t получим при К = 0:

Р n (0) = е -  .

Поэтому вероятность противоположного события – за время t откажет хотя бы один элемент – равна 1 - е -  . По условию задачи эта вероятность равна 0,98. Из уравнения

1 - е -  = 0,98,

е -  = 1 – 0,98 = 0,02,

отсюда  = -ln 0,02 4.

Итак, за время t работы устройства откажет в среднем 4 элемента.

4.12 . Игральная кость бросается до тех пор, пока не выпадет «двойка». Найти среднее число бросаний.

Решение . Введем случайную величину Х – число испытаний, которое надо произвести, пока интересующее нас событие не наступит. Вероятность того, что Х = 1 равна вероятности того, что при одном бросании кости выпадет «двойка», т.е.

Р (Х= 1) = 1/6.

Событие Х = 2 означает, что при первом испытании «двойка» не выпала, а при втором выпала. Вероятность событияХ = 2 находим по правилу умножения вероятностей независимых событий:

Р (Х= 2) = (5/6)∙(1/6)

Аналогично,

Р (Х= 3) = (5/6) 2 ∙1/6, Р (Х= 4) = (5/6) 2 ∙1/6

и т.д. Получим ряд распределения вероятностей:

(5/6) к ∙1/6

Среднее число бросаний (испытаний) есть математическое ожидание

М (Х ) = 1∙1/6 + 2∙5/6∙1/6 + 3∙(5/6) 2 ∙1/6 + … + К (5/6) К -1 ∙1/6 + … =

1/6∙(1+2∙5/6 +3∙(5/6) 2 + … + К (5/6) К -1 + …)

Найдем сумму ряда:

К g К -1 = (g К ) g
.

Следовательно,

М (Х ) = (1/6) (1/ (1 – 5/6) 2 = 6.

Таким образом, нужно осуществить в среднем 6 бросаний игральной кости до тех пор, пока не выпадет «двойка».

4.13. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А , если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

Решение. Число появлений события в трех испытаниях является случайной величиной Х , распределенной по биномиальному закону. Дисперсия числа появлений события в независимых испытаниях (с одинаковой вероятностью появления события в каждом испытании) равна произведению числа испытаний на вероятности появления и непоявления события (задача 4.6)

D (Х ) = npq .

По условию n = 3, D (Х ) = 0,63, поэтому можно р найти из уравнения

0,63 = 3∙р (1),

которое имеет два решения р 1 = 0,7 и р 2 = 0,3.