Что является абиотическим фактором. Основные группы экологических факторов

ГЛАВА 5. ГРУППА АБИОТИЧЕСКИХ ФАКТОРОВ

Общие сведения

Влияние климатических факторов (температура, влажность воздуха, осадки, ветер и др.) на организм всегда бывает совокупным. Однако изучение воздействия каждого отдельно взятого климатического фактора позволяет лучше понять его роль в жизни определенных видов или сельскохозяйственных культур и служит необходимой предпосылкой исследования воздействия всего комплекса климатических факторов. При оценке климатических факторов нельзя придавать исключительное значение лишь одному из них. Любой из названных компонентов климата в конкретных условиях может быть представлен по-разному: не только в количественном отношении, но и в качественном. Например, сумма годовых осадков для определенной местности может быть достаточно высокой, но распределение их в течение года неблагоприятно. Поэтому в отдельные периоды года (в вегетационные периоды) влага может выступать в роли минимум-фактора и тормозить рост и развитие растений.

Свет

У культур, особенно требовательных к свету, например риса, при недостаточной освещенности задерживается развитие. Формирование высокопроизводительных древостоев многих лесообразующих пород и плодовых насаждений также в значительной степени определяется интенсивностью солнечной энергии. Сахаристость свеклы прямо зависит от интенсивности лучистой энергии солнца в течение вегетационного периода. Известно, что у льна обыкновенного (Linum usitatissimum) и конопли посевной (Cannabis sativa) в условиях короткого светового дня синтезируется в тканях значительное количество масла, а в условиях длинного убыстряется формирование лубяных волокон. Реакция растений на длину дня и ночи проявляется в ускорении или задержке развития. Следовательно, действие света на растение избирательно и неоднозначно. Значение освещенности как экологического фактора для организма определяется продолжительностью, интенсивностью и длиной волн светового потока.

На границе земной атмосферы с космосом радиация составляет от 1,98 до 2 кал/см 2 в 1 мин; Указанную величину называют солнечной постоянной. К поверхности Земли при разных погодных условиях доходит 42...70% солнечной постоянной. Солнечная радиация, проходя через атмосферу, претерпевает ряд изменений не только в количественном отношении, но и по составу. Коротковолновая радиация поглощается озоновым экраном, расположенным на высоте около 25 км, и кислородом воздуха. Инфракрасные лучи поглощаются в атмосфере водяными парами и диоксидом углерода. В результате нагревается воздух. Остальная часть лучистой энергии достигает поверхности Земли в виде прямой или рассеянной радиации (рис. 10). Совокупность прямой и рассеянной солнечной радиации составляет суммарную радиацию В ясные дни рассеянная радиация составляет от 1/3 до 1/8 суммарной радиации, тогда как в облачные дни рассеянная радиация составляет 100 %. В высоких широтах преобладает рассеянная радиация, под тропиками - прямая. Рассеянная радиация содержит в полдень желто-красных лучей до 60 %, прямая - 30...40 %.

Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. В ясные солнечные дни лучистая энергия, достигающая поверхности Земли, состоит на 45 % из видимого света (380...720 нм) и на 45 % из инфракрасного излучения, только 10 % приходится на ультрафиолетовое излучение. Значительное влияние на радиационный режим оказывает запыленность атмосферы. В некоторых городах вследствие ее загрязненности освещенность может составлять 15 % и менее освещенности за городом.

Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния солнца над горизонтом, т. е. угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. Неравноценно в отдельных районах Земли и качество света, например соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Как известно, коротковолновые лучи больше, чем длинноволновые, поглощаются и рассеиваются атмосферой. Поэтому в горных местностях всегда больше коротковолновой солнечной радиации.

Рис. 10. Интенсивность солнечной радиации, падающей на поверхность Земли, по В. Лархеру

Поскольку фотосинтетически активная радиация (ФАР) представлена участком спектра между длиной волны 380 и 710 нм и максимальна в области оранжево-красных лучей (600...680 им), то естественно, что коэффициент использования растениями рассеянной радиации выше. Вследствие увеличения длины дня свет даже в высоких северных широтах не ограничивает жизнедеятельности растений. Л. Иванов рассчитал, что даже на Шпицбергене солнечной радиации достаточно (20 000 кДж на 1 га) для получения некоторою урожая сухой растительной массы.

У разных видов растений и растительных группировок потребность в свете неодинакова, иначе говоря, для нормальной вегетации им необходимо и неодинаковое световое довольствие (£,), т. е. доля в процентах полной ФАР. Это позволяет выделить в отношении потребности к свету три экологические группы растений:

· световые растения, или гелиофиты (от греч. helios - солнце + phyton), - L опт = 100 %, £ мин = 70 %, это растения открытых пространств, например ковыли (Stipa), большинство культивируемых растений (сахарная свекла, картофель и др.);

· теневыносливые растения, или гемисциофиты, могут расти при L = 100 %, но переносят и большое затенение; ежа сборная (Dactylis glomerata), например, способна вегетировать при диапазоне L от 100 до 2,5 %;

· теневые растения, или сциофиты (от греч. skia - тень), не переносят полного освещения, их L макс всегда меньше 100 %, это кислица обыкновенная (Oxalis acetosella) , седь-мичник европейский (Trientalis europaea) и др.; ввиду особой структуры листьев сциофиты при слабой интенсивности света способны ассимилировать диоксид углерода не менее эффективно, чем листья гелиофитов при L = 100 %.



Московский растениевод А. Дояренко установил, что для большинства сельскохозяйственных травянистых растений коэффициент использования света для фотосинтеза составляет 2...2,5 %, но есть и исключения:

· свекла кормовая - 1,91

· вика - 1,98

· клевер - 2,18

· рожь - 2,42

· картофель - 2,48

· пшеница - 2,68

· овес - 2,74

· лен - 3,61

· люпин - 4,79

Из растительных сообществ лесные наиболее активно трансформируют состав солнечного света, и до поверхности почвы доходит очень малая часть первоначальной солнечной радиации. Известно, что листовая поверхность древостоя поглощает около 80 % падающей ФАР, еще 10 % отражается и только 10 % проникает под полог леса. Следовательно, полная и проникшая сквозь полог древесных растений радиация различается не только количественно, но и качественно.

Сциофиты и гелиоциофиты, обитающие под пологом других растений, довольствуются лишь долей полного освещения. Так, если у кислицы максимум интенсивности фотосинтеза достигается при 1/10 полного дневного освещения, то у светолюбивых видов он наступает примерно при 1/2 этого освещения. Световые растения менее приспособлены к существованию при слабом освещении, чем теневые и теневыносливые. Нижний предел, при котором могут расти лесные зеленые мхи, - 1/90 полного дневного освещения. В дождевых тропических лесах встречаются еще более сциофильные виды, вегетирующие при 1/120 полного освещения. Удивительны в этом отношении некоторые мхи: шистостега перистая (Schistostega pennaia) и др. - это растения темных пещер, вегетирующие при 1/2000 полного освещения.

Каждая географическая местность характеризуется определенным световым режимом. Важнейшими элементами светового режима, определяющими направление адаптации растений, являются интенсивность радиации, спектральный состав света, продолжительность освещения (длина дня и ночи). Продолжительность солнечного дня постоянна лишь на экваторе. Здесь день, как и ночь, длится 12 ч. Длительность солнечного дня в течение летнего периода возрастает от экватора в направлении обоих полюсов; на полюсе, как известно, целое лето длится полярный день, а зимой - полярная ночь. Реакцию растения на сезонные изменения длины дня и ночи называют фотопериодизмом.

Растениеводы давно обратили внимание на то, что сельскохозяйственные растения разного происхождения неодинаково реагируют на длину светового дня. В зависимости от этой реакции одни виды выделили как растения длинного дня, другие - короткого, третьи - как не реагирующие заметно на длину дня. Общеизвестно, что в условиях длинного дня формируется высокий урожай пшеницы, ржи, овса (Avena sativa) и ряда кормовых злаков; к растениям длинного дня относятся также картофель, цитрусовые и ряд других овощных и плодовых культур. Продолжительное освещение указанных растений вызывает более быстрое прохождение фаз развития плодов и семян. С другой стороны, у растений короткого дня, например проса (Panicum miliaceum), сорго (Sorghum сегпиит), риса, скорость прохождения этапов развития при длительном освещении замедляется. Сокращение периодов развития достигается укорачиванием времени освещения.

Указанные особенности необходимо учитывать при интродукции сельскохозяйственных растений. Виды низких широт (южные растения) часто бывают растениями короткого дня. При интродукции в высокие широты, т. е. в условия длинного дня, они развиваются медленно, часто не вызревают, а иногда даже не цветут, как, например, конопля. К данной группе можно отнести и топинамбур (Helianthus tuberosus). Таким образом, продолжительность дня и ночи может определять границы распространения и возможной интродукции отдельных видов: "южных" - на север, "северных" - на юг, К числу нейтральных в отношении длины дня относятся томат, виноград, гречиха посевная (Fagopyrum esculentum) и др.

В ходе изучения фотопериодизма и фотохимических реакций выяснено, что у растений длинного дня в весенне-летний период, когда в природе наблюдается длинный световой день, явно убыстряется рост. Однако во второй половине лета, когда солнечный день сокращается, ростовые процессы явно замедляются. В результате в условиях холодного климата у длиннодневных растений до наступления морозов не всегда успевает сформироваться комплекс покровных тканей - перидерма. Поэтому длиннодневные многолетние культуры, возделываемые в условиях высоких широт, могут утратить зимостойкость, что нужно иметь в виду при подборе ассортимента растений для возделывания в этих местностях. Предпочтительнее в условиях длинного дня вводить однолетние культуры, не требующие перезимовки. Продвижению к северу некоторых других культур, например клеверов, препятствуют не зимние морозы, а характер фотопериодических реакций. Именно их характером можно объяснить тот парадоксальный факт, что морозостойкость клеверов и люцерны более высока в средней полосе европейской части России, чем в северной.

Свет оказывает формирующее действие на растения, что проявляется в размерах, форме и структуре (макро- и микроскопической) световых и теневых листьев (рис. 11), а также в ростовых процессах. Зависимость структуры листа (побега) от света не всегда прямая; листья (побеги), развивающиеся весной, формируются в соответствии в освещением не текущего года, а прошлого, т. е. когда закладывались почки. И. Серебряков (1962) считал, что световая структура листа детерминирована уже в почке. Листья сохраняют данную структуру достаточно устойчиво даже при перенесении световых побегов в затенение. Большая высота, колоннообразная форма стволов, высокое расположение крон (очищение от сухих ветвей) характеризуют светолюбивые растения.

Рис. 11. Поперечные срезы листьев сирени (род Syringa): а - светового; б - теневого

Одна из реакций светолюбивых растений - затормаживание роста надземных побегов, что приводит в одних случаях к сильной ветвистости, в других - к розеточности. Отличает растения упомянутой группы и ряд других изменений структуры: мелколистность, увеличение мощности наружной стенки эпидермы и ее выростов (трихом и эмергенцев), кутикулярного слоя и т. д. (рис. 12).


Рис. 12. Поперечный срез листа светолюбивого растения олеандра (Nerium oleander):
1 - двухслойная эпидерма с кутикулой; 2 - гиподерма; 3 - изопалисадный мезофилл; 4 - углубления на нижней стороне листа (крипты) с устьицами и волосками

Один из примеров приспособления растений к свету - ориентировка листовой пластинки по отношению к солнечным лучам. Различают три способа ориентировки:

· листовая пластинка ориентирована горизонтально, т. е. перпендикулярно солнечным лучам; в этом случае максимально улавливаются лучи, когда солнце находится в зените;

· листовая пластинка ориентирована параллельно солнечным лучам, т. е. расположена более или менее вертикально, в результате растение лучше усваивает солнечные лучи в утреннее и предвечернее время;

· листовые пластинки расположены по побегу диффузно, как у кукурузы, - то вертикально, то горизонтально, поэтому солнечная радиация улавливается достаточно полно в течение всего светового дня.

Имеющиеся научные данные позволяют считать, что растения высоких широт, где преобладает низкое солнцестояние, чаще имеют вертикальную ориентацию листьев. При организации смешанных посевов, например кормовых трав, нужно обязательно учитывать структуру побегов компонентов посевов. Удачное сочетание кормовых трав с разной ориентацией листьев обеспечит больший урожай фитомассы.

Как уже отмечалось, в зависимости от недостатка или избытка освещенности многие растения способны размещать листья в плоскостях, перпендикулярной и параллельной направлению солнечных лучей, образуя так называемую листовую мозаику. Листовая мозаика образуется в результате рационального размещения неодинаковых по величине не только листовых пластинок, но и черешков. Типичную листовую мозаику можно наблюдать в фитоценозах с участием клена остролистного, липы мелколистной (Tilia cordata), вяза гладкого (Ulmus laevis), ильма горного (Ulmus glabra) и других древесных пород. Четко прослеживается листовая мозаика у многих растений с горизонтальным размещением ветвей, например у плюща обыкновенного (Hedera helix) и многих травянистых растений (рис. 13).

Рис. 13. Листовая мозаика у плюща (Hedera helix)

Компасные растения явно избегают сильного освещения. Их листовая пластинка расположена не перпендикулярно солнечным лучам, как у розеточных растений, а параллельно, как у эвкалиптов или у латука дикого (Lactuca serrtola), что предохраняет листья от перегрева в условиях избыточной солнечной радиации. Тем самым обеспечивается и благоприятное прохождение фотосинтеза и транспирации.

Существует целый ряд других адаптивных приспособлений, как структурных, так и физиологических. Иногда подобные приспособления носят явно сезонный характер, что хорошо иллюстрирует, например, сныть обыкновенная (Aegopodium podagrata). В типичном местообитании (дубравы) на растении в течение вегетационного периода формируются два "поколения" листьев. Весной, когда почки деревьев еще не распустились и полог леса пропускает много света, образуется листовая розетка, ее листья по структуре (микро- и макроскопической) явно световые.

Позднее, когда развивается густой полог леса и до поверхности почвы доходит лишь 3…4 % лучистой энергии, появляется второе "поколение" листьев, явно теневых. Нередко у одного отдельно взятого растения можно наблюдать одновременно световые и теневые листья. Листья нижних ярусов кроны шелковицы черной (Morus nigra) крупные, лопастные, тогда как верхние ярусы кроны несут световые листья - более мелкие, лишенные лопастей. У лесообразующих пород подобным же образом формируется периферия кроны: в верхних ярусах - световые листья, внутри кроны - теневые.

Температура

Жизнедеятельность любого вида протекает в определенных интервалах температур. При этом прослеживаются зоны оптимума, минимума и максимума. В зоне минимума или максимума происходит затухание деятельности организма. В первом случае низкие температуры (холод), а во втором - высокие (жара) приводят к нарушению его жизненных процессов. За пределами крайних температур лежит летальная зона, в которой наступает необратимый процесс отмирания растения. Следовательно, температуры определяют границы жизни.

Вследствие неподвижного образа жизни высшие растения выработали большую выносливость к суточным и сезонным (годовым) колебаниям температур. Многие лесообразующие породы нашей тайги - сосна сибирская, лиственница даурская (Larix dahurica) и др. - выдерживают понижения температуры до - 50 °С и ниже и летнее тепло до 25 °С и выше. Годовая амплитуда достигает 75 °С, а иногда 85...90 °С. Виды растений, выдерживающие большие перепады температур, называют эвритермными (от греч. eurys + therme - тепло) в отличие от стенотермных.

Дифференциация тепла на нашей планете - основа широтной зональности и высотной поясности растительности и почв. Вследствие уменьшения от экватора к полюсам высоты солнцестояния и угла падения лучей изменяется количество тепла. Так, среднегодовая температура около экватора составляет 26,2 °С, возле 30 °с. ш. она уже равна 20,3 °С, а при 60° с. ш. снижается до - 1 °С.

Помимо среднегодовой температуры данной местности, важное значение в жизни организмов имеют наиболее высокая и наиболее низкая температуры (абсолютный максимум и абсолютный минимум), наблюдаемые в данной климатической зоне, а также средняя температура самого теплого и самого холодного месяца. Так, продолжительность вегетационного периода в тундре (т. е. выше 70° с. ш.) составляет всего полтора - два с половиной месяца при средней температуре 10...12 °С.

Тайга, иначе зона хвойных лесов, имеет вегетационный период три - пять месяцев, среднюю температуру 14.. Л6 °С. В южной части зоны, где преобладают хвойно-широколиственные леса, вегетация длится четыре-пять месяцев, средняя температура составляет 15... 16 °С. В зоне широколиственных лесов (40...50° с. ш.) вегетационный период - пять-шесть месяцев, средняя температура 16...18 °С. Резким контрастом описанным зонам выступает зона дождевых тропических лесов (0...15° с. и ю. ш.). Вегетационный период здесь круглогодичный со средней температурой 25...28 °С и часто не дифференцирован на сезоны. Исключительно важная особенность тропических районов в том, что разница между средними температурами самого теплого и самого холодного месяца менее контрастна, чем суточные колебания.

Рост растений непосредственно связан с температурным фактором. Зависимость отдельных видов от температуры колеблется в широких пределах. Четко различаются термофильные (от греч. therme + philia - любовь) растения и их антиподы - холодовыносливые, или криофильные (от греч. kryos - холод). А. Декандоль (1885) выделял группы гекистотермных, микротермных, мезотермных и мегатермных растений (от греч. gekisto - холод, mikros - малый, mesos - средний, megas - большой).

Перечисленные группы растений по отношению к температуре - комплексные, при их выделении учитывают и отношение растений к влаге. Дополнением к данной классификации можно считать выделение растений криофитов и психрофитов (от греч. psychros - холод + phyton) - гекистотермов и частично микротермов, требующих различных режимов увлажнения. Криофиты произрастают в холодных сухих условиях, а психрофиты - это холодостойкие растения влажных почв.

Не менее наглядно влияние температур на распространение отдельных видов растений и их группировок. Давно уже установлена связь географического распространения отдельных видов с изотермами. Как известно, виноград созревает в пределах изотермы со средней температурой в течение шести месяцев (апрель - сентябрь) 15 °С. Распространение дуба черешчатого на север ограничено годовой изотермой 3 °С; северная граница плодоношения финиковой пальмы совпадает с годовой изотермой 18... 19 °С.

В целом ряде случаев распространение растений обусловлено не только температурами. Так, изотерма 10 °С проходит с запада на восток через Ирландию, Германию (Карлсруэ), Австрию (Вена), Украину (Одесса). Названные местности имеют достаточно различный видовой состав природного растительного покрова и представляют возможность интродукции и возделывания разнообразного набора культур. В Ирландии часто не вызревают зерновые культуры. В Германии и Ирландии не вызревают многие тыквенные (арбузы - Citrullus vulgaris, дыни), хотя в открытом грунте произрастают камелии (Camella) и пальмы. В Карлсруэ в открытом грунте растут плющ и падуб (Ilex ), иногда вызревает и виноград. В районе Одессы возделывают дыни и арбузы, но плющ и камелии не выдерживают низких температур зимы. Таких примеров можно привести много.

Таким образом, средние температуры в отрыве от других факторов среды не могут служить надежным показателем (индикатором) возможности интродукции и возделывания интересующей нас культуры. Суть в том, что разные виды растений характеризуются неодинаковой продолжительностью вегетационного периода. Поэтому в отношении температуры необходимо учитывать как продолжительность периода благоприятных температур для нормального развития растений, так и время наступления и продолжительность действия минимальных температур (то же в отношении максимальных).

В экологической и растениеводческой литературе для оценки тепловых ресурсов вегетационного периода широко используют сумму активных температур. Она служит хорошим показателем при оценке потребности растений в тепле и дает возможность определить район возделывания той или иной сельскохозяйственной культуры. Сумма активных температур состоит из суммы положительных среднесуточных температур за период, когда она выше 10 °С. В районах, где сумма активных температур равна 1000...1400 °С, можно возделывать ранние сорта картофеля, корнеплоды; где эта сумма достигает 1400...2200 °С, - хлебные злаки, картофель, лен и др.; сумма активных температур 2200...3500 °С соответствует зоне интенсивного плодоводства; при сумме этих температур более 4000 °С успешно возделывание субтропических многолетников.

Организмы, жизнедеятельность которых и температура тела зависят от тепла, поступающего из окружающей среды, называют пойкилотермными (от греч. poikilos - различный). К ним относят все растения, микроорганизмы, беспозвоночных животных и некоторые группы хордовых. Температура тела пойкилотермных организмов зависит от внешней среды. Вот почему экологическая роль тепла в жизни всех систематических групп растений и названных групп животных имеет первостепенное значение. Высокоорганизованных животных (птиц и млекопитающих) относят к группе гомойотермных (от греч. homoios - одинаковый), у которых температура тела постоянная, поскольку поддерживается за счет собственного тепла.

Известно, что протопласт клеток живых организмов способен нормально функционировать в интервале температур 0...50 °С. Только организмы, которые имеют специальные приспособления, могут выдерживать указанные экстремальные температуры в течение длительного времени. Физиологи установили оптимальные и критические температуры дыхания и других функций. Оказывается, нижний предел температуры дыхания у зимующих органов (почки, хвоя) - 20... - 25 °С. При повышении температуры интенсивность дыхания возрастает. Температуры свыше 50 °С разрушают белково-липидный комплекс поверхностного слоя цитоплазмы, что приводит к потере клетками осмотических свойств.

В некоторых районах России периодически наблюдается массовая гибель растений от слишком низких температур. Катастрофическое действие последних в наибольшей степени сказывается в малоснежные зимы преимущественно на озимых хлебах. Губительны и внезапные похолодания весной, когда растения трогаются в рост (поздневесенние заморозки). Нередко от холода гибнут не только интродуцированные вечнозеленые древесные, например цитрусовые, но и листопадные растения. Н. Максимов, изучая механизм действия низких температур, пришел к выводу, что причина гибели растений объясняется обезвоживанием цитоплазмы. В межклетниках ткани происходит кристаллизация воды. Кристаллы льда оттягивают воду из клеток и механически повреждают органеллы клеток. Критический момент наступает именно с появлением кристаллов льда внутри клеток.

Выделены природные группы морозоустойчивых растений. К ним можно отнести хвойные вечнозеленые деревья и кустарники, а также бруснику (Vaccinium vitis-idea) , вереск и др. Среди травянистых многолетников также выявлено немало морозоустойчивых растений, способных переживать суровую зиму. В период зимнего покоя растения могут выдерживать очень низкие температуры. Так, побеги смородины черной (Ribes nigrum) при медленном снижении температуры до - 253 °С (температура, близкая к абсолютному нулю) могут сохранять жизнеспособность.

Большинство видов растений характеризуются индивидуальными реакциями на температуру. Так, весной прорастание зерновок ржи начинается при 1...2 °С, семян клевера лугового (Trifolium pratense) - при 1 °С, люпина желтого (Lupinus luteus) - при 4...5, риса - при 10...12 °С. Оптимальные температуры для вызревания семян этих культур составляют соответственно 25, 30, 28, 30...32 °С.

Для нормального роста и развития растений необходима соответствующая температура окружающей среды для надземных и подземных органов. Например, лен нормально развивается при температуре корня примерно в два раза ниже (10 °С), чем надземных органов (22 °С). В ходе онтогенеза потребность растений в тепле заметно меняется. Значительно варьирует температура органов тела растения и в зависимости от местонахождения (почва, воздух) и ориентировки по отношению к солнечным лучам (рис. 14). Экспериментально установлено, что прорастание семян рапса (Brassica napus), сурепицы (В. campestrts), пшеницы, овса, ячменя, клевера, люцерны и других растений наблюдается при температуре 0...2 °С, тоща как для появления всходов требуются более высокие температуры (3...5 °С).


Рис. 14. Температура (°С) разных органов растений: А - новосиверсии (Novosiversia glacialis), по Б. Тихомирову; Б - пролески сибирской (Scilla sibiriati , по Т. Горышиной, а - подстилка, б - почва

На многих видах континентальных растений благоприятно сказывается суточный термопериодизм, когда амплитуда ночных и дневных температур составляет 5... 15° С. Суть его заключается в том, что многие растения более успешно развиваются при пониженных ночных температурах. Например, томаты лучше развиваются, если дневная температура воздуха достигает 26° С, а ночная температура 17...18° С. Опытные данные свидетельствуют также, что растениям умеренных широт для нормального онтогенетического развития необходимы также осенние пониженные температуры - сезонный термопериодизм.

Температурный фактор влияет на растения на всех этапах их роста и развития. Причем в разные периоды каждый вид растений нуждается в определенных температурных условиях. Для большинства однолетних растений, например ячменя, овса и других, прослеживается общая закономерность: на ранних этапах развития температура должна быть ниже, чем на более поздних.

Мегатермные растения тропического происхождения, например сахарный тростник (Saccharum officinarum), нуждаются в высоких температурах в течение всей жизни. Наибольшей выносливостью к сверхвысоким температурам отличаются растения жарких и сухих районов - эуксерофиты, а также многие суккуленты, например Кактусовые и Толстянковые (Crassulaceae). Это свойственно и растениям засоленных, особенно сульфидами и хлоридами, почв. Указанные виды, как показал еще X. Люденгорд (1925, 1937), сохраняют жизнеспособность даже при 70 °С. Хорошо переносят высокие температуры сильно обезвоженные семена и плоды. Именно на данном свойстве основан известный метод борьбы с возбудителем пыльной головни пшеницы (Ustilago trtttci). При термообработке пораженных семян гриб, будучи стенотермным, погибает, тоща как зародыш зерновки остается жизнеспособным.

Труднее решить вопрос о влиянии температуры на изменение структуры самого растения, его морфологию. Наблюдения в природе и экспериментальные сведения дают различные объяснения. В самом деле, такое приспособление, как сильное опушение почечных чешуи и листьев, представляется комплексным, оно служит защитой не только от яркого света, но и от высоких температур, а также от излишнего испарения влаги. Яркий блеск глянцевитых листьев, параллельное расположение листовой пластинки к солнечным лучам, войлочное опушение - все это, несомненно, предотвращает перегрев листа, а также излишнюю транспирацию.

Основатель экологии растений Е. Варминг (1895) наглядно продемонстрировал влияние температуры на формирование приземистых и розеточных форм растений в Арктике и в высокогорьях альпийского и субнивального поясов, т. е. у самой границы вечных снегов. Речь идет не только о травянистых бесстебельных, розеточных вроде девясила корнеглавого (Inula rhizocephala) , но и о древесных жизненных формах - березе карликовой, можжевельнике туркестанском (Juniperus turcestanica) , кедровом стланике и пр. Стелющиеся и подушечные формы растений, например минуартия арктическая (Minuartia arctica), наиболее приспособлены к условиям жизни у самой поверхности почвы под прикрытием снежного покрова. Когда снега нет, в припочвенном слое воздуха на высоте до 15...20 см сохраняется наиболее высокая температура и сила ветра минимальна. К тому же внутри "подушки", формируемой растением, создается особый микроклимат, и колебания температур здесь гораздо менее выражены, чем вне ее. На развитие приземистых форм температурный фактор может действовать и непосредственно, и косвенно - вследствие нарушения водоснабжения и минерального питания.

Наиболее велика роль прямого влияния температур в процессе геофилизации растений. Под геофилизацией понимают погружение нижней (базальной) части растения в почву (сначала гипокотиля, затем эпикотиля, первого междоузлия и т. д.). Данный феномен свойствен преимущественно покрытосеменным растениям. Именно в ходе их исторического развития геофилизация играла видную роль в трансформации жизненных форм от деревьев до трав. С погружением в почву основания побегов интенсивно развивается система придаточных корней, корневищ, столонов и других органов вегетативного размножения. Геофилизация была необходимой предпосылкой появления разнообразных подземных органов растений, особенно органов вегетативного размножения. Указанное дало покрытосеменным большие преимущества в борьбе за существование, за господство на континентах Земли.

В онтогенезе многих покрытосеменных геофилизация растений осуществляется при помощи особых втягивающих (контрактильных) корней. Интересные экспериментальные исследования по геофилизации провел П. Лисицын. Он выяснил, что втягивание в почву базальной части растения распространено гораздо шире, чем ранее предполагалось (рис. 15). У озимых сельскохозяйственных культур геофилизация улучшает условия зимовки, у яровых, например гречихи, - условия водоснабжения.

Рис. 15. Геофилизация (втягивание в почву) подсемядольного колена клевера лугового (Trifolium pratense), по П. Лисицину: а - поверхность почвы; б - глубина втягивания

Вода

Все процессы жизнедеятельности на уровнях клетки, ткани, организма немыслимы без достаточного водоснабжения. Органы растении обычно содержат 50...90 % воды, а иноща и больше. Вода - обязательный компонент живой клетки. Обезвоживание организма влечет замедление, а затем и прекращение жизненного процесса. Максимальное обезвоживание при сохранении жизни и обратимости нормальных жизненных процессов наблюдается в спорах и семенах. Здесь содержание воды падает соответственно до 10 и 12 %. Холодоустойчивость, равно как и жароустойчивость растений, зависит от количества находящейся в них воды. С водой связано и почвенное питание растений (поступление и транспортирование азотистых и других минеральных веществ), фотосинтез, ферментные процессы. Продукты метаболизма растворяются и транспортируются в теле растения также при помощи воды.

Вода - одно из необходимых условий формирования растительной массы. Установлено, что 99,5 % воды, транспортируемой от корневой системы к листьям, поддерживает тургор и только 0,5 % ее тратится на синтез органического вещества. Для получения 1 г сухой растительной массы требуется 250...400 г воды и более. Соотношение вышеуказанных значений составляет транспирационный коэффициент. У разных видов и даже сортов растений этот показатель существенно различается. Существует закономерность: величина транспирационного коэффициента прямо пропорциональна сухости климата. Поэтому один и тот же сорт может иметь неодинаковый транспирационный коэффициент при выращивании в разных эколого-географических условиях.

Оптимум водного режима наблюдается в случаях, когда испарение воды в атмосферу не превышает поступления ее в тело растения из почвы. В ходе онтогенеза наступает этап, когда снабжение водой определяет все последующее развитие растения и урожай. У многих культивируемых растений эти фазы развития хорошо изучены. Критический этап развития у злаков - формирование цветков и соцветий. При неблагоприятных условиях водоснабжения часть бугорков конуса нарастания дегенерирует. Поскольку данный процесс необратим, формируются укороченные, слабоветвистые соцветия, содержащие мало цветков, а следовательно, и зерновок.

На протяжении миллионов лет непрерывной эволюции организмы приспосабливались к различным условиям жизни. Растения аридных районов, где климат исключительно сухой, имеют ярко выраженные ксероморфные (от греч. xeros - сухой, morphe - форма) признаки. Они позволяют снижать потерю влаги, которая в основном происходит в результате транспирации через устьичный аппарат, а также через водяные устьица (явление гуттации - от лат. gutta - капля). Значительный расход влаги происходит и через клетки эпидермы (кутикулярное испарение). Гуттация хорошо выражена у проростков злаков, картофеля, гречихи, у многих комнатных растений, например у алоказии (Alocasia macrorhiza) и др. Наиболее распространена гуттация у растений влажных тропиков и субтропиков.

Растения засушливых условий имеют разнообразные приспособления, предупреждающие потерю воды. У многих злаков листья свернуты в трубку, так что устьица оказываются внутри. Листья ксероморфных растений часто имеют толстый восковой налет или волоски. Органы транспирации (устьичный аппарат) у таких растений погружены в мезофилл, часто наблюдается у них редукция листьев до чешуек или превращение в колючки и шипы. При сильной редукции листьев функцию фотосинтеза берет на себя стебель. Многие сельскохозяйственные культуры, как травянистые, так и древесные, реагируют на нехватку почвенной влаги и подземных вод быстрым развертыванием корневой системы.

Водный баланс растения определяется разностью между поглощением и расходованием воды организмом. На водный баланс влияет целая серия условий среды: влажность воздуха, сумма и распределение осадков, обилие и высота стояния подземных вод, направление и сила ветра.

Расход воды растениями в значительной мере определяется относительной влажностью воздуха. В более влажном климате при прочих равных условиях растения расходуют меньше влаги на образование сухого вещества. В умеренной зоне продуктивность транспирации составляет около 3 г сухих веществ при расходе 1 л воды, С возрастанием влажности воздуха в семенах, плодах и других органах растений содержится меньше белков, углеводов и минеральных элементов. Кроме того, уменьшается синтез хлорофилла в листьях и стеблях, однако одновременно усиливается рост и тормозятся процессы старения. При высоком насыщении воздуха водяными парами хлеба созревают очень медленно, а иногда не дозревают вовсе. Влажность воздуха оказывает большое влияние на количество и качество урожая, работу сельскохозяйственных машин. При высокой влажности воздуха возрастают потери урожая при обмолоте и уборке, а также замедляются процессы послеуборочного дозревания семян, что снижает в конечном счете их сохранность.

В зависимости от отношения к влаге растения разделяют на две экологические группы: пойкилогидридные и гомойгидридные. Первые не имеют специальных механизмов для регулирования гидратуры (обводненности) своего тела; по характеру потери влаги они практически не отличаются от мокрой хлопчатобумажной ткани. К пойкилогидридным относят низшие растения, мхи, многие папоротники. Абсолютное большинство семенных растений гомойгидридны и имеют специальные механизмы (устьичные аппараты, трихомы на листьях и т. д.) для регулирования внутреннего водного режима. Пойкилогидридность среди покрытосеменных крайне редка и имеет, скорее всего, вторичное происхождение, т. е. является своеобразной адаптацией к ксерическому режиму. Редким примером пойкилогидридного покрытосеменного растения служит пустынная осока вздутая, или илак (Carex physoides).

Гомойгидридные растения по характерному для них водному режиму подразделяют на гидрофиты, гелофиты, гигрофиты, мезофиты, ксерофиты, ультраксерофиты.

Гидрофиты (от греч. hydor - вода + phyton) - водные растения, свободно плавающие или укореняющиеся на дне водоема или полностью погруженные в воду (иногда с плавающими на поверхности листьями или выставленными над водой соцветиями). Поглощение воды и минеральных солей осуществляется всей поверхностью растения. У плавающих гидрофитов корневая система сильно редуцирована и иногда теряет свои функции (например, у рясок). Мезофилл подводных листьев не дифференцирован, отсутствуют кутикула и устьица". Примерами гидрофитов служат валлиснерия (Vallisneria spiralis), элодея канадская (Elodea canadensis), рдест плавающий (Potamogeton natans) , альдрованда пузырчатая (Aldrovanda vesiculosa), кувшинка белая (Nymphaea alba), кубышка желтая (Nuphar luteum) и др. Для перечисленных видов характерны сильное развитие воздухоносной ткани - аэренхимы, большое количество устьиц у плавающих листьев, слабое развитие механических тканей, иногда разнолистность.

Гелофиты (от греч. helos - болото) - водно-наземные растения, растущие как в воде на мелководьях, так и по переувлажненным берегам рек, водоемов; могут обитать и на обильно увлажненной почве в удалении от водоемов. Встречаются только в условиях постоянного и обильного водоснабжения. К гелофитам относят тростник обыкновенный; частуху подорожниковую (Alisma plantago-aquaucd), стрелолист стрелолистный (Saggitaria sagittifolia), сусак зонтичный (Butomus umbellatus) и др. Гелофиты могут выдерживать недостаток кислорода в почве.

Гигрофиты (от греч. hygros - влажный) - наземные растения, произрастающие в условиях повышенной влажности почвы и воздуха. Они характеризуются насыщенностью тканей водой до 80 % и выше, наличием водяных устьиц. Различают две экологические группы гигрофитов:

· теневые, произрастающие под пологом сырых лесов в разных климатических зонах, для них характерны водяные устьица - гидатоды, позволяющие поглощать воду из почвы и транспортировать минеральные элементы, даже если воздух насыщен водяными парами; к теневым гигрофитам относят недотрогу обыкновенную (Impattens noli-tangere) , цирцею парижскую (Circaea lutetiana) , кислицу обыкновенную;

· световые, произрастающие на открытых местообитаниях, вде почва и воздух постоянно влажные; к ним относят папирус (Cyperus papyrus), росянку круглолистную (Drosera rotundifolia) , подмаренник болотный (Galium palustre), рис посевной, калужницу болотную (Caltha palustrts).

Для гигрофитов характерна слабая приспособленность к регуляции обводненности тканей, поэтому сорванные растения данной группы очень быстро вянут. Таким образом, гигрофиты из наземных гомойгидридных растений наиболее близки к пойкилогидридным формам. Гидрофиты, гелофиты и гигрофиты имеют положительный водный баланс.

Мезофиты (от греч. mesos - средний) - растения, приспособленные к жизни в условиях среднего водоснабжения. Они проявляют высокую жизнеспособность в условиях умеренно теплого режима и средней обеспеченности минеральным питанием. Могут переносить непродолжительную не очень сильную засуху. К указанной группе принадлежит подавляющее большинство возделываемых культур, а также растения лесов и лугов. Вместе с тем мезофиты настолько разнообразны по морфофизиологической организации и приспособленности к различным местообитаниям, что им трудно дать общее определение. Они составляют разнообразную гамму промежуточных растений между гигрофитами и ксерофитами. В зависимости от распространения в различных климатических зонах А. Шенников (1950) выделил следующие пять групп мезофитов: вечнозеленые мезрфиты влажных тропических лесов - деревья и кустарники [*] , вегетирующие круглый год без резко выраженного сезонного перерыва; для них характерны крупные листья с гидатодами, часто такие листья имеют на конце острие, отводящее воду; кожистость, пониклость и расчлененность листьев обеспечивают их сохранность во время дождей (филодендрон - Philodendron, фикус - Ficus elastica и др.); верхние широкие и плотные листья растений группы адаптированы к яркому освещению, им свойственна толстая кутикула, хорошо выраженная столбчатая паренхима, достаточно развитые проводящая система и механические ткани;

зимне-зеленые деревянистые мезофиты, или тропофиты (от греч. tropos - поворот), - также преимущественно виды тропической и субтропической зон, но распространенные не в дождевых лесах, а в саваннах; сбрасывают листву и впадают в состояние покоя во время сухого летнего периода; имеют хорошо выраженные покровные комплексы - перидерму и корку; типичный представитель - баобаб;

летне-зеленые деревянистые мезофиты - растения умеренного климата, деревья и кустарники, сбрасывающие листья и впадающие в состояние покоя в холодный период года; к ним относят большинство листопадных деревьев холодной и умеренной зон; опадение листвы зимой служит приспособлением к уменьшению испарения в холодные месяцы, когда всасывание воды из почвы затруднено; большое значение для данной подгруппы мезофитов имеют покровные комплексы (перидерма и корка), а также приспособления для защиты почек от потери воды; все же зимой растения теряют значительное количество влаги; испарение идет главным образом через слабозащищенные листовые рубцы и почки;

летне-зеленые травянистые многолетние мезофиты - растения умеренного климата, надземные части которых обычно отмирают на зиму, за исключением защищенных почек возобновления; очень обширная группа; наиболее типичные представители - многолетние луговые травы (тимофеевка луговая - Phleum pratense, клевер луговой и др.) и лесные травы (ясменник душистый - Asperula odorata, копытень европейский и др.); для листьев характерен дифференцированный мезофилл, хотя у лесных растений (сциофитов и гемисциофитов) палисадная ткань часто не выражена; проводящие элементы развиты умеренно; эпидерма тонкая, кутикула имеется не всегда; механические ткани развиты в средней степени или слабо;

эфемеры и эфемероиды (от греч. ephemeros - однодневный) - однолетние (эфемеры) и дву- или многолетние (эфемероиды) растения, которые в засушливых условиях вегетируют короткий влажный период, в сухой сезон переходят в состояние покоя; например, растения пустынь и сухих степей: эфемеры - веснянка весенняя, бурачок маленький (Alissum minutum) и др.; эфемероиды - мятлик живородящий, или курчавый (Роа bulbosa subsp. vMparum) различные виды тюльпанов (Tulipa) , гусиных луков (Gagea), ирисов (Iris), ферул (Ferula) и др.; характерно отсутствие структурных адаптации к недостатку влаги, но семена способны переносить сильное высыхание и высокие температуры; луковичным и клубнелуковичным эфемероидам свойственны контрактильные (втягивающие) корни, обеспечивающие втягивание почки возобновления под почву на неблагоприятный период.

Необходимо отметить, что не все ученые согласны с отнесением пустынных эфемеров и эфемероидов к группе мезофитов и причисляют их к ксерофитам (понимая последний термин очень широко).

Ксерофиты (от греч. xeros) - растения, приспособленные к жизни в условиях низкого водоснабжения. Переносят почвенную и атмосферную засуху, так как имеют разнообразные приспособления для жизни в условиях жаркого климата при очень малом количестве осадков. Важнейшая особенность ксерофитов - формирование морфофизиологических адаптации к губительному действию атмосферной и почвенной засухи. В большинстве случаев ксерофиты имеют приспособления, ограничивающие транспирацию: безлистность, мелколистность, летний листопад, опушение. Многие из них способны длительное время выдерживать довольно сильное обезвоживание, сохраняя жизнеспособность. На рисунке 12 был показан лист с приспособлениями, ограничивающими испарение.

В зависимости от структурных особенностей органов и тканей, способов регулирования водного режима различают следующие три типа ксерофитов.

Первый тип - эуксерофиты (от греч. еu - настоящий) , или склерофиты (от греч. skleros - твердый), или собственно ксерофиты; по внешнему виду это суховатые, жесткие растения. Даже в период полного обеспечения водой обводненность их тканей мала. Склерофиты отличаются высокой устойчивостью к завяданию - могут без заметного вреда для себя терять до 25 % влаги. Их цитоплазма остается живой при столь сильном обезвоживании, которое было бы губительно для других растений. Еще одна особенность эуксерофитов - повышенное осмотическое давление клеточного сока, позволяющее значительно увеличивать сосущую силу корней.

Прежде считали, что интенсивность транспирации склерофитов, как и других ксерофитов, очень мала, однако работы Н. Максимова (1926, 1944) показали, что при благоприятных условиях водоснабжения эти растения транспирируют более интенсивно, чем мезофиты, особенно в пересчете на единицу поверхностного листа. И. Культиасов (1982) подчеркивал, что, по-видимому, основная особенность ксерофитов в их высокой засухоустойчивости, зависящей от свойств цитоплазмы, а также в способности эффективно использовать влагу после дождя. Характерная "склерофитная" морфология (мощное развитие механических и покровных тканей, мелколистность и др.) имеет защитное значение при затруднениях в водоснабжении.

Корневая система у эуксерофитов очень разветвленная, но неглубокая (менее 1 м). К рассматриваемой группе относят много растений наших степей, полупустынь и пустынь: полыни (белоземельная Artemisia terrae-albae, Лерха - А lerchlana и др.), веронику седую (Veronica incana) и др.

Д. Колпинов (1957) выделил из эуксерофитов особую группу - стипаксерофиты (от лат. stipa - ковыль). В нее входят узколистные злаки типа ковылей, типчака (Festuca valesiaca). Растения группы отличаются мощной корневой системой, использующей влагу кратковременных ливней. Стипаксерофиты чувствительны к обезвоживанию и переносят только кратковременный недостаток влаги.

Второй тип ксерофитов - гемиксерофиты (от греч. hemi - наполовину) имеют глубокую корневую систему, достигающую уровня грунтовых вод (до 10 м и более), т. е. являются фреатофитами (см. ниже).

Третий тип ксерофитов - суккуленты (от лат. succulentus - сочный) в отличие от ксерофитов описанных выше типов имеют хорошо развитую водозапасающую паренхимную ткань. В зависимости от ее дислокации различают листовые и стеблевые суккуленты. Примерами первых служат агавы (Agava), алоэ (Aloe), очитки (Sedum) и др. У стеблевых суккулентов листья обычно редуцированы, и воду эти виды запасают в стеблях (кактусы и кактусовидные молочаи).

Корневая система суккулентов обычно поверхностная. Они отличаются способностью запасать воду, когда она в окружающей среде находится в избытке, длительно удерживать и экономно расходовать ее. Транспирация у суккулентов чрезвычайно мала. Для ее сокращения у растений существует ряд приспособительных черт в строении, в том числе своеобразие форм надземных частей, демонстрирующих "знание" законов геометрии. Известно, что у сферических тел (особенно у шара) наименьшее отношение поверхности к объему. Утолщение листьев и стеблей, т. е. приближение их к шаровидной или цилиндрической форме, - способ сокращения транспирирующей поверхности при сохранении необходимой массы. У многих суккулентов эпидерма защищена кутикулой, восковым налетом, опушением. Устьица немногочисленны и днем обычно закрыты. Последнее обстоятельство создает затруднения для фотосинтеза, поскольку поглощение диоксида углерода этими растениями может идти в основном ночью: доступ СO 2 и света не совпадает во времени. Поэтому у суккулентов выработался особый путь фотосинтеза - так называемый "САМ-путъ", при котором источником СО 2 частично служат продукты дыхания.

Реакция корневой системы на водоснабжение хорошо изучена у культивируемых растений. На рисунке 16 показана глубина проникновения в почву корневой системы озимой пшеницы при различном количестве осадков.


Рис. 16. Корневая система озимой пшеницы (род Triticum):
1 - при большом количестве осадков; 2 - при среднем; 3 - при малом

Существует особая классификация экологических групп растений с учетом использования ими грунтовой влаги, т. е. по источникам поглощения влаги из субстрата. В ней выделяют фреатофиты (от греч. phreatos - колодец) - растения, корневая система которых постоянно связана с водоносными горизонтами почв и материнских почвообразующих пород, омброфиты (от греч. ombros - дождь) - растения, питающиеся влагой атмосферных осадков, и трихогидрофиты (от греч. trichos - волос) - растения, связанные с капиллярной каймой грунтовых вод, находящихся в состоянии постоянной подвижности. Среди фреатофитов выделяют облигатные и факультативные; последние довольно близки к трихогидрофитам. Для фреатофитов характерно развитие глубоко проникающих подземных органов; у верблюжьей колючки (Alchagi) - до 15 м, у древовидных форм черного саксаула (Haloxylon aphyllum) - до 25, у среднеазиатских тамариксов (Tamarix) - 7, у тамариксов Северной Африки - до 30, у люцерны посевной (Medicago sativa) - до 15 м. Омброфиты имеют неглубоко залегающую, но сильно разветвленную систему подземных органов, способную поглощать атмосферную влагу в большом объеме почвы. Типичные представители группы - эфемеры и эфемероиды пустынь. Для трихогидрофитов характерна корневая система универсального типа, в ней сочетаются черты фреатофитов и омброфитов. Фреатофиты и трихогигрофиты часто относят к группе гемиксерофитов.

Водоснабжение растений осуществляется из двух источников: осадков и грунтовых вод. Из атмосферных осадков важнейшую роль играют дождь и снег. Град, роса, туман, иней, ожеледь занимают более скромную долю в водном балансе растений. Атмосферные осадки для растений - не только источник водоснабжения. Твердые атмосферные осадки, образуя снежный покров, предохраняют почву, а следовательно, надземные и подземные органы растений от низких температур. Снежный покров в экологическом плане существенно влияет на среду обитания растений и животных - создает запас почвенной влаги, существенно понижает испарение влаги растениями. Важное значение для сельскохозяйственных растений, а также для продуктивности пастбищ и сенокосов имеют распределение осадков по сезонам, их форма, сумма и интенсивность выпадения.

Дожди, которые дают большое количество осадков в короткое время (более 1…2 мм/мин), называют ливневыми, или ливнями. Ливни обычно сопровождаются сильными ветрами и оказывают негативное влияние на сельскохозяйственные угодья. Самое большое количество осадков на Кавказе и в s Восточной Европе вообще (до 2500 мм в год) и ливневых дождей в частности приходится на Черноморское побережье Кавказа - Аджарию и Абхазию. Однако сильные ливни (свыше 5 мм/мин) зарегистрированы и на Украине. В целом же с продвижением на север внутри континента количество осадков сначала повышается, достигая максимума в умеренной зоне, а затем снижается (не распространяется на приморские районы); есть закономерность в изменении и других климатических показателей (рис. 17).

Большие различия (рис. 18) по количеству осадков между отдельными регионами Земли наряду с температурным режимом создают пестроту экологических условий на планете. Самые влажные районы располагаются в верхнем течении р. Амазонки, на о-вах Малайского архипелага.

Рис. 17. Схематичный профиль европейской части России с севера на юг, по Г. Высоцкому


Рис. 18. Годовое распределение осадков по континентам

В зоне умеренного климата в местах, где наблюдаются частые оттепели, прослеживается гибель озимых от ледяной корки. После оттепелей талая снеговая вода, скопившаяся на полях в микропонижениях, замерзает и покрывает озимые культуры ледяной коркой. При этом происходит механическое давление льда, особенно губительно действующее на зоны кущения, одновременно ощущается недостаток кислорода.

Толщина и плотность снежного покрова имеют важное значение для сельского, лесного, водного хозяйства. Рыхлый снег лучше защищает от охлаждения зимующие в почве растения. Плотность снега наименьшая при образовании снежного покрова, затем она постоянно возрастает и наибольшей становится в период таяния снега. Поэтому к весне защитное действие снежного покрова снижается. Части растений, не укрытые снегом, особенно в холодную и ветреную зиму, быстро теряют влагу и погибают. При температуре воздуха - 21 °С под снегом на поверхности почвы она составляет всего - 5 °С. Если снег выпадает рано и достаточно толстым слоем покрывает почву, она не промерзает, растения нормально растут и развиваются. Бывают зимы, когда под снежным покровом можно найти цветущие шафраны (род Crocus), любку двулистную (Platanthera bifolia) и другие растения.

В условиях суровой зимы высоких северных широт, а также в горах вырабатываются особые шпалерная и стланиковая формы одревесневающих растений. Даже крупноствольные деревья лесной зоны - ель сибирская, лиственница сибирская и другие - в условиях арктического климата трансформируются в стелющиеся формы.

Атмосферный воздух

Экологическое значение атмосферных осадков в жизни растений проявляется также в участии их как растворителя в подкормке минеральными веществами нижних ярусов древесных и травянистых растений. Во время дождя падающие капли насыщаются в воздухе летучими и парообразными веществами, последние вместе с каплей попадают на органы растений и поверхность почвы. Наряду с веществами, вымытыми из крон деревьев, и поглощаемыми летучими соединениями, выделяемыми растениями, в атмосферных осадках растворяются и смешиваются летучие и парообразные вещества, которые образуются в результате антропогенной деятельности, а также продукты жизнедеятельности почвенной микрофлоры.

Травянистые растения для данных экосистем нехарактерны, a эпифиты тропического леса относятся к подгруппам ксеромезофитов или гигромезофитов. Особенности их дислокации в кронах деревьев определяются микроклиматическими условиями.

Покрывающий Землю мощный слой воздуха (атмосфера) защищает живые организмы от мощного ультрафиолетового излучения и космической радиации, предотвращает резкие колебания температуры. Экологически не менее важны газовый состав атмосферы и перемещение воздушных масс (ветер и конвекционные потоки).

При характеристике газового состава воздуха обычно подчеркивают его постоянство. Почти во всех регионах земного шара сухой воздух тропосферы (нижнего слоя атмосферы) содержит около 78,1 % азота, 21 % кислорода, 0,032 % диоксида углерода, следы водорода, незначительное количество инертных газов. Наряду с постоянными компонентами в воздухе присутствуют газообразные составляющие, содержание которых варьирует в зависимости от времени и места: различные промышленные газы, аммиак, газообразные выделения растений и т. д.

Прямое экологическое влияние преобладающего в воздухе атмосферы свободного азота невелико; в данной форме указанный химический элемент оправдывает свое название, которое в переводе с греческого означает "не поддерживающий жизнь". Связанный азот служит важнейшим и обязательным компонентом всех биологических систем. Свободный атмосферный кислород не только поддерживает жизнь (дыхание), но и сам имеет биологическое происхождение (фотосинтез). Таким образом, ухудшение состояния зеленого мира нашей планеты может существенно сказаться на запасах свободного кислорода атмосферы.

Около 21 % выделяемого при фотосинтезе и содержащегося в воздухе кислорода потребляется растениями, животными и человеком в процессе дыхания. Взрослое дерево за сутки выделяет до 180 л кислорода. Человек потребляет в день при отсутствии физических нагрузок около 360 л кислорода, а при интенсивной работе - до 900 л. Легковой автомобиль на 1000 км расходует годичную норму кислорода, потребляемого человеком, а реактивный лайнер на перелет из Европы в Америку расходует 35 т кислорода.

Еще более зависит от жизнедеятельности различных организмов содержание в воздухе диоксида углерода. Важнейшими естественными источниками СO 2 служат дыхание, брожение и гниение - на общую долю перечисленных процессов приходится 5.6,1 % поступления СO 2 в атмосферу. Около 38 % диоксида углерода поступает в воздух из почвы ("почвенное дыхание"); 0,1 % - при извержении вулканов. Довольно существенным источником СO 2 становятся лесные и степные пожары, а также сжигание топлива - до 0,4 %. Последний показатель постоянно растет: в 1970 г. вследствие антропогенной деятельности в воздух попало 0,032 % годового поступления СO 2 , по прогнозам ученых, к двухтысячному году доля рассматриваемого источника возрастет до 0,038...0,04 %.

Существенно сказывается деятельность человека и на темпах фиксации диоксида углерода в биосфере. Главным образом это объясняется чрезмерной вырубкой лесов и загрязнением Мирового океана. Растения при фотосинтезе связывают ежегодно 6...7 % СO 2 воздуха, причем наиболее интенсивен процесс в лесных экосистемах. Дождевой тропический лес за год фиксирует 1...2 кг диоксида углерода на 1 м 2 , в тундрах и пустынях фиксируется лишь 1 % этого количества. Всего экосистемы суши фиксируют за год 20...30 млрд т СО 2 Примерно столько же фиксируется фитопланктоном Мирового океана.

Возрастание содержания диоксида углерода в атмосфере имеет отрицательные экологические последствия в планетарном масштабе и проявляется в виде "парникового эффекта". В общих чертах указанный эффект можно охарактеризовать как постоянное потепление климата, вызываемое тем, что, подобно пленке в парнике, накопившийся в чрезмерном количестве СO 2 препятствует оттоку длинноволнового теплового излучения от поверхности Земли, свободно пропуская при этом солнечные лучи. Конкретные проявления "парникового эффекта" неодинаковы в различных регионах. В одном случае это небывалые засухи, в другом, наоборот, возрастание количества осадков, необычно теплые зимы и т. д.

Из непостоянных компонентов атмосферного воздуха экологически для растений наиболее неблагоприятны (как для человека и животных) промышленные газы - диоксид серы, фтор, фтористый водород, хлориды, диоксид азота, аммиак и др. Высокая ранимость "воздушными ядами" растительных организмов объясняется отсутствием у них специальных адаптации к упомянутому, сравнительно недавно возникшему фактору. Относительная устойчивость некоторых растений к промышленным газам связана с их преадаптацией, т. е. наличием тех или иных особенностей, оказавшихся полезными в новых условиях. Так, лиственные деревья легче, чем хвойные, переносят загрязнение воздуха, что объясняется ежегодной листопадностью первых, дающей им возможность регулярно выводить ядовитые вещества с опадом. Однако и у лиственных растений при неблагоприятном газовом составе атмосферы нарушается ритм сезонного развития: задерживается распускание почек, значительно раньше времени наступает листопад.

Абиотические факторы это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды.

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при которых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от 200 до +100 ЬС. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для синезеленых водорослей 80 С, а для самых устойчивых рыб и насекомых около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно.

У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше.

Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.

Количество осадков и влажность основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в ЮгоЗападной Африке. Распределение осадков по временам года крайне важный лимитирующий фактор для организмов.

Влажность параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов.

Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.

Для живого вещества важны качественные признаки света длина волны, интенсивность и продолжительность воздействия.

Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса.

Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки.

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК.

Газовый состав атмосферы также является важным климатическим фактором. Примерно 33,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный кислород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Изза отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя.

Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ.

Атмосферное давление, повидимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов, отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физикохимическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений.

Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности.

Кислотность концентрация водородных ионов (рН) тесно связана с карбонатной системой. Значение рН изменяется в диапазоне от 0 рН до 14: при рН=7 среда нейтральная, при рН<7 кислая, при рН>7 щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора толерантность сообщества к диапазону рН весьма значительна. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость содержание карбонатов, сульфатов, хлоридов и т.д. является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почва.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 5060 % общего состава почвы), органическое вещество (до 10 %), воздух (1525 %) и вода (2530 %).

Минеральный скелет почвы это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения аморфное вещество, в котором уже невозможно распознать первоначальный материал, называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

В почве обитает множество видов растительных и животных организмов, влияющих на ее физикохимические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 10007000, микроскопических грибов 1001000, водорослей 100300, членистоногих 1000, червей 3501000.

Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность.

Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.

Еще один топографический фактор экспозиция склона. В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация.

Важным фактором рельефа является также крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие.

Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина своеобразие абиотических условий каждого региона.

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни.

Рассмотрим характерные особенности отношений различных типов.

Конкуренция является в природе наиболее всеохватывающим типом отношений, при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно.

Конкуренция может быть внутривидовой и межвидовой.

Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов.

Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

Поскольку в структуре экосистемы преобладают пищевые взаимодействия, наиболее характерной формой взаимодействия видов в трофических цепях является хищничество, при котором особь одного вида, называемая хищником, питается организмами (или частями организмов) другого вида, называемого жертвой, причем хищник живет отдельно от жертвы. В таких случаях говорят, что два вида вовлечены в отношения хищник жертва.

Нейтрализм это такой тип отношений, при котором ни одна из популяций не оказывает на другую никакого влияния: никак не сказывается на росте его популяций, находящихся в равновесии, и на их плотности. В действительности бывает, однако, довольно трудно при помощи наблюдений и экспериментов в природных условиях убедиться, что два вида абсолютно независимы один от другого.

Обобщая рассмотрение форм биотических отношений, можно сделать следующие выводы:

1) отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

2) негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

3) в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.

Абиотические, биотические и антропогенные факторы среды

Природное окружение живого организма слагается из множества неорганических и органических компонентов, включая привносимые человеком. При этом некоторые из них могут быть необходимы организмам, другие не играют существенной роли в их жизни. Так, например, заяц, волк, лиса и любое другое животное в лесу находятся во взаимосвязи с огромным количеством элементов. Без таких, как воздух, вода, пища, определенная температура, - они обойтись не могут. Другие же, например, валун, ствол дерева, пень, кочка, канавка, - элементы среды, к которым они могут быть безразличны. Животные вступают с ними во временные (укрытие, переправа), но не обязательные взаимоотношения.

Важные для жизни организма компоненты окружающей среды, с которыми он неизбежно сталкивается, называются экологическими факторами.

Экологические факторы могут быть необходимы или вредны для живых существ, способствовать или препятствовать выживанию и размножению.

Условия существования - это совокупность экологических факторов, обуславливающих рост, развитие, выживание и воспроизводство организмов.

Все многообразие экологических факторов обычно подразделяют на три группы: абиотические, биотические и антропогенные .

Абиотические факторы - это совокупность важных для организмов свойств неживой природы. Эти факторы, в свою очередь, можно разделить на химические (состав атмосферы, воды, почвы) и физические (температура, давление, влажность, течения и т. п.). Разнообразие рельефа, геологических и климатических условий порождают и огромное разнообразие абиотических факторов.

Первостепенное значение из них имеют климатические (солнечный свет, температура, влажность); географические (продолжительность дня и ночи, рельеф местности); гидрологические (гр. hydor-вода) - течение, волнение, состав и свойства вод; эдафические (гр. edaphos- почва) - состав и свойства почв и др.

Все факторы могут влиять на организмы непосредственно или косвенно . Например, рельеф местности влияет на условия освещенности, влажность, ветер и микроклимат.

Биотические факторы - это совокупность воздействий жизнедеятельности одних организмов на другие. Для каждого организма все остальные - важные факторы среды обитания, они оказывают на него не меньшее действие, чем неживая природа. Эти факторы тоже очень разнообразны.

Все многообразие взаимоотношений между организмами можно разделить на два основных типа: антагонистические (гр. antagonizsma - борьба) и неантагонистические.

Хищничество - форма взаимоотношений организмов разных трофических уровней, при которой один вид организмов живет за счет другого, поедая его (+ -)

(рис. 5.1). Хищники могут специализироваться на одной жертве (рысь - заяц) или быть многояд- ными (волк). В любом биоценозе эволюционно сформировались механизмы, регулирующие численность и хищника, и жертвы. Неразумное уничтожение хищников часто приводит к снижению жизнеспособности их

Рисунок 5.1- Хищничество

Конкуренция(лат. concurrentia - соперничество) - форма взаимоотношений, при которых организмы одного трофического уровня борются за пищу и другие условия существования, подавляя друг друга (- -). Конкуренция наглядно проявляется у растений. Деревья в лесу стремятся охватить корнями возможно большее пространство, чтобы получать воду и питательные вещества. Они также тянутся в высоту к свету, стремясь обогнать своих конкурентов. Сорные травы забивают другие растения (рис. 5.3). Много примеров из жизни животных. Обостренной конкуренцией объясняется, например, несовместимость в одном водоеме широкополого и узкопалого раков: побеждает обычно узкопалый рак, так как более плодовит.

Рисунок 5.3-Конкуренция

Чем больше сходства в требованиях двух видов к условиям жизни, тем сильнее конкуренция, которая может приводить к исчезновению одного из них. Тип взаимодействий конкретныхвидов может меняться в зависимости от условий или стадий жизненного цикла.

Антагонистические отношения проявляются сильнее на начальных стадиях развития сообщества. В процессе развития экосистем обнаруживается тенденция к замене отрицательных взаимодействий положительными, повышающими выживание видов.

Неантагонистические взаимоотношения теоретически можно выразить многими комбинациями: нейтральные (0 0), взаимовыгодные (+ +), односторонние (0 +) и др. Основные формы этих взаимодействий следующие: симбиоз, мутуализм и комменсализм.

Симбиоз (гр. symbiosis - сожительство) - это обоюдовыгодные, но не обязательные взаимоотношения разных видов организмов (+ +). Пример симбиоза - сожительство рака-отшельника и актинии: актиния передвигается, прикрепляясь к спине рака, а тот получает с помощью актинии более богатую пищу и защиту (рис. 5.4).

Рисунок 5.4- Симбиоз

Иногда термин «симбиоз» используют в более широком смысле - «жить вместе».

Мутуализм (лат. mutuus - взаимный) - взаимовыгодные и обязательные для роста и выживания отношения организмов разных видов (+ +). Лишайники - хороший пример положительных взаимоотношений водорослей и грибов. При распространении насекомыми пыльцы растений у обоих видов вырабатываются специфические приспособления: цвет и запах у растений, хоботок - у насекомых и др.

Рисунок 5.5 - Мутуализм

Комменсализм (лат. commensa/is - сотрапезник) - взаимоотношения, при которых один из партнеров извлекает выгоду, а другому они безразличны (+ 0). Комменсализм часто наблюдается в море: почти в каждой раковине моллюска, в теле губки есть «незваные гости», использующие их как укрытия. Птицы и животные, питающиеся остатками пищи хищников, - примеры комменсалов (рис. 5.6).

Рисунок 5.6- Комменсализм



Несмотря на конкуренцию и другие типы антагонистических отношений, в природе многие виды могут спокойно уживаться (рис. 5.7). В таких случаях говорят, что каждый вид обладает собственной экологической нишей (фр. niche - гнездо). Термин был предложен в 1910 г. Р. Джонсоном.

Близкородственные организмы, имеющие сходные требования к среде обитания, не живут, как правило, в одних и тех же условиях. Если они и живут в одном месте, то либо используют разные ресурсы, либо имеют другие различия в функциях.

Например, разные виды дятлов. Хотя все они одинаково питаются насекомыми и гнездятся в дуплах деревьев, но имеют как бы разную специализацию. Большой пестрый дятел добывает пищу в стволах деревьев, средний пестрый - в крупных верхних ветвях, малый пестрый - в тонких веточках, зеленый дятел охотится на муравьев на земле, а трехпалый выискивает мертвые и обгоревшие стволы деревьев, т. е. разные виды дятлов имеют разные экологические ниши.

Экологическая ниша - это совокупность территориальных и функциональных характеристик среды обитания, соответствующих требованиям данного вида: пищи, условий размножения, отношений с конкурентами и т. д.

Некоторые авторы вместо термина «экологическая ниша» используют термины «местообитание» или «среда обитания». Последние включают лишь пространство обитания, а экологическая ниша, кроме того, определяет функцию, которую выполняет вид. П. Агесс (1982) приводит такие определения ниши и среды: среда - адрес, по которому проживает организм, а ниша – его профессия (рис. 5.7).

Рисунок 5.7- Мирное сосуществование разных организмов

Рисунок 5.8-Экологические ниши

Антропогенные факторы - это совокупность различных воздействий человека на неживую и живую природу. По мере исторического развития человечества природа обогатилась качественно новыми явлениями. Только самим своим физическим существованием люди оказывают заметное влияние на среду обитания: в процессе дыхания они ежегодно выделяют в атмосферу 1*10 12 кг СО 2 , а с пищей потребляют около 5*10 15 кКал. В значительно большей степени на биосферу влияет производственная деятельность людей. В результате нее изменяются рельеф и состав земной поверхности, химический состав атмосферы, климат, происходит перераспределение пресной воды, исчезают естественные экосистемы и создаются искусственные агро- и техноэкосистемы, возделываются культурные растения, одомашниваются животные и т. д.

Воздействие человека может быть прямым и косвенным . Например, вырубка и раскорчевка леса оказывают не только прямое действие (уничтожение деревьев и кустарников), но и опосредованное - изменяются условия существования птиц и зверей. Подсчитано, что с 1600 г. человеком так или иначе уничтожено 162 вида птиц и свыше 100 видов млекопитающих. Но, с другой стороны, он создает новые сорта растений и породы животных, постоянно увеличивает их урожайность и продуктивность. Искусственное переселение растений и животных также оказывает большое влияние на жизнь экосистем. Так, кролики, завезенные в Австралию, размножились там настолько, что причинили огромный ущерб сельскому хозяйству.

Стремительная урбанизация (лат. urbanus- городской) - рост городов в последние полвека - изменила лик Земли сильнее, чем многие другие виды деятельности за всю историю человечества. Наиболее очевидное проявление антропогенного влияния на биосферу - загрязнение окружающей среды.

    АБИОТИЧЕСКИЕ ФАКТОРЫ, различные факторы, не относящиеся к живым организмам, как благоприятные, так и вредные, находящиеся в среде, окружающей живые организмы. Сюда включают, например, атмосферу, климат, геологические структуры, количество света,… … Научно-технический энциклопедический словарь

    Среды, компоненты и явления неживой, неорганической природы (климат, свет, химические элементы и вещества, температура, давление и движение среды, почва и др.), прямо или косвенно воздействующие на организмы. Экологический энциклопедический… … Экологический словарь

    абиотические факторы - abiotiniai veiksniai statusas T sritis ekologija ir aplinkotyra apibrėžtis Fiziniai (temperatūra, aplinkos slėgis, klampumas, šviesos, jonizuojančioji spinduliuotė, grunto granulometrinės savybės) ir cheminiai (atmosferos, vandens, grunto cheminė … Ekologijos terminų aiškinamasis žodynas

    Факторы неорганической природы, влияющие на живые организмы … Большой медицинский словарь

    Абиотические факторы - факторы неорганической, или неживой, среды в группе экологических факторов адаптации, действующих среди биологических видов и их сообществ, подразделяющиеся на климатические (свет, температура воздуха, воды, почвы, влажность, ветер), почвенно… … Начала современного естествознания

    АБИОТИЧЕСКИЕ ФАКТОРЫ - Факторы неорганической среды, влияющие на живые организмы. К ним относятся: состав атмосферы, морских и пресных вод, почва, климат, а также зоогигиенические условия животноводческих помещений … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    АБИОТИЧЕСКИЕ ФАКТОРЫ - (от греч. a отрицательная приставка и biotikos жизненный, живой), факторы неорганич. среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, мор. и пресных вод, почвы, климатич. характеристики (темп pa, давление и др.). Совокупность … Сельско-хозяйственный энциклопедический словарь

    абиотические факторы - (от греч. а — отрицательная приставка и biōtikós — жизненный, живой), факторы неорганической среды, влияющие на живые организмы. К А. ф. относят состав атмосферы, морских и пресных вод, почвы, климатические характеристики (температура … Сельское хозяйство. Большой энциклопедический словарь

    АБИОТИЧЕСКИЕ ФАКТОРЫ - среды, совокупность условий неорганической среды, влияющих на организм. Химические А. ф.: химический состав атмосферы, морских и пресных вод, почвы или донных отложений. Физические А. ф.: температура, свет, барометрическое давление, ветер,… … Ветеринарный энциклопедический словарь

    Среды, совокупность условий неорганической среды, влияющих на организмы. А. ф. делятся на химические (химический состав атмосферы, морских и пресных вод, почвы или донных отложений) и физические, или климатические (температура,… … Большая советская энциклопедия

Книги

  • Экология. Учебник. Гриф МО РФ
  • Экология. Учебник. Гриф МО РФ , Потапов А.Д.. В учебнике рассмотрены основные закономерности экологии как науки о взаимодействии живых организмов со средой их жизнеобитания. Изложены главные принципы геоэкологии как науки о главных…

Абиотические факторы - это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет (cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности

организмов.

Температура - один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать]. Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Влажность - экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

В абиотической части среды обитания (в неживой природе) все факторы, прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной).

К основным климатическим факторам относят энергию Солнца, температуру, осадки и влажность, подвижность среды, давление, ионизирующие излучения.

Экологи́ческие фа́кторы - свойства среды обитания, оказывающие какое-либо воздействие на организм. Индифферентные элементы среды, например, инертные газы, экологическими факторами не являются.

Экологические факторы отличаются значительной изменчивостью во времени и пространстве. Например, температура сильно варьирует на поверхности суши, но почти постоянна на дне океана или в глубине пещер.

Классификации экологических факторов

По характеру воздействия

Прямо действующие - непосредственно влияющие на организм, главным образом на обмен веществ

Косвенно действующие - влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.)

По происхождению

Абиотические - факторы неживой природы:

климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха

эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы химический состав почвы

орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона

химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность

физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения

Биотические - связанные с деятельностью живых организмов:

фитогенные - влияние растений

микогенные - влияние грибов

зоогенные - влияние животных

микробиогенные - влияние микроорганизмов

Антропогенные (антропические):

физические: использование атомной энергии, перемещение в поездах и самолётах, влияние шума и вибрации

химические: использование минеральных удобрений и ядохимикатов, загрязнение оболочек Земли отходами промышленности и транспорта

биологические: продукты питания; организмы, для которых человек может быть средой обитания или источником питания

социальные - связанные с отношениями людей и жизнью в обществе

По расходованию

Ресурсы - элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет)

Условия - не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы)

По направленности

Векторизованные - направленно изменяющиеся факторы: заболачивание, засоление почвы

Многолетние-циклические - с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом

Осцилляторные (импульсные, флуктуационные) - колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года)

Правило Оптимума

В соответствии с этим правилом для экосистемы, организма или определенной стадии его развития имеется диапазон наиболее благоприятного (опти­мального) значения фактора. За пределами зоны оптимума лежат зоны угнетения, переходящие в критические точки, за которыми существование невозможно. К зоне оптимума обычно приурочена максимальная плотность популяции. Зоны оптимума для различных организмов неодинаковы. Для одних они имеют значительный диапазон. Такие организмы относятся к группе эврибионтов. Организмы с узким диапазоном адаптации к факторам называются стенобионтами.

Диапазон значений факторов (между критическими точками) называют экологической валентностью. Синонимом термина валентность является толерантность, или пластичность (изменчивость). Эти характеристики зависят в значительной мере от среды, в которой обитают организмы. Если она относительно стабильна по своим свойствам (малы амплитуды колебаний отдельных факторов), в ней больше стено-бионтов (например, в водной среде), если динамична, например, наземно-воздушная - в ней больше шансов на выживание имеют эврибионты. Зона оптимума и экологическая валентность обычно шире у теплокровных организмов, чем у холоднокровных. Надо также иметь в виду, что экологическая валентность для одного и того же вида не остается одинаковой в различных условиях (например, в северных и южных районах в отдельные периоды жизни и т.п.). Молодые и старческие организмы, как правило, требуют более кондиционированных (однородных) условий. Иногда эти требования весьма неоднозначны. Например, по отношению к температуре личинки насекомых обычно стенобионтны (стенотермны), в то время как куколки и взрослые особи могут относиться к эврибионтам (эвритермным).


Похожая информация.