Центр тяжести неправильной фигуры расчетным способом. Положения центра тяжести некоторых фигур

Примечание. Центр тяжести симметричной фигуры находится на оси симметрии.

Центр тяжести стержня находится на середине высоты. При решении задач используются следующие методы:

1. метод симметрии: центр тяжести симметричных фигур нахо­дится на оси симметрии;

2. метод разделения: сложные сечения разделяем на несколько простых частей, положение центров тяжести которых легко опреде­лить;

3. метод отрицательных площадей: полости (отверстия) рас­сматриваются как часть сечения с отрицательной площадью.

Примеры решения задач

Пример1. Определить положение центра тяжести фигуры, представленной на рис. 8.4.

Решение

Разбиваем фигуру на три части:

Аналогично определяется у С = 4,5 см.

Пример 2. Найти положение центра тяжести симметричной стержневой фермы ADBE (рис. 116), размеры которой таковы: АВ = 6м, DE = 3 м и EF = 1 м.

Решение

Так как ферма симметричная, то ее центр тяжести лежит на оси симметрии DF. При выбранной (рис. 116) системе коор­динатных осей абсцисса центра тяжести фермы

Неизвестной, следовательно, является лишь ордината у С центра тя­жести фермы. Для ее определения разбиваем ферму на отдельные части (стержни). Длины их определяются из соответствующих треугольников.

Из ΔAEF имеем

Из ΔADF имеем

Центр тяжести каждого стержня лежит в его середине, координаты этих центров легко определяются из чертежа (рис. 116).

Найденные длины и ординаты центров тяжести отдельных частей фермы заносим в таблицу и по формуле

определяем ординату у с центра тяжести данной плоской фермы.

Следовательно, центр тяжести С всей фермы лежит на оси DF симметрии фермы на расстоянии 1,59 м от точки F.

Пример 3. Определить координаты центра тяжести составного сечения. Сечение состоит из листа и прокатных профилей (рис. 8.5).

Примечание. Часто рамы сваривают из разных профилей, создавая необходимую конструкцию. Таким образом, уменьшается расход металла и образуется конструкция высокой прочности.

Для стандартных прокатных профилей собственные геометри­ческие характеристики известны. Они приводятся в соответствую­щих стандартах.

Решение

1. Обозначим фигуры номерами и выпишем из таблиц необхо­димые данные:

1 - швеллер № 10 (ГОСТ 8240-89); высота h = 100 мм; ширина полки b = 46 мм; площадь сечения А 1 = 10,9 см 2 ;

2 - двутавр № 16 (ГОСТ 8239-89); высота 160 мм; ширина полки 81 мм; площадь сечения А 2 - 20,2 см 2 ;

3 - лист 5x100; толщина 5 мм; ширина 100мм; площадь сечения A 3 = 0,5 10 = 5 см 2 .

2. Координаты центров тяжести каждой фигуры можно опреде­лить по чертежу.

Составное сечение симметрично, поэтому центр тяжести нахо­дится на оси симметрии и координата х С = 0.

3. Определение центра тяжести составного сечения:

Пример 4. Определить координаты центра тяжести сечения, по­казанного на рис. 8, а. Сечение состоит из двух уголков 56x4 и швеллера № 18. Выполнить проверку правильности определения положения центра тяжести. Указать его положение на сечении.

Решение

1. : два уголка 56 х 4 и швеллер № 18. Обозначим их 1, 2, 3 (см. рис. 8, а).

2. Укажем центры тяжести каждого профиля, используя табл. 1 и 4 прил. I, и обозначим их С 1 , С 2 , С 3 .

3. Выберем систему координатных осей. Ось у совместим с осью симметрии, а ось х проведем через центры тяжести уголков.

4. Определим координаты центра тяжести всего сечения. Так как ось у совпадает с осью симметрии, то она проходит через центр тяжести сечения, поэтому х с = 0. Координату у с опреде­лим по формуле

Пользуясь таблицами приложения, определим площади каждого профиля и координаты центров тяжести:

Координаты у 1 и у 2 равны нулю, так как ось х проходит через центры тяжести уголков. Подставим полученные значения в формулу для определения у с :

5. Укажем центр тяжести сечения на рис. 8, а и обозначим его буквой С. Покажем расстояние у С = 2,43 см от оси х до точ­ки С.

Поскольку уголки симметрично расположены, имеют одина­ковую площадь и координаты, то А 1 = А 2 , у 1 = у 2 . Поэтому фор­мула для определения у С может быть упрощена:

6. Выполним проверку. Для этого ось х проведем по нижнему краю полки уголка (рис. 8, б). Ось у оставим, как в первом ре­шении. Формулы для определения х С и у С не изменяются:

Площади профилей останутся такими же, а координаты центров тяжестей уголков и швеллера изменятся. Выпишем их:

Находим координату центра тяжести:

По найденным координатам х с и у с наносим на рисунок точ­ку С. Найденное двумя способами положение центра тяжести находится в одной и той же точке. Проверим это. Разница между координатами у с, найденными при первом и втором решении, составляет: 6,51 - 2,43 = 4,08 см.

Это равно расстоянию между осями х при первом и втором решении: 5,6 - 1,52 = 4,08 см.

Ответ: у с = 2,43 см, если ось х проходит через центры тяже­сти уголков, или у с = 6,51 см, если ось х проходит по нижнему краю полки уголка.

Пример 5. Определить координаты центра тяжести сечения, изображенного на рис. 9, а. Сечение состоит из двутавра № 24 и швеллера №.24а. Показать положение центра тяжести на сече­нии.

Решение

1. Разобьем сечение на профили проката : двутавр и швеллер. Обозначим их цифрами 1 и 2.

3. Укажем центры тяжести каждого профиля С 1 и С 2 , ис­пользуя таблицы приложений.

4. Выберем систему осей координат. Ось х совместим с осью симметрии, а ось у проведем через центр тяжести двутавра.

5. Определим координаты центра тяжести сечения. Координа­та у с = 0, так как ось х совпадает с осью симметрии. Координату х с определим по формуле

По табл. 3 и 4 прил. I и схеме сечения определим

Подставим числовые значения в формулу и получим

5. Нанесем точку С (центр тяжести сечения) по найденным значениям х с и у с (см. рис. 9, а).

Проверку решения необходимо выполнить самостоятельно при положении осей, как показано на рис. 9, б. В результате ре­шения получим х с = 11,86 см. Разница между значениями х с при первом и втором решении равна 11,86 - 6,11 = 5,75 см, что равно расстоянию между осями у при тех же решениях b дв /2 = 5,75 см.

Ответ: х с = 6,11 см, если ось у проходит через центр тяжести двутавра; х с = 11,86 см, если ось у проходит через левые крайние точки двутавра.

Пример 6. Железнодорожный кран опирается на рельсы, расстояние меж­ду которыми АВ = 1,5м (рис. 1.102). Сила тяжести тележки крана G r = 30 кН, центр тяжести тележки находится в точке С, лежащей на линии KL пересечения плоскости симметрии тележки с плоскостью рисунка. Сила тяжести лебедки крана Q л = 10 кН приложена в точке D. Сила тяжести противовеса G„=20 кН приложена в точке Е. Сила тяжести стрелы G c = 5 кН приложена в точке Н. Вылет крана относительно линии KL равен 2 м. Определить коэффициент устойчивости крана в ненагруженном состоянии и какой груз F можно поднять этим краном при условии, что коэффициент устойчивости должен быть не менее двух.

Решение

1. В ненагруженном состоянии у крана возникает опасность опро­кидывания при повороте вокруг рельса А. Следовательно, относительно точки А момент устойчивости

2. Опрокидывающий момент относительно точки А создается силой тяжести противове­са, т. е.

3. Отсюда коэффициент устойчивости крана в ненагруженном состоянии

4. При нагрузке стрелы крана грузом F возникает опасность опрокидывания крана с поворотом около рельса В. Следовательно, от­носительно точки В момент устойчивости

5. Опрокидывающий момент относитель­но рельса В

6. По условию задачи эксплуатация крана разрешается при коэффициенте устойчивости k B ≥ 2 , т. е.

Контрольные вопросы и задания

1. Почему силы притяжения к Земле, действующие на точки тела, можно принять за систему параллельных сил?

2. Запишите формулы для определения положения центра тя­жести неоднородных и однородных тел, формулы для определения положения центра тяжести плоских сечений.

3. Повторите формулы для определения положения центра тя­жести простых геометрических фигур: прямоугольника, треугольни­ка, трапеции и половины круга.

4.
Что называют статическим моментом площади?

5. Вычислите статический момент данной фигуры относительно оси Ox. h = 30 см; b = 120 см; с = 10 см (рис. 8.6).

6. Определите координаты центра тяжести заштрихованной фи­гуры (рис. 8.7). Размеры даны в мм.

7. Определите координату у фигуры 1 составного сечения (рис. 8.8).

При решении воспользоваться справочными данными таблиц ГОСТ «Сталь горячекатанная» (см. Приложение 1).

Конспект урока по физике 7 класс

Тема: Определение центра тяжести

Учитель физики МОУ Аргаяшская СОШ №2

Хидиятулина З.А.

Лабораторная работа:

«Определение центра тяжести плоской пластины»

Цель : нахождение центра тяжести плоской пластины.

Теоретическая часть:

Центр тяжести есть у всех тел. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на тело, равен нулю. Например, если подвесить предмет за его центр тяжести, то он останется в покое. То есть, его положение в пространстве не изменится (он не перевернётся вверх ногами или на бок). Почему одни тела опрокидываются, а другие — нет? Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями. У куклы-неваляшки секрет заключается также в центре тяжести тела. Её устойчивость объясняется тем, что центр тяжести у неваляшки находится в самом низу, она фактически стоит на нём. Условием сохранения равновесия тела является прохождение вертикальной оси его общего центра тяжести внутри площади опоры тела. Если вертикаль центра тяжести тела выходит из площади опоры, тело теряет равновесие и падает. Поэтому чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Площадь опоры при вертикальном положении человека ограничена тем пространством, которое находится под подошвами и между стопами. Центральная точка отвесной линии центра тяжести на стопе находится на 5 см впереди от пяточного бугра. Сагиттальный размер площади опоры всегда преобладает над фронтальным, поэтому и смещение отвесной линии центра тяжести легче происходит вправо и влево, чем назад, а особенно трудно — вперед. В связи с этим устойчивость на поворотах при быстром беге значительно меньше, чем в сагиттальном направлении (вперед или назад). Нога в обуви, особенно с широким каблуком и жесткой подошвой, устойчивее, чем без обуви, так как приобретает большую площадь опоры.

Практическая часть:

Цель работы: Используя предложенное оборудование, опытным путём найти положение центра тяжести двух фигур из картона и треугольника.

Оборудование: Штатив, плотный картон, треугольник из школьного набора, линейка, скотч, нить, карандаш..

Задание 1: Определите положение центра тяжести плоской фигуры произвольной формы

С помощью ножниц вырежьте из картона фигуру произвольной формы. Скотчем прикрепите к ней нить в точке А. Подвесьте фигуру за нить к лапке штатива. С помощью линейки и карандаша отметьте на картоне линию вертикали АВ.

Переместите точку крепления нити в положение С. Повторите описанные действия

Точка О пересечения линий АВ и CD даёт искомое положение центра тяжести фигуры.

Задание 2: Пользуясь только линейкой и карандашом, найдите положение центра тяжести плоской фигуры

С помощью карандаша и линейки разбейте фигуру на два прямоугольника. Построением найдите положения О1 и О2 их центров тяжести. Очевидно, что центр тяжести всей фигуры находится на линии О1О2

Разбейте фигуру на два прямоугольника другим способом. Построением найдите положения центров тяжести О3 и О4 каждого из них. Соедините точки О3 и О4 линией. Точка пересечения линий О1О2 и О3О4 определяет положение центра тяжести фигуры

Задание 2: Определите положение центра тяжести треугольника

С помощью скотча закрепите один из концов нити в вершине треугольника и подвесьте его к лапке штатива. С помощью линейки отметьте направление АВ линии действия силы тяжести (сделайте отметку на противоположной стороне треугольника)

Повторите аналогичную процедуру, подвесив треугольник за вершину С. На противоположной вершине С стороне треугольника сделайте отметку D .

С помощью скотча прикрепите к треугольнику отрезки нитей АВ и CD . Точка О их пересечения определяет положение центра тяжести треугольника. В данном случае центр тяжести фигуры находится вне пределов самого тела.

III . Решение качественных задач

1.С какой целью цирковые артисты при хождении по канату держат в руках тяжелые шесты?

2.Почему человек, несущий на спине тяжелый груз, наклоняется вперед?

3.Почему нельзя встать со стула, если не наклонить корпус вперед?

4.Почему подъемный кран не опрокидывается в сторону поднимаемого груза? Почему без груза кран не опрокидывается в сторону противовеса?

5.Почему у автомашин и велосипедов и т.п. тормоза лучше ставить на задние, а не на передние колеса?

6.Почему, грузовик нагруженный сеном легче переворачивается, чем тот же грузовик нагруженный снегом?

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

6.1. Общие сведения

Центр параллельных сил
Рассмотрим две параллельные, направленные в одну сторону силы , и , приложенные к телу в точках А 1 и А 2 (рис.6.1). Эта система сил имеет равнодействующую , линия действия которой проходит через некоторую точку С . Положение точки С можно найти с помощью теоремы Вариньона:

Если повернуть силы и около точек А 1 и А 2 в одну сторону и на один и тот же угол, то получим новую систему параллельных сал, имеющих те же модули. При этом их равнодействующая будет также проходить через точку С . Такая точка называется центром параллельных сил.
Рассмотрим систему параллельных и одинаково направленных сил , приложенных к твердому телу в точках . Эта система имеет равнодействующую .
Если каждую силу системы повернуть около точек их приложения в одну и ту же сторону и на один и тот же угол, то получатся новые системы одинаково направленных параллельных сил с теми же модулями и точками приложения. Равнодействующая таких систем будет иметь тот же модуль R , но всякий раз другое направление. Сложив силы F 1 и F 2 найдем что их равнодействующая R 1 , которая всегда будет проходить через точку С 1 , положение которой определяется равенством . Сложив далее R 1 и F 3 , найдем их равнодействующую, которая всегда будет проходить через точку С 2 , лежащую на прямой А 3 С 2 . Доведя процесс сложения сил до конца придем к выводу, что равнодействующая всех сил действительно всегда будет проходить через одну и ту же точку С , положение которой по отношению к точкам будет неизменным.
Точка С , через которую проходит линия действия равнодействующей системы параллельных сил при любых поворотах этих сил около точек их приложения в одну и ту же сторону на один и тот же угол называется центром параллельных сил (рис. 6.2).


Рис.6.2

Определим координаты центра параллельных сил. Поскольку положение точки С по отношению к телу является неизменным, то ее координаты от выбора системы координат не зависят. Повернем все силы около их приложения так, чтобы они стали параллельны оси Оу и применим к повернутым силам теорему Вариньона. Так как R" является равнодействующей этих сил, то, согласно теореме Вариньона, имеем , т.к. , , получим

Отсюда находим координату центра параллельных сил zc :

Для определения координаты xc составим выражение момента сил относительно оси Oz .

Для определения координаты yc повернем все силы, чтобы они стали параллельны оси Oz .

Положение центра параллельных сил относительно начала координат (рис. 6.2) можно определить его радиусом-вектором:

6.2. Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.
Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.
Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.
Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk , yk , zk - координаты частиц тела.
Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vγ , pk =vk γ , где γ - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .
Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk , yk - координаты центра тяжести частей пластины.
Точка С в данном случае носит название центра тяжести площади .
Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk , yk , zk - координата центра тяжести частей линии.

6.3. Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.
1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.
Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке (рис. 6.3). Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.


Рис.6.3

Ответ: x c =17.0см; y c =18.0см.

3. Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины имеющий вырез радиусом r = 0,6 R (рис. 6.4).


Рис.6.4

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза , площадь выреза . Площадь пластины с вырезом ; .
Пластина с вырезом имеет ось симметрии О1 x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид: .
Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2α (рис. 6.5).


Рис. 6.5

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.
Согласно формуле для центра тяжести линии:

6. Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.
Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля (рис. 6.6).



Рис.6.6

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

6.4. Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треуголника, дуги окружности, сектора, сегмента) удобно использовать справочные данные (табл. 6.1).

Таблица 6.1

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где α - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где α - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1 , y1 , x2 , y2 , x3 , y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Лекция 4. Центр тяжести.

В данной лекции рассматриваются следующие вопросы

1. Центр тяжести твердого тела.

2. Координаты центров тяжести неоднородных тел.

3. Координаты центров тяжести однородных тел.

4. Способы определения координат центров тяжести.

5. Центры тяжести некоторых однородных тел.

Изучение данных вопросов необходимо в дальнейшем для изучения динамики движении тел с учетом трения скольжения и трения качения, динамики движения центра масс механической системы, кинетических моментов, для решения задач в дисциплине «Сопротивление материалов».

Приведение параллельных сил.

После того как было рассмотрено приведение к центру плоской системы и произвольной пространственной системы сил, мы опять возвращаемся к рассмотрению частного случая системы параллельных сил.

Приведение двух параллельных сил.

В ходе рассмотрения такой системы сил возможны три следующих случая приведения.

1. Система двух коллинеарных сил. Рассмотрим систему двух параллельных и направленных в одну сторону сил P и Q , приложенных в точках А и В . Будем считать, что силы перпендикулярны к этому отрезку (рис.1,а ).

С , принадлежащую отрезку АВ и удовлетворяющую условию:

АС /СВ = Q /P .(1)

Главный вектор системы R C = P + Q по модулюравен сумме этих сил:R C = P + Q .

С с учетом (1) равен нулю: M C = P АС - Q СВ = 0.

Таким образом, в результате приведения мы получили: R C ≠ 0, M C = 0. Это означает, что главный вектор эквивалентен равнодействующей, проходящей через центр приведения, то есть:

Равнодействующая коллинеарных сил равна по модулю их сумме, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внутренним образом.

Отметим, что положение точки С не изменится, если силы Р и Q повернуть на угол α . Точка С , обладающая таким свойством называется центром параллельных сил .

2. Система двух антиколлинеарных и не равных по модулю сил. Пусть силы P и Q , приложенные в точках А и В , параллельны, направлены в противоположные стороны и по модулю не равны (рис.1,б ).

Выберем в качестве центра приведения точку С , удовлетворяющую по-прежнему соотношению (1) и лежащую на той же прямой, но за пределами отрезка АВ .

Главный вектор этой системыR C = P + Q по модулю теперь будет равен разности модулей векторов:R C = Q - P .

Главный момент относительно центра С по-прежнему равен нулю: M C = P АС - Q СВ = 0, поэтому

Равнодействующая антиколлинеарных и не равных по модулю сил равна их разности, направлена в сторону большей силы, а ее линия действия делит отрезок, соединяющий точки их приложения, обратно пропорционально модулям этих сил внешнимобразом.

Рис.1

3. Система двух антиколлинеарных и равных по модулю сил. Возьмем за исходный предыдущий случай приведения. Зафиксируем силу Р , а силу Q устремим по модулю к силеР .

Тогда при Q Р в формуле (1) отношение АС /СВ 1. Это означает, чтоАС СВ , то есть расстояние АС →∞ .

При этом модуль главного вектора R C 0, а модуль главного момента не зависит от положения центра приведения и остается равным первоначальному значению:

M C = P АС - Q СВ = P ∙ ( АС - СВ ) = P А B .

Итак, в пределе мы получили систему сил, для которой R C = 0, M C 0, а центр приведения удален в бесконечность, которую нельзя заменить равнодействующей. В этой системе нетрудно узнать пару сил, поэтому пара сил равнодействующей не имеет .

Центр системыпараллельных сил.

Рассмотрим систему n сил P i , приложенных в точках A i (x i , y i , z i )и параллельных оси Ov c ортом l (рис.2).

Если заранее исключить случай системы, эквивалентной паре сил, нетрудно на основании предыдущего параграфа доказать существование ее равнодействующей R .

Определим координаты центра C (x c , y c , z c ) параллельных сил, то есть координаты точки приложения равнодействующейэтой системы.

Воспользуемся с этой целью теоремой Вариньона, на основании которой:

M 0 (R ) = Σ M 0 (P i ).

Рис.2

Вектор-момент силы можно представить в виде векторного произведения, поэтому:

М 0 (R ) = r c × R = Σ М 0i (P i ) = Σ (r i × P i ).

Учитывая, что R = R v l , а P i = P vi l и воспользовавшись свойствами векторного произведения, получим:

r c × R v l = Σ (r i × P vi l ),

r c R v × l = Σ (r i P vi × l ) = Σ (r i P vi ) × l ,

или:

[ r c R v - Σ (r i P vi )] × l = 0.

Последнее выражение справедливо только в том случае, если выражение в квадратных скобках равно нулю. Поэтому, опуская индекс v и учитывая, что равнодействующая R = Σ P i , отсюда получим:

r c = (Σ P i r i )/(Σ P i ).

Проектируя последнее векторное равенство на оси координат, получим искомое выражение координат центра параллельных сил :

x c = (Σ P i x i )/(Σ P i );

y c = (Σ P i y i )/(Σ P i );(2)

z c = (Σ P i z i )/(Σ P i ).

Центр тяжести тел.

Координаты центров тяжести однородного тела.

Рассмотрим твердое тело весом P и объемом V в системе координат Oxyz , где оси x и y связаны с поверхностью земли, а ось z направлена в зенит.

Если разбить тело на элементарные части объемом ∆ V i , то на каждую его часть будет действовать сила притяжения P i , направленная к центру Земли. Предположим, что размеры тела значительно меньше размеров Земли, тогда систему сил, приложенных к элементарным частям тела можно считать не сходящейся, а параллельной (рис.3), и к ней применимы все выводы предыдущей главы.

Рис.3

Определение . Центром тяжести твердого тела называется центр параллельных сил тяжести элементарных частей этого тела.

Напомним, что удельным весом элементарной части тела называется отношение ее веса ∆ P i к объему ∆ V i : γ i = ∆ P i / ∆ V i . Для однородного тела эта величина является постоянной: γ i = γ = P / V .

Подставляя в (2) ∆ P i = γ i ∙∆ V i вместо P i , учитывая последнее замечание и сокращая числитель и знаменатель на g , получим выражения координат центра тяжести однородного тела :

x c = (Σ ∆ V i x i )/(Σ ∆ V i );

y c = (Σ ∆ V i y i )/(Σ ∆ V i );(3)

z c = (Σ ∆ V i z i )/(Σ ∆ V i ).

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой плоско­сти.

Если оси х и у расположить в этой плоскости симметрии, то для каждой точки с координатами . И координата по (3), бу­дет равна нулю, т.к. в сумме все члены имеющие противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в плоскости симметрии.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Действительно, в этом случае, если ось z провести по оси симмет­рии, для каждой точки с координатами можно отыскать точку с координатами и координаты и , вычисленные по фор­мулам (3), окажутся равными нулю.

Аналогично доказывается и третья теорема.

3) Если однородное тело имеет центр симметрии, то центр тя­жести тела находится в этой точке.

И ещё несколько замечаний.

Первое. Если тело можно разделить на части, у которых известны вес и положение центра тяжести, то незачем рассматривать каждую точку, а в формулах (3) P i – определять как вес соответствующей части и – как координаты её центра тяжести.

Второе. Если тело однородное, то вес отдельной части его , где - удельный вес материала, из которого сделано тело, а V i - объём этой части тела. И формулы (3) примут более удобный вид. Например,

И аналогично, где - объём всего тела.

Третье замечание. Пусть тело имеет вид тонкой пластинки площадью F и толщиной t , лежащей в плоскости Oxy . Подставляя в (3) V i = t ∆ F i , получим координаты центра тяжести однородной пластинки :

x c = (Σ ∆ F i x i ) / (Σ ∆ F i );

y c = (Σ ∆ F i y i ) / (Σ ∆ F i ).

z c = (Σ ∆ F i z i ) / (Σ ∆ F i ).

где – координаты центра тяжести отдельных пластин; – общая площадь тела.

Четвёртое замечание. Для тела в виде тонкого криволинейного стержня длиной L с площадью поперечного сечения a элементарный объем V i = a ∙∆ L i , поэтому координаты центра тяжести тонкого криволинейного стержня будут равны:

x c = (Σ ∆ L i x i )/(Σ ∆ L i );

y c = (Σ ∆ L i y i )/(Σ ∆ L i );(4)

z c = (Σ ∆ L i z i )/(Σ ∆ L i ).

где – координаты центра тяжести i -го участка; .

Отметим, что согласно определению центр тя­жести - это точка геометрическая; она может лежать и вне преде­лов данного тела (например, для кольца).

Примечание.

В этом разделе курса мы не делаем разницы между силой притяжения, силой тяжести и весом тела. В действительности сила тяжести представляет собой разность между силой притяжения Земли и центробежной силой, вызванной ее вращением.

Координаты центров тяжести неоднородных тел.

Координаты центра тяжести неоднородного твердого тела (рис.4) в выбранной системе отсчета определяются следующим образом:

Рис.4

где - вес единицы объема тела (удельный вес)

-вес всего тела.

неоднородную поверхность (рис.5), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.5

где - вес единицыплощади тела,

-вес всего тела.

Если твердое тело представляет собой неоднородную линию (рис.6), то координаты центра тяжести в выбранной системе отсчета определяются следующим образом:

Рис.6

где - вес единицыдлины тела,

Вес всего тела.

Способы определения координат центра тяжести.

Исходя из полученных выше общих формул,можно указать конкретные способы определения координат центров тяжести тел .

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

S =S 1 +S 2 .

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки(без выреза) с площадью S 1 и площади вырезанной части S 2 .

Рис.9

S = S 1 - S 2 .

4. Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L - длина дуги АВ , равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О , равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy , координаты вершин которого известны: A i (x i ,y i ), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А 1 А 2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А 3 М 3 (рис.11) .

Рис.11

Разбивая треугольник на полоски, параллельные стороне А 2 А 3 , можно убедиться, что он должен лежать на медиане А 1 М 1 . Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан , которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А 1 М 1 получим, учитывая, что координаты точки М 1 - это среднее арифметическое координат вершин А 2 иА 3 :

x c = x 1 + (2/3) ∙ (x М 1 - x 1 ) = x 1 + (2/3) ∙ [(x 2 + x 3 )/2 - x 1 ] = (x 1 + x 2 + x 3 )/3.

Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

x c =(1/3) Σ x i ; y c =(1/3) Σ y i .

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2 α , расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что y c = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом d φ . С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R × d φ и высотой R . Площадь такого треугольника dF =(1/2)R 2 d φ , а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R ∙ cosφ . Подставляя в (5) F = α R 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга .

Подставляя в (2) α = π /2, получим: x c = (4 R )/(3 π ) ≅ 0,4 R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Решение. Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Решение. Координаты центров тяжести:

0.

Площади:

Поэтому:

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа. Пример 4. Найти положение центра тяжести пластинки, представленной на рис. 16. Размеры даны в сантиметрах.

Рис.16

Решение. Разделим пластинку на фигуры (рис. 17), центры тяжести которых известны.

Площади этих фигур и координаты их центров тяжести:

1) прямоугольник со сторонами 30 и 40 см, S 1 =30 40=1200 см 2 ; х 1 =15 см; у 1 =20 см.

2) прямоугольный треугольник с основанием 50 см и высотой 40 см; S 2 =0,5 50 40= 1000 см 2 ; х 2 =30+50/3=46,7 см;у 2 = 40/3 =13,3 см;

3) половина круга окружности радиуса r = 20 см; S 3 =0,5 ∙π∙ 20 2 =628 см 2 ; х 3 =4 R /3 π =8,5 см; у

Решение. Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ = ρ g , где g - ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.19

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где L i длина i -го стержня фермы, а x i , y i - координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня,для нее L 1 = 4 м, x 1 = 0 м, y 1 = 2 м. Вторая группа стержней состоит из пяти стержней, для нее L 2 = 20 м, x 2 = 3 м, y 2 = 2 м.

Координаты центра тяжести фермы находим по формуле:

x c = (L 1 x 1 + L 2 x 2 )/(L 1 + L 2 ) = (4∙0 + 20∙3)/24 = 5/2 м;

y c = (L 1 y 1 + L 2 y 2 )/(L 1 + L 2 ) = (4∙2 + 20∙2)/24 = 2 м.

Отметим, что центр С лежит на прямой, соединяющей С 1 и С 2 и делит отрезок С 1 С 2 в отношении: С 1 С /СС 2 = (x c - x 1 )/(x 2 - x c ) = L 2 / L 1 = 2,5/0,5.

Вопросы для самопроверки

- Что называется центром параллельных сил?

- Как определяются координаты центра параллельных сил?

- Как определить центр параллельных сил, равнодействующая которых равна нулю?

- Каким свойством обладает центр параллельных сил?

- По каким формулам вычисляются координаты центра параллельных сил?

- Что называется центром тяжести тела?

- Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

- Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

- Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

- Что называют статическим моментом площади?

- Приведите пример тела, центр тяжести которого расположен вне тела.

- Как используются свойства симметрии при определении центров тяжести тел?

- В чем состоит сущность способа отрицательных весов?

- Где расположен центр тяжести дуги окружности?

- Каким графическим построением можно найти центр тяжести треугольника?

- Запишите формулу, определяющую центр тяжести кругового сектора.

- Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

- По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

- Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

- Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

- Какими вспомогательными теоремами пользуются при определении положения центра тяжести?